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Magnonic Floquet Quantum Spin 
Hall Insulator in Bilayer Collinear 
Antiferromagnets
S. A. Owerre   

We study irradiated two-dimensional insulating bilayer honeycomb ferromagnets and antiferromagnets 
coupled antiferromagnetically with a zero net magnetization. The former is realized in the recently 
synthesized bilayer honeycomb chromium triiodide CrI3. In both systems, we show that circularly-
polarized electric field breaks time-reversal symmetry and induces a dynamical Dzyaloshinskii-Moriya 
interaction in each honeycomb layer. However, the resulting bilayer antiferromagnetic system still 
preserves a combination of time-reversal and space-inversion (PT) symmetry. We show that the magnon 
topology of the bilayer antiferromagnetic system is characterized by a Z2 Floquet topological invariant. 
Therefore, the system realizes a magnonic Floquet quantum spin Hall insulator with spin filtered 
magnon edge states. This leads to a non-vanishing Floquet magnon spin Nernst effect, whereas the 
Floquet magnon thermal Hall effect vanishes due to PT symmetry. We study the rich Z2 Floquet 
topological magnon phase diagram of the system as a function of the light amplitudes and 
polarizations. We further discuss the great impact of the results on future experimental realizations.

In recent years, periodically driven solid-state materials have emerged as an alternative avenue to extend the 
search for topological quantum materials1–30. This mechanism involves the exposure of a topologically trivial 
quantum material to a time-periodic electric field. In this system, time-reversal symmetry of the Bloch bands is 
broken by circularly-polarized electric field by modifying the intrinsic properties of the material via light-matter 
interactions. This results in a Floquet Chern insulator such as in irradiated graphene1,5. The non-equilibrium 
topological systems are believed to give interesting properties that are not possible in the equilibrium systems.

In insulating magnets, the quantum theory of magnons dictates that magnons carry a spin magnetic dipole 
moment and an intrinsic spin of 1, which can be used for dissipationless information processing in the emerging 
field of magnon spintronics31,32. This implies that magnons can accumulate the Aharonov-Casher phase33–38 when 
exposed to a time-independent spatially-varying electric field resulting in magnonic Landau levels38 and chiral 
anomaly in Weyl magnons39,40. Remarkably, the magnon accumulated Aharonov-Casher phase has a strikingly 
different physics when the electric field is time-dependent and periodic as in electronic systems. In this case, the 
resulting irradiated insulating magnets can be investigated using the Floquet theory in a similar manner to irradi-
ated metallic electronic systems. Unlike electronic systems, the magnetic Floquet physics can reshape the under-
lying spin Hamiltonian to stabilize magnetic phases and provides a promising avenue for inducing and tuning 
Floquet topological spin excitations41–43, with a direct implication of generating and manipulating ultrafast spin 
current using terahertz (THz) radiation44–46. In this respect, the concept of magnonic Floquet Chern insulator has 
emerged41–43, where circularly-polarized light induces a dynamical Dzyaloshinskii-Moriya (DM) interaction47–49 
in a single-layer two-dimensional (2D) insulating honeycomb ferromagnet. This approach has also been gen-
eralized to engineer Floquet Weyl magnons50 in three-dimensional (3D) insulating honeycomb ferromagnets. 
Similar to electronic Floquet system, time-reversal symmetry is broken by circularly-polarized electric field and 
the Floquet topological system is characterized by the first Chern number. Therefore, the topological aspects of 
electronic and magnonic Floquet systems are essentially the same and they originate from the same oscillating 
time-periodic electric field. To make this similarity obvious, we note that in the magnonic Floquet topological 
systems, the intensity of light is characterized by the dimensionless quantity41

E
�

μ
=

g E a
c

,
(1)i

B i
2

Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario, N2L 2Y5, Canada. Correspondence 
and requests for materials should be addressed to S.A.O. (email: sowerre@perimeterinstitute.ca)

Received: 9 October 2018

Accepted: 30 April 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-43702-9
http://orcid.org/0000-0002-6147-2912
mailto:sowerre@perimeterinstitute.ca


2Scientific Reports |          (2019) 9:7197  | https://doi.org/10.1038/s41598-019-43702-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

where Ei ( =i x y, ) are the amplitudes of the electric field, g is the Landé g-factor, μB is the Bohr magneton, a is the 
lattice constant, ħ and c are the reduced Plank’s constant and the speed of light respectively. The dimensionless 
quantity in Eq. (1) should be compared to that of electronic Floquet topological systems1,2,5
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where e is the electron charge and ω is the angular frequency of light. Thus, for the irradiated magnetic insulators 
we can identify the spin magnetic dipole moment carried by magnon as
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Therefore, we can see that for a typical light wavelength λ of order 10−8m, the spin magnetic dipole moment 
gμB carried by magnon in the irradiated magnetic insulators is comparable to the electron charge e. This shows 
the similarity between the electronic and the magnonic Floquet topological systems.

Recently, the 2 characterization of topological magnon bands in the equilibrium time-independent insulat-
ing antiferromagnets has garnered considerable attention51–56. In particular, for the 2D insulating bilayer honey-
comb antiferromagnets with a DM interaction47–49 the system preserves time-reversal and space-inversion (PT ) 
symmetry and realizes the magnonic analog of 2 topological insulator57–59. Unfortunately, most 2D insulating 
honeycomb antiferromagnets do not have the unique form of the required DM interaction47. In fact, the absence 
of this unique DM interaction in most insulating honeycomb antiferromagnets has prevented a discernible exper-
imental observation of the magnon spin Nernst voltage in MnPS3

60. One possible mechanism to induce the 
unique form of the required DM interaction in 2D insulating honeycomb antiferromagnets is through 
photo-irradiation with a circularly-polarized electric field41.

In this report, we propose a 2 magnonic Floquet quantum spin Hall insulator in bilayer collinear antiferro-
magnets with PT  symmetry. Specifically, we study irradiated 2D insulating bilayer honeycomb ferromagnets and 
antiferromagnets coupled antiferromagnetically with a zero net magnetization, where the former is realized in 
bilayer CrI3

61–63. Our theoretical formalism is based on the Floquet theory, spin-wave theory, and quantum field 
theory. In both honeycomb bilayer systems, we show that circularly-polarized electric field induces a dynamical 
DM interaction in each honeycomb layer, but the bilayer antiferromagnetic system preserves PT  symmetry, hence 
the resulting magnon topology is characterized by a 2 Floquet topological invariant quantity. We obtain the 2 
Floquet topological magnon phase diagram and identify the regimes where the Floquet magnon spin Nernst coef-
ficient changes sign. We also show that both systems exhibit Floquet spin-filtered magnon edge states, where 
Floquet magnon with opposite spin propagates in opposite directions. Our results provide a powerful mechanism 
for manipulating the intrinsic properties of 2D insulating honeycomb antiferromagnetic materials such as bilayer 
CrI3, and could pave the way for studying new interesting features in 2D insulating antiferromagnets such as 
photo-magnonics64, magnon spintronics31,32, and ultrafast optical control of magnetic spin currents37,44–46.

Results
Bilayer Heisenberg spin model.  We consider the Heisenberg spin model for 2D insulating bilayer honey-
comb ferromagnets and antiferromagnets coupled antiferromagnetically. The Hamiltonian is governed by
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where 


Si is the spin vector at site i and  labels the top (T) and bottom (B) layers. We will consider two different 
cases: (i) <J 0, >J 0c  (see Fig. 1(a)). (ii) >J 0, >J 0c  (see Fig. 1(b)). The intralyer coupling is ferromagnetic in 
case (i) and antiferromagnetic in case (ii). In both cases the net magnetization vanishes. We note that case (i) is 
manifested in the bilayer honeycomb magnet CrI3

61–63. There are four sublattices in the unit cell denoted by A1, B1, 
A2, B2. In both cases the interlayer exchange couples sites on the sublattices ↔A A1 2 and ↔B B1 2.

Figure 1.  (a) Case (i) – bilayer honeycomb-lattice ferromagnets coupled antiferromagnetically as realized in 
bilayer CrI3. (b) Case (ii) – bilayer honeycomb-lattice antiferromagnets coupled antiferromagnetically. (c) The 
Brillouin zone (BZ) of the honeycomb lattice with high-symmetry paths.
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Bosonic Bogoliubov-de Gennes model.  We will focus on the low-temperature regime, when the mag-
netic excitations of the spin Hamiltonian in Eq. (4) can be described by the Holstein Primakoff transformation65 
(see Methods). The bosonic Hamiltonian in momentum space is given by
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complex conjugation, σi are Pauli matrices with an identity σ0. The = +S 1z  sector Hamiltonian in case (i) ( <J 0, 
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. The = +S 1z  sector Hamiltonian in case (ii) ( >J 0, >J 0c ) is given by

=













+

∗

∗











k

v v f k v

v v v f k

v f k v v

v v f k v

( )

0 ( )

0 ( )

( ) 0

( ) 0

,

(8)

ii

J J

J J

J J

J J

( )

0

0

0

0

c

c

c

c



with =








− −

→ → → →
† † †u k a a a a( ) , , ,

k A k B k B k A2 2
1 1

.

Here = +v v v3 J J0 c
, =v JSJ , =v J SJ cc

 and = ∑
�

�
�f k e( ) ik  with = ⋅ �

�
� �k k a . The primitive lattice vectors are 

=


^a a x31 , = +


^ ^a a x y( 3 /2 3 /2)2 , =
a 03 . The nearest-neighbour vectors are δ = +

�
∓ ^ ^a x y( 3 /2 /2)1,2 , 

δ = −
��

^ay3 . The Hamiltonian can be diagonalized by paraunitary operators. The magnon bands are doubly-degenerate  
due to PT  symmetry and they are given by
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where σ = ± for the layers and η = ± for the sublattices. The magnon energy bands are depicted in Fig. 2(a and b)  
respectively. In both cases the linear Goldstone mode at the Γ-point signifies antiferromagnetic order. The 
doubly-degenerate antiferromagnetic Dirac magnons occur at the K-point in both cases.

Irradiated bilayer antiferromagnetic insulator.  We will now present the analysis of irradiated 2D insu-
lating antiferromagnets. Let us consider the effects of an oscillating electric field τ



E( ), irradiated perpendicular to 
the 2D insulating antiferromagnets. The consequence of irradiated insulating antiferromagnets is that hopping 
magnon with spin magnetic dipole moment gμBẑ  will accumulate the time-dependent version of the 
Aharanov-Casher phase33 given by (see Methods)
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where = −ŝ diag(I, I), μ μ= gm B/c2, and ri  is the spin position at site i. We have used the notation 
τ τΞ = ×

 

^E z( ) ( )  for brevity and τ τ= − ∂τ
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E A( ) ( ), where τ


A( ) is the time-dependent vector potential given by


τ ωτ φ ωτ= − +A A A( ) [ cos( ), cos( ), 0], (12)x y

where =A Ei i/ω ( =i x y, ) are the strength of the time-dependent vector potential and φ is the phase difference. 
For circularly-polarized electric field φ π= /2 and for linearly-polarized electric field φ = 0 or π. The correspond-
ing time-dependent oscillating electric field is given by
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The resulting time-dependent Hamiltonian is given by
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affected by light intensity. The spin current can be derived as
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ij,  Thus, the time-dependent Aharonov-Casher phase τΦ ( )ij  acts as a vector 

potential or gauge field to the spin current.
The Floquet theory is a powerful mechanism to study periodically driven quantum systems1–30. It enables one 

to transform a time-dependent periodic Hamiltonian into a static effective Hamiltonian governed by the Floquet 
Hamiltonian. In the off-resonant limit, when the photon energy ħω is greater than the energy scale of the static 
system, the effective static Hamiltonian is given by5–7

  ≈ + Δ , (16)eff eff0

where   Δ = −[ , ]eff 1 1 / ω  is the photon emission and absorption term. We use the discrete Fourier compo-
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where μ= g E aB0 0 /c2 is the dimensionless Floquet parameter, θ
ij ,  is the relative angle between ri and rj,  x( )n  is 

the Bessel function of order ∈n , and δ =


1n,  for = n  and zero otherwise. The zeroth-order term is given by

Figure 2.  Top panel. Equilibrium doubly-degenerate antiferromagnetic Dirac magnon bands for (a) case (i) and 
(b) case (ii) with Jc/ = .J 0 5 and =S 1/2. The Dirac points are indicated by circles. Bottom panel. Floquet doubly-
degenerate topological magnon bands for (c) case (i) and (d) case (ii). The parameters are Jc/ = .J 0 5, =S 1/2, 

= = 1x y  , φ π= /2, and ω / =J 10. The red circle points indicate the massive Floquet Dirac magnon.
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which is an XXZ Heisenberg spin model, where <J J( )0 0J E  for  ≠ 00 . The first-order term Δ eff  involves the 
commutation relation α β ρ γ

+ − + −S S S S[ , ] = δ δ−βρ β α γ αγ α ρ β
+ − + −S S S S S S2( )z z , which gives rise to a photoinduced DM inter-

action41 of the form
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2J E / ω , and ν = ±1jk  for the two triangular plaquettes on the next-nearest 
neighbour bonds of the honeycomb lattice. Therefore, time-reversal symmetry of each honeycomb layer is broken 
by circularly-polarized light through a photoinduced DM interaction, but the bilayer antiferromagnetic system 
still preserves PT  symmetry. Thus, magnonic Floquet quantum spin Hall insulator can arise in irradiated bilayer 
collinear antiferromagnets. On the contrary, linearly-polarized light does not break time-reversal symmetry, thus 
Δ = 0eff  for φ = 0.

Periodically-driven bosonic BdG model.  In this section, we will study the magnon band structures for a 
general light polarization φ π∈ [0, 2 ] and a general amplitude ≠E Ex y. It is advantageous to periodically drive 
the bosonic BdG Hamiltonian in Eqs (7) and (8). In this case, the Aharanov-Casher phase enters the momentum 
space Hamiltonian through the time-dependent Peierls substitution ^µ τ→ − Ξ
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k k s ( )m . Using the analysis out-
line in Methods, we have obtained the Fourier decomposition of the single particle bosonic BdG Hamiltonian, 
which enters the time-dependent Schrödinger equation. For the = +S 1z  sector, the Fourier Hamiltonian for case 
(i) (i.e. <J 0, >J 0c ) is given by
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and the Fourier Hamiltonian for case (ii) (i.e. >J 0, >J 0c ) is given by
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In the off-resonant limit ω  J, Jc, the system can be described by an effective time-independent Hamiltonian 
given by5–7

ω
≈ − .+ + + − +
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,0 , 1 ,1H H
�
H H

The lower block effective Hamiltonian is = −− +
∗ 

k k( ) [ ( )]eff eff  . The commutator term in Eq. (24) contains 
terms proportional to φ



ksin( ) sin( ), which is a mass term to the Dirac magnon. This corresponds to the momen-
tum space of the dynamical DM interaction in Eq. (19) for φ π= /2, and it changes sign in the lower block 
Hamiltonian −



k( )eff .
In Fig. 2(c and d) we have shown the plots of the Floquet magnon quasienergies for φ π= /2 in case (i) and 

case (ii) respectively. In both cases, we can see that the Goldstone modes are quadratically gapped out due to 
SU(2) breaking anisotropy generated by radiation. In addition, the antiferromagnetic Dirac magnon at equilib-
rium also becomes massive because circularly-polarized electric field induces a dynamical DM interaction in each 
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honeycomb layer, which preserves the PT  symmetry of the bilayer antiferromagnetic system as shown in Eq. (19). 
Therefore, irradiated bilayer antiferromagnetic system is a concrete example of a magnonic Floquet quantum spin 
Hall insulator, unlike irradiated 2D graphene1,5 and 2D insulating ferromagnets41,42,50.

Z2 Topological magnon phase transition.  In this section, we will study the topological phase diagram 
and the topological invariant quantity of the irradiated bilayer antiferromagnetic system. Due to Sz conservation, 
we can define the block Chern number of the Floquet magnon bands as

∫φ
π

φ= Ω
→

σ σn d k k( , ) 1
2

( , , ), (25)i i
2 

where φΩσ



k( , , )i  are the Berry curvatures and σ = ±1 for = ±Sz  sectors. We can then define the Hall nH and 
spin nS Chern numbers as

     φ φ φ φ φ φ= + = − .+ − + −n n n n n n( , ) ( , ) ( , ) and ( , ) 1
2

[ ( , ) ( , )] (26)H i i i S i i i

The 2 topological invariant is given by

Figure 3.  2 Floquet topological invariant magnon phase diagram for the lower Floquet magnon band in the 
irradiated 2D insulating bilayer honeycomb antiferromagnets at high frequency regime ω / =J 10 with 
Jc/ = .J 0 5. (a) =x y  . (b)  = 3x y. The colorbar labels the Floquet magnon spin Nernst coefficient at 
T/ = .J 0 5. Both panels correspond to case (ii).

Figure 4.  Floquet spin filtered magnon edge states (red lines) for (a) case (i) and (b) case (ii). Insets show 
magnification of the Floquet spin filtered magnon edge states. The parameters are Jc/ = .J 0 5, =S 1/2, 
 = = 1x y  in units of μg aB /c2, φ π= /2, and ω / =J 10.
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ν φ= .n ( , )mod 2 (27)S i

We have computed the block Chern numbers of the system using the discretized Brillouin zone method66. We 
focus on the lower Floquet quasienergy magnon band. The upper Floquet magnon band can be obtained by flip-
ping the signs. Due to PT  symmetry,

φ φ= −+ −n n( , ) ( , ), (28)i i 

hence

 φ ν φ= = = − +n n( , ) 0 and ( , ) 1, 0, 1 (29)H i S i

for both case (i) and case (ii). The vanishing of φn ( , )H i  implies that the magnon thermal Hall conductivity κxy
s 67–70 

also vanishes in the Floquet bilayer antiferromagnetic system. However, the magnon spin Nernst conductivity51,71,72 
is nonzero in the single-layer undriven system with DM interaction. Therefore, we will compute the Floquet mag-
non spin Nernst conductivity for the periodically driven system. We will focus on the regime where the Bose 
occupation function is close to thermal equilibrium. Hence, we can apply the same formula for the magnon spin 
Nernst coefficient in undriven system68–70,72, which we write as a function of the light parameters i  and φ,

E ε E∫∑α φ
π

σ φ=










 Ω

σ α
σ

σ
α

=±
→

d k c g k( , )
(2 )

( ) ( , , ),
(30)

xy
s

i
k

i

2

2 1
,

where = + + −c x x x x x( ) (1 ) ln(1 ) ln1  is the weight function and  










=






−




α

σ
α

σ
−

→ →g k Texp( / ) 1
k k

B
, ,

1
 is the Bose 

occupation function close to thermal equilibrium and α labels the Floquet magnon bands. Indeed, the Floquet 
magnon spin Nernst coefficient is simply the 2 Floquet topological invariant weighed by the c1(x) function. Note 
that case (i) can be regarded as two copies of the Floquet Chern insulators41 with opposite spins, but case (ii) is 
not. Therefore, for case (ii) we have shown in Fig. 3 the 2 Floquet topological invariant magnon phase diagram 
of the system for the lower Floquet quasienergy magnon band. A similar phase diagram can be obtained for case 
(i). We can clearly see that in the three regimes where the 2 Floquet topological invariant changes sign, the 
Floquet spin Nernst coefficient also changes sign.

To further substantiate the existence of the 2 Floquet topological invariant, we show in Fig. 4 the plot of the 
Floquet magnon bands for a cylindrical strip geometry periodic along the y direction and infinite along the x 
direction. We can see that the Floquet magnon edge states traversing the bulk gap are spin filtered. In other words, 
Floquet magnon with opposite spin propagates in opposite directions. This results in a non-vanishing Floquet 
magnon spin Nernst coefficient with a 2 Floquet topological invariant.

Conclusion
Using a combination of the Floquet theory, spin-wave theory, and quantum field theory, we have presented an 
exposition of 2 magnonic Floquet quantum spin Hall states in irradiated 2D insulating bilayer honeycomb fer-
romagnets and antiferrmagnets which are coupled antiferromagnetically. These systems have zero net magneti-
zation and preserve PT  symmetry. In stark contrast to irradiated graphene1,5 and insulating collinear 
ferromagnets41,42,50, we showed that irradiation by circularly-polarized electric field breaks the time-reversal of 
each honeycomb layer through a photoinduced DM interaction, but PT  symmetry of the bilayer antiferromag-
netic system is preserved. This results in Floquet spin filtered magnon edge states protected by the 2 Floquet 
topological invariant of the bulk magnon band. The irradiated bilayer antiferromagnetic system exhibits a 
non-vanishing Floquet magnon spin Nernst effect, whereas the Floquet magnon thermal Hall effect vanishes due 
to PT  symmetry. As we mentioned previously, the bilayer honeycomb chromium iodide CrI3

61–63 is a promising 
candidate for investigating the current theoretical predictions. We note that topological magnons were recently 
reported in the ferromagnetic bulk structure of CrI3

73. Therefore, we believe that the current predicted results are 
pertinent to experiments and will remarkably impact future research in topological insulating antiferromagnets 
and their potential practical applications to magnon spintronics31,32 and photo-magnonics64.

Methods
Spin wave theory of bilayer honeycomb antiferromagnets.  To derive the bosonic Hamiltonian in 
Eq. (6), we introduce the Holstein Primakoff bosons:

= − = =+ −     † †S S a a S S a S, 2 ( ) , (31)i
z

i i i i i
( ) ( ) ( ) ( ) ( ) ( )

for up pointing spins, and

= − + = =+ −     † † †S S a a S S a S, 2 ( ) , (32)i
z

i i i i i
( ) ( ) ( ) ( ) ( ) ( )

for down pointing spins.
Here  †a a( )i i

( ) ( )  are the bosonic creation (annihilation) operators on the sublattices and = ±±   S S iSj j
x

j
y( ) ( ) ( ) 

denote the spin raising and lowering operators. The bosonic tight-binding models are given by
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 ∑

∑

= + − + . .

+ + + + . .

〈 〉

≠ ′

′ ′ ′



     

 

     

† † †

† † † †

JS a a a a a a

J S a a a a a a

[( ) ( H c )]

2
[( ) ( H c )],

(33)

ij
i i j j i j

c

i
i i i i i i

,

( ) ( ) ( ) ( ) ( ) ( )

,

( ) ( ) ( ) ( ) ( ) ( )

for case (i) and

∑

∑

= + + + . .

+ + + + . .

〈 〉

≠ ′

′ ′ ′



     

 

     

† † † †

† † † †

JS a a a a a a

J S a a a a a a

[( ) ( H c )]

2
[( ) ( H c )],

(34)

ij
i i j j i j

c

i
i i i i i i

,

( ) ( ) ( ) ( ) ( ) ( )

,

( ) ( ) ( ) ( ) ( ) ( )



for case (ii). The Fourier transform of Eqs (33) and (34) gives the bosonic BdG Hamiltonian in Eq. (6).

Quantum field theory description of Aharonov-Casher phase.  In the presence of an electromagnetic 
field, the low-energy charge-neutral Dirac magnon near the K-point of the BZ is governed by the 2 + 1 dimen-
sional Dirac-Pauli Lagrangian74,75

 ψ ε γ γ
μ

σ ψ=





− + ∂ −







μ
μ

μν
μνv i

v
F

2
,

(35)D
D m

0
0

where ε0 accounts for the finite energy Dirac magnon and vD is the group velocity of the Dirac magnon, and 
ψ ψ γ= † 0. The electromagnetic field tensor is Fμν and σ γ γ γ γ μ ν= = ≠μν μ ν μ νi[ , ] , ( )i

2
 with γ γ γ=μ ( , )i0 .

To describe the antiferromagnetic Dirac magnon in the presence of an oscillating electric field, we follow the 
procedure in ref.76. In (2 + 1) dimensions, there are two inequivalent representations of the Dirac gamma matrices 
which generate different Clifford algebras. These two inequivalent representations of the Dirac matrices can be 
used to describe the =S 1z  and = −S 1z  sectors of the antiferromagnetic Dirac magnons. They obey the relation

γ γ γ= +μ ν μν μνλ
λˆg is (36)

where = − −μνg diag(1, 1, 1) is the Minkowski metric and μνλ  is an antisymmetric tensor in (2 + 1) 
dimensions.

γ γ γ γ σ= =ŝ i , (37)0 1 2 0 12

with eigenvalues = ±s 1. We choose the representation

γ
σ

σ
γ

σ
σ

γ
σ

σ
=











=



 −






=




−

−





i
i

i
i

0
0 ,

0
0 ,

0
0 ,

(38)
z

z

y

y

x

x

0 1 2

such that ŝ  is diagonal and it is given by

=
−

.ˆ ( )s I
I

0
0 (39)

In this representation the interaction term transforms as

ψσ ψ ψγ ψ= − .μν
μν μνλ

μν λˆF s F (40)

The Lagrangian can then be written as

 ψ ε γ γ μ γ ψ= − + ∂ +μ
μ

μ
μˆiv sv Q[ ] , (41)D D m0

0

where =μ λνμ
λνQ F(1/2)  is the effective vector potential dual of the field strength tensor. We consider an electro-

magnetic field with only an oscillating electric field vector τ
��
E ( ). Hence, τ τ= Ξ = ×μ



Q E z( ) ( ) . The Hamiltonian 
is given by

∫ ∫π ψ ψ ψ= − ≡

†H d x x x d x[ ( ) ( ) ] , (42)D
2 2L H

where π = ∂
∂Ψ

x( )
x( )
  is the generalized momentum. The Hamiltonian is given by

 ^




α µ τ= + ⋅ − ∇ − Ξv v i s( ( )), (43)D D m0

where α γ γ= 0 . This is the effective form of the bosonic BdG Hamiltonian in Eq. (6) in the presence of an oscil-
lating electric field vector.

Floquet-Bloch theory.  The time-dependent bosonic BdG Hamiltonian  τ


k( , ) can be studied by the 
Floquet-Bloch formalism. We can expand it as

https://doi.org/10.1038/s41598-019-43702-9


9Scientific Reports |          (2019) 9:7197  | https://doi.org/10.1038/s41598-019-43702-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

 ∑τ = ωτ

=−∞

∞
 

k e k( , ) ( ),
(44)n

in
n

where the Fourier components are given by ∫ τ τ= = .ωτ−
−

  †k e k d k( ) ( , ) ( )n T
T in

n
1

0
    The corresponding 

eigenvectors can be written as ψ τ τ=α
τ

α
− α

 



k e u k( , ) ( , )i k( ) , where τ τ= + = ∑α α
ωτ

α

  

u k u k T e u k( , ) ( , ) ( )n
in n  is 

the time-periodic Floquet-Bloch wave function of magnons and α


k( ) are the magnon quasi-energies. We define 
the Floquet operator as τ τ= − ∂τ

 

k k i( , ) ( , )F  . The corresponding eigenvalue equation is of the form

∑ ωδ+ = .α α α−

   

k m u k k u k[ ( ) ] ( ) ( ) ( )
(45)m

n m n m
m n

,H ε

Each block Hamiltonian in Eq. (6) obeys this equation.
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