
Vol.:(0123456789)1 3

Evolving Systems 
https://doi.org/10.1007/s12530-022-09466-w

ORIGINAL PAPER

DBF‑Net: a semi‑supervised dual‑task balanced fusion network 
for segmenting infected regions from lung CT images

Xiaoyan Lu1  · Yang Xu1,2  · Wenhao Yuan1 

Received: 27 January 2022 / Accepted: 11 September 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Accurate segmentation of infected regions in lung computed tomography (CT) images is essential to improve the timeliness 
and effectiveness of treatment for coronavirus disease 2019 (COVID-19). However, the main difficulties in developing of 
lung lesion segmentation in COVID-19 are still the fuzzy boundary of the lung-infected region, the low contrast between 
the infected region and the normal trend region, and the difficulty in obtaining labeled data. To this end, we propose a novel 
dual-task consistent network framework that uses multiple inputs to continuously learn and extract lung infection region 
features, which is used to generate reliable label images (pseudo-labels) and expand the dataset. Specifically, we periodically 
feed multiple sets of raw and data-enhanced images into two trunk branches of the network; the characteristics of the lung 
infection region are extracted by a lightweight double convolution (LDC) module and fusiform equilibrium fusion pyramid 
(FEFP) convolution in the backbone. According to the learned features, the infected regions are segmented, and pseudo-
labels are made based on the semi-supervised learning strategy, which effectively alleviates the semi-supervised problem of 
unlabeled data. Our proposed semi-supervised dual-task balanced fusion network (DBF-Net) creates pseudo-labels on the 
COVID-SemiSeg dataset and the COVID-19 CT segmentation dataset. Furthermore, we perform lung infection segmentation 
on the DBF-Net model, with a segmentation sensitivity of 70.6% and specificity of 92.8%. The results of the investigation 
indicate that the proposed network greatly enhances the segmentation ability of COVID-19 infection.
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1 Introduction

In December 2019, the COVID-19 outbreak emerged and 
then spread locally around the world. It not only causes a 
drain on the world economy but also poses a threat to the 
lives of human beings all over the world (Nicola et al. 2020). 
Therefore, early detection, early diagnosis, and early treat-
ment are important methods for improving patient’s survival 

rates (Yan et al. 2020). However, it is difficult to confirm the 
severity of infection by direct judgmental analysis of patients 
(Munusamy et al. 2021); thus, doctors diagnose COVID-19 
lung involvement by CT images. CT technology can show 
some distinctive features, including ground-glass opacity 
(GGO), pulmonary fibrosis (PF), pleural effusion (PE), and 
pulmonary consolidation (PC), which has important research 
value and practical significance for the early diagnosis of 
lung lesions (Shi et al. 2020; Kanne 2019). In diagnosis, 
doctors need to rely on imagination to convert the 2D CT 
patient images into 3D images to obtain the location and size 
of pathological tissues. Nevertheless, with the large increase 
in the number of confirmed and suspected cases of COVID-
19, doctors need to spend considerable time and effort manu-
ally labeling the CT lesion area. Therefore, computer-aided 
systems can be used to help doctors diagnose lung infection 
and quantitatively evaluate the effect before and after treat-
ment. It not only improves the medical image interpretation 
efficiency of doctors but also strengthens their clinical diag-
nosis ability and improves the patient cure rate.
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Recently, deep learning-based computerized imag-
ing diagnostic systems have been used to help examine 
infected patients, which utilize models to obtain features to 
identify areas of lung infection. For example, Kumar Singh 
et al. (2021) proposed a model for segmenting the COVID-
19 infections of lung CT images based on a receptive-
field-aware (RFA) module, called LungINFseg. The RFA 
module can enlarge the receptive field of the segmentation 
models and learn context information. Wang et al. (2020) 
proposed a deep convolutional neural network (COVID-
Net), which aims to screen patients with suspected infec-
tion by identifying obvious signs of COVID-19 from chest 
X-rays. To relieve the diagnostic pressure caused by the 
lack of labeled data, Zhou et al. (2019) adopted a self-
supervised learning strategy to effectively improve the 
utilization rate of a mass of unlabeled images. Moreover, 
they used model genesis to achieve 3D transfer learning of 
medical images. Alhudhaif et al. (2021) designed a gener-
alized convolutional neural network capable of identifying 
COVID-19 through feature extraction from chest X-ray 
images. Wang et al. (2021) proposed a DeepSC-COVID 
model for 3D lesion classification and segmentation 
COVID-19 and realized assisted diagnosis of COVID-19 
through multitask learning.

Despite the emergence of intelligent diagnostic systems 
for COVID-19 and the active exploration of lung infection 
regions, there are still many challenges. First, feature analy-
sis and information extraction are affected due to the large 
morphological difference and variable location of infected 
regions in lung CT images. Second, compared with natural 
images, CT images have low contrast and are susceptible to 
noise, resulting in blurred edges between different tissues or 
between tissues and lesions, which increases the segmenta-
tion difficulty. In addition, data collection and labeling for 
the study are difficult. Therefore, making reliable pseudo-
labels is essential to assisting doctors in diagnosing patients.

To deal with the above challenges, we propose a novel 
semi-supervised dual-task balanced fusion network (DBF-
Net) to produce high-quality pseudo-labels based on lung 
infection areas in CT images. Inspired by the method of the 
radiologist in detecting the infected region, we first roughly 
locate the infected region and then further determine the out-
line of the infected area according to the local characteris-
tics. In our view, relatively clear regions and boundaries are 
key features in determining whether the lung is infected. Our 
deep learning model extracts boundary information layer by 
layer through a fusiform equilibrium fusion pyramid. The 
original CT image and the enhanced image are fed into both 
network branches for training and learning, thus extracting 
more complete image information. In addition, we design a 
semi-supervised learning framework to combine unlabeled 
and labeled data for training, and effectively make pseudo-
labels to expand the infected region segmentation training 

dataset. In summary, our research mainly includes the fol-
lowing threefold: 

(1) We design a novel deep learning network (DBF-Net). 
The dual-task learning of lung CT image segmentation 
is realized by adopting a unique dual-branch training 
method. By using a lightweight double convolution 
module for down-sampling, this module is a simpler 
and more effective down-sampling method than the 
ordinary down-sampling module.

(2) We propose the fusiform equilibrium fusion pyramid in 
the down-sampling of our model for feature extraction 
layer by layer. First, our pyramid convolution is divided 
into different levels, and each level corresponds to a 
convolution kernel of different sizes. Then, the con-
volution kernel at the top of the pyramid is sequen-
tially divided. The convolution kernel at the bottom of 
another pyramid realizes feature fusion in sequence. 
After that, the aggregated features can communicate 
the context information, reduce the number of convo-
lution parameters and achieve the favorable effect of 
balanced fusion features.

(3) We combine the image enhancement approach with 
a semi-supervised learning strategy in our model to 
generate pseudo-labels, which improves the utilization 
of unlabeled data by selecting a specific quantity of 
unlabeled data and labeled data for mixed training each 
time.

2  Related work

2.1  Lung CT image segmentation

The diagnostic results of lung CT images can be used as 
the evaluation basis for patients with COVID-19 (Sluimer 
et al. 2006; Kamble et al. 2020). Radiologists segmented the 
lung lesion area by viewing the lung CT images and com-
bining them with clinical information to diagnose COVID-
19 patients. After the global outbreak of COVID-19, many 
researchers have carried out research on COVID-19 lung 
CT image segmentation based on deep learning. Based on 
U-Net, Chen et al. (2020) utilized aggregated residual trans-
formations and soft attention mechanism to learn robust and 
expressive feature representations, thereby improving the 
model’s ability to distinguish various symptoms of COVID-
19. Rajamani et al. (2021) proposed a dynamic deformable 
attention network (DDANet) for COVID-19 lesion semantic 
segmentation. The model is based on a deformable criss-
cross attention block, which continuously learn sparse 
attention filter offsets to capture sufficient context informa-
tion and improve segmentation performance. To solve the 
problem of insufficient training samples, Shan et al. Shan 
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et al. (2021) proposed a VB-Net model based on “bottleneck 
structure” to segment COVID-19 CT images and proposed 
a semi-supervised training strategy of “human-in-the-loop 
(HITL)” participated by professional doctors to reduce net-
work training time and improve segmentation efficiency. In 
addition, some studies combine classification and segmenta-
tion. Wang et al. (2020) developed a weakly-supervised deep 
learning framework using 3D CT volumes, which can accu-
rately predict the probability of COVID-19 infection and 
find lesion regions in chest CT without labeling the lesions 
for training. The easily-trained and high-performance deep 
learning algorithm provides a method for quickly identifying 
COVID-19 patients, which is conducive to controlling the 
outbreak of SARS-CoV-2. Li et al. (2020) created a fully 
automated framework for detecting COVID-19 through lung 
CT, distinguishing community-acquired pneumonia from 
other non-pneumonic lung diseases.

2.2  Semi‑supervised learning

Semi-supervised learning (SSL) has been extensively stud-
ied in various computer vision tasks. Recently, to reduce 
the labeling burden, an increasing number of scholars have 
devoted themselves to the study of deep learning models 
for semi-supervised medical image segmentation. Exist-
ing semi-supervised methods are mainly divided into two 
categories. The first category is based on pseudo-labels 
(Fan et al. 2020; Bai et al. 2017), which jointly improves 
the segmentation model by training labeled images so 
that unlabeled images are tested on the network to obtain 
pseudo-labels. Fan et al. (2020) incrementally augmented 
the training dataset with unlabeled data and then generated 
pseudo-labels for training. Bai et al. Bai et al. (2017) rede-
fined pseudo-labels by improving pseudo-segment labels, 
adjusting network parameters, or using conditional random 
field (CRF). However, this method ignores the pseudo-labels 
properties, which may not improve the network learning per-
formance. The second class of methods learns from both 
labeled and unlabeled images, and they usually consist of a 
supervised loss function for labeled images and an unsuper-
vised regularization loss function for all images. Cui et al. 
(2019) proposed a consistency loss to exploit unlabeled data 
and added an exponential moving average to prevent over-
fitting. Li et al. (2020) introduced more data perturbations 
and model perturbations on the teacher-student model to 
construct the consistency of the same input under different 
perturbations. Chen et al. (2019) simultaneously optimized 
the supervised segmentation and unsupervised segmenta-
tion reconstruction targets, and the reconstruction targets 
adopted an attention mechanism to separate the image recon-
struction regions corresponding to different categories. Nie 
et al. (2018) proposed a novel deep adversarial network to 

facilitate partial unlabeled images to approximate labeled 
images for biological-image segmentation.

3  Methods

This section introduces our proposed balanced fusion net-
work (DBF-Net) based on dual-task consistency, as well as 
corresponding key modules. Our model combines image 
enhancement and semi-supervised learning framework 
(Shan et al. 2021) to augment the training dataset with lim-
ited labeled data, thereby improving the segmentation accu-
racy of lung CT images. In addition, we extend DBF-Net 
to utilize pseudo-labels for segmentation tasks. Experimen-
tal comparison with mainstream segmentation algorithms 
shows the superiority of the proposed algorithm.

3.1  Dual‑task balanced fusion network (DBF‑Net)

The architecture of our DBF-Net is shown in Fig. 1. It adopts 
the commonly used and efficient encoder-decoder structure 
for medical image segmentation (Zhou et al. 2020; Liu et al. 
2017; Wang et al. 2019). In the encoder, we first simultane-
ously feed the original image and the enhanced image into 
the network branch and perform the dimension-raising oper-
ation through a 1 × 1 standard convolution. Then, the light-
weight double convolution (LDC) module is used to perform 
the down-sampling operation to extract image information 
layer by layer. Meanwhile, the fusiform equilibrium fusion 
pyramid (FEFP) is embedded behind the LDC module of the 
two branches. Furthermore, in each FEFP operation, feature 
fusion of different feature layers is realized with the other 
branch to reduce information loss. Second, we utilize the 
attentional feature fusion (AFF) module (Dai et al. 2021) to 
optimize the results of the double branches, and then use the 
atrous spatial pyramid pooling (ASPP) module (Chen et al. 
2017) to increase the convolutional receptive field to effec-
tively learn the edge features of the lung-infected regions. 
Finally, we use a decoding structure similar to U-Net to com-
plete up-sampling and obtain the final mask of the lung-
infected regions.

3.2  Lightweight double convolution (LDC)

The lightweight module reduces the time and space com-
plexity when extracting image features (Li et al. 2019). 
To improve the rate of feature extraction and transfer, the 
number of parameters is reduced to some extent. We extract 
features from the input image through a lightweight double 
convolution module, the structure is shown in Fig. 2.

Specifically, we take the convolution operation, batch nor-
malization, and activation function as a basic processing unit 
and integrate the max-pooling operation in the middle layer 
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to achieve down-sampling. From the global perspective, the 
residual structure we propose preserves as much of the bound-
ary information lost due to ordinary down-sampling operations 
as possible while featuring extraction and transmission, which 
is critical for accurate medical image segmentation.

The final output feature F can be formulated as follows:

In this formula, f1 and f2 can be expressed as:

(1)
F = f2

(
f1(x)

)
+ f1

[
f2
(
f1(x)

)]
+ f2

(
f1(x)

)
= 2f2

(
f1(x)

)
+ f1

[
f2
(
f1(x)

)]

(2)f1 = ReLU
[
BN

(
Conv3(x)

)]
+ ReLU

[
BN

(
Conv1(x)

)]

(3)f2 = MP
[
2ReLU

(
BN

(
Conv3(x)

))]

where x is the input of the LDC module, Conv3(.) denotes 
the 3 × 3 convolutional layer, Conv1(.) represents the 1 × 1 
convolutional layer, and + is the element-wise addition, 
MP(.) denotes max-pooling.

3.3  Fusiform equilibrium fusion pyramid (FEFP)

Different from ordinary pyramidal convolution (Duta et al. 
2020) (PyConv), our fusiform equilibrium fusion pyramid 
(FEFP) module not only contains different levels of kernels 
with different sizes and depths, but also balances the features 
extracted from large- and small-scale kernels in symmetric 
form. Therefore, in addition to expanding the convolution 
receptive field, FEFP can also capture richer multiscale 
details than PyConv.

Our FEFP is shown in Fig. 3, which is composed of two 
symmetrical pyramid splices. To be able to utilize different 
depth kernels at each level on FEFP, we divide the input 
feature maps into different groups by grouping convolution 
and apply the kernel independently for each input feature 
map group. The input feature map FMi is divided into two 
feature blocks FMi1

 and FMi2
 . Each level of {1, 2, 3, 4} of the 

FEFP convolution corresponds to a different space size ker-
nel 
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The output feature maps of the two pyramids are {
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Fig. 1  The architecture of our proposed DBF-Net, which consists of a lightweight double convolution (LDC) module connected to the fusiform 
equilibrium fusion pyramid (FEFP) convolution

Fig. 2  The structure of lightweight double convolution module 
(LDC), which is used as the down-sampling operation module



Evolving Systems 

1 3

(
FM

o12 + FM
o23

)
+

(
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o11 + FM
o24

)
= FM

o
 . The convolu-

tion kernel at the top of the pyramid and at the bottom of the 
other pyramid are sequentially combined to achieve feature 
fusion. Finally, the output feature map FMo is obtained by 
connecting the feature maps at each level according to the 
number of channels.

The FEFP module kernel type is a symmetric pyramid. 
With the increase in kernel size, the kernel depth decreases 
from level 1 to level n and vice versa. Kernels of different 
sizes communicate information to maximize feature comple-
mentarity. Through the interconnection of receptive fields of 
different sizes, the feature fusion of different scale kernels 
is realized, and infected areas the recognition in CT images 
is improved.

3.4  Semi‑supervised learning strategy

Manual labeling of the infected regions in lung CT images is 
time-consuming and labor-intensive, resulting in very little 
labeled data. To augment the dataset, we adopt the combi-
nation of image enhancement and semi-supervised learning 
strategy to improve DBF-Net.

The training set is augmented by a small quantity of 
labeled data to help unlabeled data generate pseudo-labels. 
First, we send the training set composed of labeled images 
and enhanced images to pretrain the DBF-Net model. Then, 
N unlabeled images are randomly fed for prediction to obtain 
N corresponding pseudo-labels. The training set is mixed 
with N pseudo-label images and then fed to the network for 

training again so that the weight is continuously updated. 
Repeating the above operations, we periodically feed the 
training set of labeled images and N unlabeled images and 
then complete the network training after 200 epochs, thereby 
generating the desired high-quality pseudo-labels.

Specifically, in the dataset we used, there are 1600 unla-
beled images and 100 labeled images. During the experi-
ment, 60 labeled images and corresponding enhanced 
images were used as the training set, 10 labeled images were 
used as the verification set, and 30 labeled images were used 
as the test set. Then, 8 unlabeled images were randomly sent 
to predict each time, i.e., Ni =8. The semi-supervised learn-
ing framework is shown in Fig. 4.

3.5  Image enhancement for medical images

Taking different image enhancement methods may affect the 
network model performance. In general, the fundamental 
purpose of image processing is to learn the critical infor-
mation of the image. Because of our needs and the charac-
teristics of medical image processing, we carried out four 
transformations on lung CT images (Zhou et al. 2019), as 
shown in Fig. 5.

(1) Nonlinear transformation The pixel value in the CT 
image is the corresponding value of the X-ray attenu-
ation coefficient of each tissue, also known as the 
Hounsfield Unit (HU) value. Different HU values cor-
respond to different tissues. The nonlinear function is 
used to perform the nonlinear transformation on the 

Fig. 3  The structure of fusiform equilibrium fusion pyramid convolution (FEFP), which is utilized to achieve balanced feature fusion
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input image HU. The global contrast enhancement of 
the image is realized by adjusting the transformation 
parameters to identify different tissues.

(2) Local pixel change In CT image A, a small cube c is 
randomly determined. The pixel position in cube c is 
randomly scrambled to obtain c′ , and then c is replaced 
by c′ . This process is repeated several times to obtain 
the transformed CT image Ã. On the premise that the 

overall image shape does not change greatly, the model 
can learn the local structure and texture features.

(3) Internal pixel change In CT image A, two cubes c1 and 
c2 are randomly selected, and c1 ∩ c2 = ∅ is satisfied. 
The pixel values of two cubes are exchanged, i.e., c′1 = 
c2 , c′2 = c1 . Then, this process is repeated several times 
to obtain the transformed image Ã.

Fig. 4  Semi-supervised DBF-
Net architecture diagram, where 
blue refers to labeled images 
and enhanced images, yellow 
refers to unlabeled images, 
and red refers to our proposed 
DBF-Net

Fig. 5  Methods of lung CT 
image enhancement. a Original 
image. b Nonlinear transforma-
tion. c Local pixel change. d 
Internal pixel change. e External 
pixel change
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(4) External pixel change Irregular masking on the outer 
edge of the original image prompts the model to ana-
lyze the internal structural information to infer the 
external structure and extract more critical visual fea-
tures. The overall algorithm flow is shown in Algo-
rithm 1.

Algorithm 1 Semi-supervised DBF-Net
Require: Labeled data and unlabeled data
Ensure: The trained CT segmentation model DBF-Net
1: Unlabeled images are divided into 200 groups, each group is represented

as Ni, where i=1, 2, . . . 200
2: Send labeled images and enhanced images as training dataset D to train

for the pretraining model
3: repeat
4: Send Group i unlabeled images Ni for training to get pseudo-labels Pi,

and then enhance Ni to get Ñi
5: Mix the dataset D and Ñi and send it back to the model for training
6: until i=200, all unlabeled images are sent into the model
7: return Trained model

4  Experiments

4.1  Lung datasets

In this paper, the COVID-SemiSeg dataset (Fan et  al. 
2020) and COVID-19 CT segmentation dataset (Milletari 
et al. 2016) are used to perform the experimentation and 
comparison with mainstream approaches. 

(1) The COVID-SemiSeg dataset is aimed at semi-super-
vised COVID-19 infection segmentation and 3D CT 
images from more than 20 COVID-19 patients, and the 
dataset is extended with the help of many unlabeled CT 
images.

(2) The COVID-19 CT segmentation dataset consists of 
100 labeled axial CT images from over 40 COVID-19 
patients. The CT images were all collected by the Ital-
ian Society of Medical and Interventional Radiology, 
and radiologists segmented the CT images based on 
three labels of ground-glass opacity (GGO), consolida-
tion, and pleural effusion to determine regions of lung 
infection.

We strictly split the COVID-19 CT segmentation dataset 
containing 100 labeled axial CT images. Specifically, 60 
are used for training, 10 for validation, and 30 for testing. 
The COVID-SemiSeg dataset contains 1600 unlabeled CT 
images. We perform training on this dataset and the train-
ing set in the COVID-19 CT segmentation dataset fol-
lowing the semi-supervised learning strategy in Sect. 3.4.

4.2  Experimental settings

All the experiments of the proposed method DBF-Net are 
conducted on Intel I7-11700K with NVIDIA RTX3080TI 
GPU. The development environment is based on the 
Ubuntu 20.04 operating system, CUDA11.4 + Pytorch1.9, 
and the programming language is Python 3.8.

Since resizing images will have an impact on image 
quality, we first resample the original image slices and 
then crop all slices uniformly to 384 × 384. The training 
is performed with an Adam optimizer with a momentum 
of 0.9 and a weight decay of 0.0005. The initial learning 
rate is 0.01, the batch size is set to 4, and a total of 200 
epochs are trained.

For image segmentation, the cross-entropy loss function 
is widely used as the main function. To solve the problem of 
CT image category imbalance and difficult-to-classify sam-
ples, this paper trains the DBF-Net model by combining the 
Dice loss function and the Focal loss function. Then, the 
final loss function is:

In the equation, c is a specific class; TPP(c) , FNP(c) , FPP(c) 
are the true positive rate, false-negative rate, and false-pos-
itive rate of the class; Pn(c) refers to when the pixel n is of 
class c; gn(c) refers to the real situation that pixel n is class c; 
C is the total number of classes; N is the sum of the number 
of pixels; � and � are the penalty weights of false negative 
and false positive, respectively, set to 0.5; � and 1 − � is the 
weight of Dice loss and Focal loss, while � is set to 0.3.

4.3  Evaluation metrics

To evaluate the performance of our proposed method in the 
lung lesion segmentation task, we used several evaluation 
metrics. Sensitivity, Specificity, Dice, and Precision were 
defined as follows:

(4)

L = �LDice + (1 − �)LFocal

= �

(
C −

C−1∑
c=0

TPn(c)

TPp(c) + �FNp(c) + �FPp(c)

)

−(1 − �)
1

N

C−1∑
c=0

N∑
n=1

gn(c)
(
1 − Pn(c)

)2
log

(
Pn(c)

)

(5)Sensitivity =
TP

TP + FN

(6)Specificity =
TN

TN + FP
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where TP refers to the number of infected and accurately 
predicted regions; TN refers to the number of uninfected 
and accurately predicted regions; FP refers to the number of 
uninfected regions that are wrongly predicted to be infected; 
FN refers to the number of infected regions that are wrongly 
predicted to be uninfected.

Note that the increment of evaluation metrics in the 
experimental subjects are computed by following math-
ematical expression:

where I denotes the incremental ratio of an evaluation met-
ric, ESa and ESb denote experimental subjects respectively.

(7)Dice =
2TP

2TP + FP + FN

(8)Precision =
TP

TP + FP

(9)I =
ESa − ESb

ESb
× 100%

4.4  Comparison of segmentation performance 
for different algorithms

In order to verify the segmentation performance of the pro-
posed DBF-Net, we utilized DBF-Net as the lung CT image 
segmentation model, and compared it with the existing 
classical algorithms. The segmentation results are shown in 
Fig. 6. The first row is the original CT images, the second 
row is the result of manual marking by radiologists as the 
evaluation standard; the third row is the segmentation result 
of FCN-8s (Long et al. 2015); the fourth row is the segmen-
tation result of U-Net++ (Zhou et al. 2019); the fifth row is 
the segmentation result of the combination of the ResNet50 
encoder (He et al. 2016) and the U-Net decoder (ResUNet). 
The sixth row is the segmentation result of our proposed 
algorithm DBF-Net.

The experimental results show that compared with the 
segmentation results of U-Net++ and other algorithms, 
the segmentation effect of the proposed DBF-Net has the 
best performance and high image quality. For the same CT 

Fig. 6  From top to bottom, 
there are several exemplar 
results in 2D views (a) obtained 
by the corresponding ground 
truth (b) on the COVID-19 CT 
segmentation dataset, FCN-8s 
(c), U-Net++ (d), ResUNet (e), 
and our DBF-Net Model (f), 
where the red and green labels 
indicate the GGO and consoli-
dation, respectively
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images, the FCN-8s segmentation effect is the worst, and the 
boundary segmentation is relatively rough; U-Net++ and 
ResUNet have different degrees of over-segmentation of the 
image. However, our proposed algorithm performs signifi-
cantly in segmenting the boundary contour of the lung lesion 
region, with fewer incorrectly segmented regions, and the 
segmentation effect is relatively close to the image manually 
labeled by the radiologist.

Although the subjective evaluation is simple and direct, it 
is susceptible to subjective factors, so it is still necessary to 
quantitatively evaluate the segmentation results. The quanti-
tative results of different segmentation algorithms are shown 
in Table 1. It can be seen that the DBF-Net performance is 
better than that of the other models in four evaluation met-
rics. Its sensitivity reaches 70.6%, specificity reaches 92.8%, 
the Dice coefficient reaches 68.7%, precision reaches 67.5%, 
and the segmentation effect is relatively better. To sum up, 
under the premise of the semi-supervised learning strategy, 
the proposed DBF-Net model has a great improvement in 
CT image segmentation performance.

4.5  Performance comparison of different 
semi‑supervised models

In this section, we compare the performance of DBF-Net 
to recent semi-supervised models. This concludes COPLE-
Net (Wang et al. 2020) and Semi-Inf-Net (Fan et al. 2020). 
Table 2 presents the segmentation performance of the com-
peting approaches across different measures by implement-
ing them under the same experimental settings. COPLE-
Net performed relatively poorly on different measures. 
Compared with COPLE-Net, Semi-Inf-Net showed better 

performance improvements. However, the multistage train-
ing of Semi-Inf-Net limited the realization of the opti-
mal performance. In contrast with COPLE-Net, DBF-Net 
improved sensitivity by 4.1%, specificity by 8.9%, the Dice 
coefficient by 5.0% and precision by 5.6%. It attained robust 
segmentation performance with performance improvements 
over competing models. Fig. 7 shows a graphical comparison 
of the segmentation results of different real-world COVID-
19 axial slices.

Table 1  Comparison of 
quantitative results of different 
CT segmentation algorithms

Bold indicates the best result

Algorithm Sensitivity (%) Specificity (%) Dice (%) Precision (%)

FCN-8s (Long et al. 2015) 58.7 83.2 45.1 43.9
U-Net++ (Zhou et al. 2019) 65.9 88.7 59.5 58.6
ResUNet 68.5 90.6 62.9 62.3
DBF-Net (ours) 70.6 92.8 68.7 67.5

Table 2  Comparison between 
DBF-Net and other semi-
supervised models

Bold indicates the best result

Algorithm Sensitivity (%) Specificity (%) Dice (%) Precision (%)

COPLE-Net (Wang et al. 2020) 67.8 85.2 65.4 63.9
Semi-Inf-Net (Fan et al. 2020) 69.7 92.3 70.8 67.1
DBF-Net (ours) 70.6 92.8 68.7 67.5

Fig. 7  Visual comparison of segmentation performance for different 
semi-supervised models
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4.6  Ablation experiments

In this section, for a deeper analysis of the DBF-Net per-
formance, ablation experiments were performed to enable 
understanding of the model behavior under different settings. 
In these experiments, we select U-Net as the base backbone 
for our DBF-Net.

(1) Impact of different modules on model performance

Table 3 lists the impact of different modules on model 
performance. Based on U-Net, our FEFP module and image 
enhancement are added one after another, thus demonstrat-
ing the effectiveness of the FEFP module’s multiscale 
extraction features and image enhancement methods for lung 

image segmentation. Then, combined with the semi-super-
vised learning strategy, we replace the down-sampling struc-
ture of U-Net with LDC and FEFP modules to form DBF-
Net, while adding image enhancement methods to improve 
the network effect. Finally, pseudo-labels are generated, and 
DBF-Net is used to achieve lung lesion segmentation.

As seen in the first and second rows of the table, the per-
formance of the FEFP module is improved by up to 15.2% 
based on U-Net, which makes the model more accurate in 
segmenting the infected region. The second and fourth rows 
of the table show that the LDC module has a maximum per-
formance improvement of 10.4% compared to the original 
down-sampling module in U-Net, which is necessary for 
performance improvement. The fourth and fifth rows of the 
table show that the image enhancement approach for medical 
images has a maximum performance improvement of 3.2% 
over DBF-Net, which can effectively improve the segmenta-
tion effect of the proposed model.

To further visualize the segmentation model performance, 
we plot the loss curves when different modules are combined 
for training, as shown in Fig. 8. During the training process, 
with the superposition of modules, the convergence speed 
of the network in this paper gradually accelerates, and the 
accuracy after convergence is relatively high. Therefore, our 
proposed DBF-Net is easier to train and can better localize 
the lung lesion region.

(2) Impact of image enhancement on model performance

To reflect the important role of image enhancement in our 
model, we first combine two original images, one original 
image, and an enhanced image, and then send them to DBF-
Net for performance comparison. The comparison results 

Table 3  Performance of the 
network with different blocks

Bold indicates the best result

Base Backbone LDC FEFP Image 
Enhance-
ment

Sensitivity(%) Specificity(%) Dice(%) Precision(%)

√
57.2 84.5 54.1 52.7√ √
62.8 86.2 62.3 59.4√ √ √
65.7 88.6 64.5 63.9√ √
68.4 90.5 67.8 65.6√ √ √
70.6 92.8 68.7 67.5

Fig. 8  Training progress of different module combinations

Table 4  Performance 
comparison of different image 
combination methods

Bold indicates the best result

Image combination Sensitivity (%) Specificity (%) Dice (%) Precision (%)

Two original images 68.2 90.3 66.4 65.9
Original and enhanced images 70.6 92.8 68.7 67.5
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are shown in Table 4. It can be seen that the original image 
is transformed by image enhancement dedicated to medi-
cal image segmentation, and then sent to DBF-Net, and the 
network segmentation effect is better enhanced (sensitiv-
ity 3.5%; specificity 2.8%; Dice 3.5%; precision 2.4%). Due 
to the uniqueness of the image enhancement method, the 

structure and texture features of lung CT images are well 
highlighted in model segmentation, and the definition and 
accuracy of pseudo-labels are improved. The corresponding 
visualization is shown in Fig. 9.

(3) Impact of different pyramids on model performance

The main purpose of this experiment was to investigate 
the impact of different pyramids on CT image segmenta-
tion performance. We conducted a comparison experiment 
between the classical PyConv (Duta et al. 2020) and the 
proposed FEFP module for the segmentation task, and the 
experimental results are shown in Table 5. Each evaluation 
metric of the FEFP module is better than pyramid convo-
lution. Given the complex texture of a CT image and its 
susceptibility to noise, when a single PyConv is used for 

Fig. 9  Visual comparison of 
segmentation effects for dif-
ferent image combinations. a 
Original image. b Ground truth. 
c Segmentation effect of two 
original image combinations. d 
Segmentation effect of a combi-
nation of the original image and 
enhanced image

Table 5  Comparison between FEFP and PyConv

Bold indicates the best result

Pyramid 
type

Sensitiv-
ity(%)

Specific-
ity(%)

Dice(%) Precision(%)

PyConv 67.2 88.5 64.9 63.7
FEFP (ours) 70.6 92.8 68.7 67.5

Fig. 10  Visual comparison of 
the impact of semi-supervised 
learning strategy on the model. 
a Original image. b Ground 
truth. c Pseudo-labels gener-
ated by training with 60 labeled 
images. d Pseudo-labels gener-
ated by training with mixed 
images that include 60 labeled 
images and 1600 unlabeled 
images
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down-sampling, the feature extraction of the infected region 
of the CT image is insufficient, and it is difficult for the 
model to better learn the edge features, which reduces the 
training accuracy. Our FEFP in this paper communicates 
pixel information by fusing the features of different feature 
layers. Compared with PyConv, the performance has a mini-
mum improvement of 4.9% in all metrics.

(4) Impact of semi-supervised learning strategy on model 
performance

The model combined with the semi-supervised learning 
strategy uses unlabeled images to produce pseudo-labels, 
thus helping to significantly reduce manual labeling costs. 
To investigate the impact of the semi-supervised learn-
ing strategy on model performance, we put 60 labeled 
images and mixed images (including labeled images and 
unlabeled images) into the model for fully-supervised and 
semi-supervised training, respectively, under the assump-
tion of insufficient manual labeling. In the network input, 
the original image is enhanced by the image enhancement 
method to ensure the consistency of the experimental con-
ditions. The experimental results are shown in Fig. 10.

Under the premise of a small number of manually 
labeled data, using only labeled data will lead to over-
fitting of the model. Thus, incomplete segmentation occurs 
when predicting in the testing dataset. In contrast, we use 
a semi-supervised learning strategy to generate pseudo-
labels, which makes up for the insufficient data problem 
to avoid the overfitting phenomenon caused by model 
training. Therefore, in the same training epochs, DBF-
Net combined with semi-supervised learning strategy can 
obtain more complete segmentation and higher quality 
pseudo-labels.

(5) Impact of different training scales on model perfor-
mance

In this experiment, we use different training scales for 
DBF-Net to compare the quality of pseudo-labels. The quali-
tative results are shown in Fig. 11. Initially, we selected 32 
unlabeled CT images and 60 labeled images to train together 

and found that the edge information of the infected area was 
less extracted, and the images were blurred; then, we tested 
16 unlabeled and 8 unlabeled images with labeled images. 
After experiments, it was found that the training effect of the 
combination of 8 unlabeled images and 60 labeled images 
is better than that of 16 unlabeled and 60 labeled images, it 
has more accurate boundaries, and the segmentation effect 
is significantly better. The quantitative results are shown in 
Table 6. From the perspective of various metrics, the com-
bination of 8 unlabeled images and 60 labeled images has 
the best effect, which can accurately segment the GGO and 
consolidation infections.

5  Conclusion

In this paper, we propose a novel semi-supervised dual-task 
balanced fusion network model (DBF-Net), which can help 
doctors identify infected regions in CT images of COVID-
19 patients and reduce the variability of manual diagnosis. 
The model utilizes a lightweight double convolution module 
and a fusiform equilibrium pyramid convolution for down-
sampling to maximize the localization of infected regions 
and combines a semi-supervised learning strategy to allevi-
ate the shortage of labeled data. Additionally, we adopt an 
image enhancement method specifically for medical images 
to extract more critical visual features and obtain richer 
pixel information. A series of experimental results on the 
test set show that the DBF-Net model is superior to other 
segmentation models with three evaluation metrics Sensi-
tivity, Specificity, and Precision. The proposed algorithm 

Fig. 11  Comparison of visual 
effects of segmentation results 
of different training scales

Table 6  Comparison of Segmentation performance of different train-
ing scales

Training 
scale

Sensitivity 
(%)

Specificity 
(%)

Dice (%) Precision (%)

60/8 70.6 92.8 68.7 67.5
60/16 67.2 88.9 63.4 62.1
60/32 61.5 81.3 56.9 55.7
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is highly competitive in segmenting the COVID-19 lung 
infected regions. In future work, we will continue to improve 
the DBF-Net segmentation model, such as combining seg-
mentation with vision transformer, thus solving the problems 
of little data and inaccurate lesion localization. This can not 
only assist doctors in clinical diagnosis but also have impor-
tant implications for medical research in the big data era.
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