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Abstract: Among various methods of improving visible light activity of titanium(IV) oxide, the
formation of defects and vacancies (both oxygen and titanium) in the crystal structure of TiO2 is an easy
and relatively cheap alternative to improve the photocatalytic activity. In the presented work, visible
light active defective TiO2 was obtained by the hydrothermal reaction in the presence of three different
oxidizing agents: HIO3, H2O2, and HNO3. Further study on the effect of used oxidant and calcination
temperature on the physicochemical and photocatalytic properties of defective TiO2 was performed.
Obtained nanostructures were characterized by X-ray diffractometry (XRD), specific surface area
(BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), photoluminescence
spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance
(EPR) spectroscopy. Degradation of phenol as a model pollutant was measured in the range of
UV-Vis and Vis irradiation, demonstrating a significant increase of photocatalytic activity of defective
TiO2 samples above 420 nm, comparing to non-defected TiO2. Correlation of EPR, UV-Vis, PL,
and photodegradation results revealed that the optimum concentration of HIO3 to achieve high
photocatalytic activity was in the range of 20–50 mol%. Above that dosage, titanium vacancies
amount is too high, and the obtained materials’ photoactivity was significantly decreased. Studies
on the photocatalytic mechanism using defective TiO2 have also shown that •O2

− radical is mainly
responsible for pollutant degradation.
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1. Introduction

One of the main challenges of the 21st century is the pollution of the water environment.
Compounds such as pharmaceuticals, hormones, or personal care products are detected in surface
waters, which negatively affect human health and entire ecosystems [1]. In this regard, advanced
oxidation processes (AOPs) allow for the effective removal of impurities from water. Heterogeneous
photocatalysis, as one of the AOPs, has gained considerable attention due to effective removal in the
presence of light and semiconductor of xenobiotics not susceptible to biological degradation.

In the photocatalytic process, semiconductor absorbs electromagnetic radiation with an energy
greater or equal to energy bandgap. The generated charge carriers take part at the surface in redox
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reactions with the water, oxygen, and hydroxyl ion molecules leading to the formation of reactive
oxygen species, capable of non-selective and sufficient oxidation of pollutants. Titanium(IV) oxide is one
of the most frequently used semiconductors for photocatalysis due to its good photocatalytic activity,
cost-effectiveness, non-toxicity, and high stability [2]. However, the use of TiO2 in heterogeneous
photocatalysis is limited due to charge carriers’ recombination and almost no activity in the visible light.

Several different strategies have been proposed to obtain TiO2 active in the range of visible
light. Advanced modification of semiconductor materials with metals (Ag [3], Au [4], Mo [5], Fe [6],
Pt [7], and Pd [8]), as well as doping with non-metals (N [9], C [10], F [11], Cl [12], and S [13]) and
dyes sensitization [14–16] enable to obtain heterogeneous photocatalysts active in the visible light.
Nonetheless, all the presented methods have several drawbacks. Non-metal-doped semiconductors
usually are unstable in long-term processes because of dopant liberation from surface layers [17,18].
Introducing non-metals into the TiO2 lattice could also result in the formation of oxygen vacancies,
which could act as additional electron-hole pairs recombination centers [19,20]. In turn, doping
with metal ions, as well as a surface modification with its nanoparticles, is more expensive and is
not cost-effective in photocatalysis scaling-up [21]. Moreover, such nanomaterials often suffer from
thermal and optical instability [22]. As for the matter of dye-sensitized semiconductors, widely used
sensitizers such as alizarin red S [23], bipyridine complexes [24,25], phthalocyanine [16,26] absorbed
on the surface of TiO2 could be desorbed during the photocatalytic process and greatly depress the
photoactivity [27,28].

Another possibility of increasing the photoactivity of TiO2 is an introduction to its crystal structure
intrinsic defects. To the category of this self-structural modification belong titanium/oxygen vacancy
self-doping and a surface disorder as well as the formation of Ti-OH bonds on the surface layer [29,30].
Great attention to blue (Ti3+ defected) and black TiO2 is related mostly to extending the light absorption
to the visible region [31,32]. As presented by Lettieri et al. [33], blue TiO2 could be obtained from
commercially available P25 and anatase powders in simple solvent reflux thermal treatment. It allowed
to surface and sub-surface oxygen vacancies formation. Consequently, TiO2 bandgap has been
narrowed to about 2.3 eV and visible light activity was significantly increased. Among all studied
titania defects, the most rarely investigated are titanium vacancies and titanium interstitials despite
their excellent quadrupole donor and acceptor properties. Revolutionary work in the field of TiO2

vacancies was reported by Wu et al. [34]. The yellow, ultra-small defective TiO2 was obtained by a
simple sol–gel method within 8 h of UV irradiation, without introducing any external dopants. The
formed titanium vacancies and titanium interstitials played a crucial role in visible-light-driven H2

production from formaldehyde solution, not only initiating but also promoting photocatalytic activity
in visible light. Furthermore, cycling tests indicated the stability of yellow defective TiO2, compared
with normal TiO2 assisted with co-catalysts [34].

Phenol is one of the commonly used model organic compounds in photocatalytic wastewater
treatment. Its degradation pathway is intensively studied for a thorough understanding of the
photocatalytic reaction with the application of various photocatalysts [35–37]. Kang et al. studied
degradation under visible light using F-doped TiO2 hollow nanocubes with oxygen vacancies [38].
After 60 min of irradiation, about 60% of organic contamination was degraded. A different approach
was presented by Colón et al. [39]. The titanium(IV) ox0ide photocatalysts obtained from titanium
isopropoxide precursor were treated with different inorganic acids and then calcined in temperature
range from 400 to 800 ◦C. It was reported that such treatment was responsible for the generation
of oxygen vacancies on the surface of the photocatalysts. The highest photocatalytic activity was
noticed for pre-sulfated TiO2 calcined in 600 ◦C [39]. Nevertheless, in the literature there is lack of
information concerning the photocatalytic activity of defective TiO2 with titanium vacancies under
visible or UV-visible light in reaction of phenol degradation.

Therefore, in this study, we propose a simple method of preparation visible light active TiO2

with titanium vacancies obtained by a hydrothermal reaction in a suitable oxidizing environment
(HIO3, H2O2, and HNO3). The most appropriate amount of used oxidant, as well as the durability of
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generated titanium vacancies were investigated. The effect of introduced defects on physicochemical
and photocatalytic properties was studied. The obtained samples were characterized by X-ray
diffractometry (XRD), specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy
(DR-UV/Vis), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), and
electron paramagnetic resonance (EPR) spectroscopy. The photodegradation of phenol as a model
organic pollutant using the obtained photocatalysts was subsequently investigated in the range of
UV-Vis and Vis irradiation. Furthermore, the mechanism of phenol degradation and the role of four
oxidative species (h+, e−, •OH, and •O2

−) in the studied photocatalytic process were investigated.

2. Materials and Methods

Titania organic precursor: titanium(IV) butoxide (99+%) was provided by Alfa Aesar (Haverhill,
MA, USA). Iodic acid (99.5%), nitric acid (68%), and hydrogen peroxide (30%) were purchased
from Sigma (Poznan, Poland) and were used for TiO2 structure modification. Acetonitrile and
orthophosphoric acid (85%) for HPLC mobile phase preparation were provided by Merck (Darmstadt,
Germany) and VWR (Gdansk, Poland), respectively. Phenol, used as a model organic recalcitrant
pollutant in photocatalytic activity measurements, was purchased from VWR. All reagents were used
without further purification.

2.1. Preparation of Defective TiO2 in the Presence of Different Oxidizing Agents

The preparation of defective TiO2 was performed by a hydrothermal method and annealing
process. Titanium(IV) butoxide (TBT) was used as a TiO2 precursor, and iodic acid (HIO3), nitric acid
(HNO3), or hydrogen peroxide (H2O2) was used as an oxidizing environment. First, an appropriate
amount of HIO3, HNO3, or H2O2 (as mentioned in Table 1) was dissolved in 80 cm3 of distilled water.
After that, 10 cm3 of TBT was added dropwise, and the obtained suspension was stirred for 1 h at
room temperature. In the next step, the suspension was transferred into a Teflon-lined autoclave for
thermal treatment at 110 ◦C for 24 h. The resultant precipitate was centrifuged, dried at 70 ◦C, and
then calcined at 300 ◦C. Calcination was carried out in two steps: with a heating rate of 3 ◦C·min−1 to
the temperature of 180◦ for 45 min, then with a heating rate of 2 ◦C·min−1 to the temperature of 300◦

for 3 h. A series of defective TiO2 photocatalysts with different content of used oxidants, calculated
as amount relative to TiO2, are presented in Table 1. For easier recognition of samples, TBT-HIO3,
TBT-HNO3, and TBT-H2O2 names are assigned to defective photocatalysts obtained in the assistance
of HIO3, HNO3, and H2O2 oxidants, respectively.

Table 1. The oxidant concentration used for preparation of the defective TiO2 photocatalyst.

Sample Oxidant Concentration (mol%) Mass of Added Oxidant (g)

TiO2-TBT 0 0
TBT-HIO3_0.5 0.5 0.026
TBT-HIO3_5 5 0.258
TBT-HIO3_20 20 1.032
TBT-HIO3_50 50 2.579
TBT-HIO3_75 75 3.869

TBT-HIO3_100 100 5.159
TBT-HNO3_50 50 0.948
TBT-H2O2_50 50 1.65

In order to obtain the defective photocatalysts’ series for their thermal stability test, TBT-HIO3_20
was synthesized hydrothermally, as was reported in the previous paragraph. Further, the dry product
was calcined in five different temperatures: 300 ◦C, 400 ◦C, 450 ◦C, 650 ◦C, and 1000 ◦C. Calcination
was carried out in two steps: with a heating rate of 3 ◦C·min−1 to the temperature of 180◦ for 45 min,
then with a heating rate of 2 ◦C·min−1 to the set temperature for 3 h.
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2.2. Characterization of Obtained Defective Photocatalysts

The XRD analyses were performed using the Rigaku Intelligent X-ray diffraction system SmartLab
(Rigaku Corporation, Tokyo, Japan) equipped with a sealed tube X-ray generator (a copper target;
operated at 40 kV and 30 mA). Data was collected in 2θ range of 5–80◦ with a scan speed and scan
step of 1◦·min−1 and 0.01◦, respectively. The analyses were based on the International Centre for
Diffraction Data (ICDD) database. The crystallite size of the photocatalysts in the vertical direction
to the corresponding lattice plane was determined using the Scherrer’s equation with the Scherrer’s
constant equal to 0.891. Quantitative analysis, including phase composition with standard deviation,
was calculated using the reference intensity ratio (RIR) method from the most intensive independent
peak of each phase.

Nitrogen adsorption–desorption isotherms (BET method for the specific surface area) were
recorded using the Micromeritics Gemini V (model 2365; Norcross, GA, USA) instrument at 77 K
(liquid nitrogen temperature).

Light absorption properties were measured using diffuse reflectance (DR) spectroscopy in the
range of 200–800 nm. The bandgap energy of obtained samples was calculated from (F(R)·E)0.5 against
E graph, where E is the photon energy, and F(R) is the Kubelka–Munk function, proportional to the
radiation’s absorption. The measurements were carried out using ThermoScientific Evolution 220
Spectrophotometer (Waltham, MA, USA) equipped with a PIN-757 integrating sphere. As a reference,
BaSO4 was used.

X-ray photoelectron spectroscopy (XPS) measurements were conducted using Escalab
250Xi multi-spectrometer (Thermofisher Scientific, Walthman, MA, USA) using Mg K X-rays.
Photoluminescence (PL) spectra were recorded on a Perkin-Elmer LS 55 fluorescence spectrometer
(Waltham, MA, USA) employing Xenon discharge lamp equivalent to 20 kW as the excitation source.
The samples were excited at 250 nm in the air at room temperature. A 290 nm cut off filter was used
during measurements at range 300–700 nm.

Electron paramagnetic resonance (EPR) spectroscopy was used for intrinsic defects formation
confirmation. Measurements were conducted using RADIOPAN SE/X-2547 spectrometer (Poznań,
Poland), operating at room temperature, with frequency in range 8.910984–8.917817 GHz.

Defective TiO2 photocatalysts morphology was determined by scanning electron microscopy
(SEM) equipped with energy-dispersive X-ray spectroscopy (EDS; HITACHI, S-3400N, Tokyo, Japan).

2.3. Measurements of Photocatalytic Activity

Photocatalytic activity of the obtained samples was evaluated in phenol degradation reaction,
both in UV-Vis and Vis light irradiation, using 300 W Xenon lamp (LOT Oriel, Darmstadt, Germany).
For the visible light measurements, a cut-off 420 nm filter (Optel, Opole, Poland) was used to obtain a
settled irradiation interval. A 0.05 g (2 g·dm−3) of a photocatalyst, together with a 20 mg·dm−3 phenol
solution, was added to a 25 cm3 quartz photoreactor with an exposure layer thickness of 3 cm and
obtained suspension was stirred in darkness for 30 min to provide adsorption–desorption equilibrium.
After that, photocatalyst suspension was irradiated under continuous stirring and a power flux of
30 mW·cm−2 for 60 min. The constant temperature of the aqueous phase was kept at 20 ◦C using a water
bath. Every 20 min of irradiation, 1.0 cm3 of suspension was collected and filtered through syringe
filters (pore size = 0.2 µm) for the removal of photocatalysts particles. Phenol concentration, as well as a
formation of degradation intermediates, were analyzed using reversed-phase high-performance liquid
chromatography (HPLC) system 9 (Shimadzu, Kyoto, Japan), equipped with C18 chromatography
column with bound residual silane groups (Phenomenex, model 00F-4435-E0) and a UV-Vis detector
with a DAD photodiodes array (model SPD-M20A, Shimadzu). The tests were carried out at 45 ◦C and
under isocratic flow conditions of 0.3 mL·min−1 and volume composition of the mobile phase of 70%
acetonitrile, 29.5% water, and 0.5% orthophosphoric acid. Qualitative and quantitative analysis was
performed based on previously made measurements of relevant substance standards [40] and using
the method of an external calibration curve.
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Phenol removal percentage was calculated from the equation:

D% =
Co −Cn

Co
·100% (1)

where: Co—phenol initial concentration (mg·dm−3) and Cn—phenol concentration during
photodegradation (mg·dm−3).

Rate constant k was determined from ln(Co/Cn) against t plot where Co and Cn are phenol
concentrations (mg·dm−3) and t is degradation time (min). Rate constant k is equal to the directional
coefficient “a” of the plot.

In order to evaluate the stability of obtained photocatalysts, three 3-hours-long subsequent
cycles of phenol under UV-Vis light with use of the most active defective TBT-HIO3_50 sample were
performed. After each cycle, photocatalyst was separated from the suspension with use of a syringe
filter and use in next cycle without additional treatment.

The effect of charge carrier scavengers was examined by addition into phenol solution 1 cm3 of
500 mg·dm−3 of tert-butyl alcohol (t-BuOH), benzoquinone (BQ) ammonium oxalate (AO), and silver
nitrate (SN).

3. Results and Discussion

3.1. The Influence of Oxidizing Conditions on Defective TiO2 Properties

As the first step, a series of three defective TiO2 photocatalysts were obtained by the hydrothermal
method. The physicochemical characteristic of the obtained samples, including BET surface area with
pore volume, bandgap (Eg) and their images, compared with TiO2–TBT photocatalyst, are presented in
Table 2.

Table 2. Physicochemical characteristic of the obtained defective TiO2 samples.

Sample BET (m2
·g−1) V Pores (cm3

·g−1) Eg (eV) Photo

TiO2-TBT 169 0.0836 3.2
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The XRD patterns for the as-obtained photocatalyst series are presented in Figure 1, while detailed
crystalline phases characteristic is given in Table 3. For pure TiO2–TBT sample, 95.5% of the crystalline
phase of anatase, with the most intense peak at 25◦ 2θ was observed ([101], ICDD’s card No. 7206075).
After introducing to hydrothermal synthesis the oxidizing agent, the percentage of anatase decreased
in favor of other titania polymorphs: brookite ([211], with the main peak at 31◦ 2θ, ICDD’s card No.
9004138), and rutile ([110], with the main peak at 27◦ 2θ, ICDD’s card No. 9004141). According to the
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previous study of Gamboa and Pasquevich [41], the presence of halogen ions (chlorine, iodine, and
bromine) affects rutile formation even below the anatase to rutile transition (ART) temperature [42].
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Figure 1. XRD patterns for defective TiO2 photocatalysts (A—anatase, B—brookite, and R—rutile).

Table 3. Crystalline phases characteristic for obtained defective TiO2.

Sample

Crystalline Size and Phase Content

Anatase Rutile Brookite

Size (nm) Phase Content (wt %) Size (nm) Phase Content (wt %) Size (nm) Phase Content (wt %)

TBT 5.97 ± 0.04 95.5 ± 1 - - 6.1 ± 0.5 4.5 ± 0.9
TBT-HIO3_50 5.70 ± 0.04 68 ± 3 9.08 ± 0.17 32 ± 17 - -
TBT-HNO3_50 5.07 ± 0.03 83 ± 10 - - 4.6 ± 0.3 17 ± 2
TBT-H2O2_50 5.69 ± 0.04 75.5 ± 5 - - 5.7 ± 0.3 24.5 ± 1.5

Nonetheless, the anatase crystallite size was about 5–6 nm. Changes in the crystalline phases did
not affect the BET surface area, which remained in the range of 166–198 m2

·g−1 for TBT-HIO3_50 and
TBT-HNO3_50, respectively.

For optical absorption properties studies of the obtained defective TiO2, DR/UV-Vis spectroscopy
analyses were performed, and the results are presented in Figure 2. Comparing to pure TBT-TiO2, the
samples obtained in the oxidative environment had absorption spectra shifted towards the visible
light due to the creation of crystalline defects. After recalculation of spectra into the Kubelka–Munk
function, the Tauc transformation was used for bandgap energy determination, and its values are
presented in Table 2. For TBT-HNO3_50 and TBT-H2O2_50, the bandgap energies were comparable to
pure TBT-TiO2 bandgap energy and equaled 3.05 and 3.1 eV, respectively. The slightly smaller value of
2.9 eV was reported for TBT-HIO3_50 photocatalyst. It could also be caused by a 30% rutile content in
the crystal structure of the photocatalyst [43].

For the direct confirmation of intrinsic defects formation in obtained titanium(IV) oxide
photocatalysts, EPR analyses were performed, and the results are presented as the signal intensity
against the g value graph (Figure 3). The Lande factor (g) was calculated from the equation:

g =
h·f

mB·B
(2)

where: g—Lande factor (a.u.); h—Planck’s constant (6.62 × 10−34; J·s); f—frequency (Hz); mB—Bohr
magneton (9.2740154 × 10−24; J·T−1); and B—magnetic field induction (T).
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Figure 3. The EPR spectra recorded in the room temperature for defective TiO2 photocatalysts obtained
in different oxidative environments, compared with pure TBT-TiO2 sample (blue line).

For defective TiO2 samples, an intense signal was noticed in the range of g from 1.998 to 2.003
for TBT-H2O2_50 and TBT-HIO3_50 samples, respectively. According to the literature, it could be
attributed to titanium vacancies (VTi) in titanium(IV) oxide structure [34,44,45]. This signal was not
observed for TBT-TiO2 sample. Moreover, there were no signals in the range of g = 1.960–1.990 and
above 2.020, suggesting the absence of Ti3+ defects as well as oxygen vacancies [45,46].

The photocatalytic activity, together with physicochemical properties, are the most important
parameters for assessing the semiconductor utility in organic recalcitrant chemicals’ degradation. In
this regard, the series of UV-Vis and Vis light degradation reactions of phenol as a model pollutant
were performed in the presence of the obtained defective TiO2 photocatalysts. The obtained results,
presented as the percentage of phenol degradation and degradation rate constant k, are shown in
Figure 4a,b.
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Figure 4. Efficiency of phenol degradation in UV-Vis and Vis light for TBT-TiO2 and defective TiO2

photocatalysts, presented as % of degradation (a) and rate constant k (b).

Comparing to pure TiO2 (TBT sample), two defective TiO2 photocatalysts, TBT-H2O2_50 and
TBT-HNO3_50, showed higher photocatalytic activity in UV-Vis light (52% after 1 hour of irradiation).
In turn, defective TBT-HIO3_50 obtained in the presence of iodic acid revealed in UV-Vis light decrease
of photoactivity, compared with reference TBT-TiO2 (42% of phenol degradation). Nonetheless, a
different trend was observed under visible light range. TBT-HIO3_50, for which photoactivity in
UV-Vis light was the lowest when irradiated with the wavelength >420 nm, revealed the highest phenol
degradation efficiency, equaled to 19%. It results from the synergic effect of anatase and rutile [47], and
it is in agreement with the previously described shifting of the absorbance spectrum maximum towards
higher wavelengths (see in Figure 2). The TBT-TiO2 sample (anatase with a minority of brookite)
showed negligible photocatalytic activity in the visible light range [48–50].

For determining the mechanism of photocatalytic degradation with the use of defective TiO2,
series of UV-Vis light photoactivity analyses, in the presence of scavengers, were performed.
Benzoquinone (BQ), silver nitrate (SN), ammonium oxalate (AO), and tert-butanol (t-BuOH) were used
as superoxide radical anions (•O2

−), electrons (e−), holes (h+), and hydroxyl radicals (•OH) scavengers,
respectively. Obtained results, presented as phenol degradation rate constant k, in comparison to the
photodegradation process without scavengers, are presented in Figure 5.Materials 2020, 13, x FOR PEER REVIEW 9 of 25 
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The most significant impact on phenol degradation reaction, with the use of defected TiO2,
revealed superoxide radicals. After introducing to the photocatalyst suspension of BQ, the phenol
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degradation efficiency decreased significantly. A slight decrease was also observed when SN as an
electron trapping agent was used. On the other hand, the addition of AO and t-BuOH did not cause
diminishing of phenol degradation rate. Furthermore, for the TBT-TiO2 sample, a slight increase in
photoactivity was noted after adding to the system scavenger of holes or hydroxyl radicals. It could
result from the additional in-situ formation of the reactive species on the photocatalysts’ surface [36].
Based on the study, a schematic mechanism of phenol degradation in the presence of defective TiO2

(sample TBT-HIO3) was proposed and illustrated in Figure 6.
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For pure TiO2 the valence band (VB) and conduction band (CB) are located at +2.5 eV and −0.7 eV,
respectively (in respect to normal hydrogen electrode NHE) [51]. After hydrothermal treatment in
oxidative conditions, titanium defects were created, which led to the narrowing of the bandgap to the
value of 2.9 eV. Irradiation of the TBT-HIO3 surface with UV-Vis or Vis light caused exciting the electron
and, as a result, creating superoxide radicals. Subsequently, their reaction with phenol promotes
creating intermediate products, such as hydroquinone (HQ) and benzoquinone (BQ), whose presence
was confirmed using HPLC analysis. Benzoquinone and hydroquinone concentration in irradiated
solution reached equilibrium due to electron and proton transfer and reversible oxidation/reduction
process between these two intermediates. Hydroquinone could also be accumulated during the process
due to sequential charge transfer [52].

However, after approximately 40 min of continuous irradiation, intermediates concentration
started to decrease to more simple and more-quickly oxidizable compounds, consequently leading to
complete mineralization. The presented mechanism is in good agreement with the literature [40,53].

3.2. The Effect of HIO3 Content on Defective TiO2 Physicochemical and Photocatalytic Properties

The selected in the previous step HIO3 as an oxidant for preparation of defective TiO2 was further
used in six different quantities (from 0.5 to 100 mol % to TiO2) for study the effect of oxidant amount
on titanium vacancies formation. General physicochemical characteristics of the obtained defective
TiO2-HIO3 samples, i.e., BET surface area, pore volume, calculated bandgap (Eg), and their images are
shown in Table 4.

Based on the obtained results, it was found that changing of the HIO3 concentration does not
significantly affect the BET surface area of defective TiO2-HIO3 photocatalysts. Among the obtained
samples, TBT-HIO3_20 showed the highest specific surface area of 172 m2

·g−1 and the highest total
pore volume of 0.0847 cm3

·g−1.
The XRD patterns of TBT-TiO2 and defective TiO2-HIO3 obtained with a different dosage of iodic

acid are presented in Figure 7. The percentage of phases and the size of crystallites are given in Table 5.
All photocatalysts contain anatase in their structure, with the most intense peak at 25◦ 2θ ([101], ICDD’s
card No. 7206075). Among the defective TiO2-HIO3 photocatalyst series, TBT-HIO3_20 exhibited the
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smallest size of anatase crystallites (5.1 nm based on the Scherrer’s formula) and was characterized by the
highest anatase phase content of 96.4%. The most stable titanium(IV) oxide polymorphic phase, rutile,
occurs when the mol.% of iodic acid taken as an oxidant reached 50 mol%. Simultaneously, the intensity
of the primary rutile signal at 27◦ 2θ ([110], ICDD’s card No. 9004141), increased significantly with the
increase of iodic acid dosage for samples TBT-HIO3_50, TBT-HIO3_75, and TBT-HIO3_100. It is known
that for an unmodified sample, anatase to rutile transition takes place at temperatures above 600 ◦C [54].
Obtained TBT-HIO3 samples calcination was carried out at 300 ◦C. On this basis, it could be assumed
that the high content of HIO3 may disturb the TiO2 anatase crystalline structure, therefore promoting the
low-temperature formation of rutile. It is in agreement with the study of Hanaor and Sorrell [55], which
reported that impurities, dopants, and defects influence anatase to rutile transition (ART) kinetics.

Table 4. Physicochemical characteristic of the obtained defective TiO2-HIO3 samples.

Sample BET (m2
·g−1) V Pores (cm3

·g−1) Eg (ev) Photo

TBT 169 0.0836 3.2
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The UV/Vis diffusion reflectance spectra of pure TiO2 and defective TiO2-HIO3 obtained with a
different dosage of iodic acid are presented in Figure 8a. The pure TiO2 absorbs radiation up to 400
nm. For titanium(IV) oxide samples obtained in the presence of HIO3 as an oxidant, the absorption
edge shifted to the visible region. It corresponds to the yellow colour of these samples and indicates
the bandgap narrowing due to changes in electronic structure in TiO2. The most significant shift of
absorbance maximum was noticed for TBT-HIO3_50, TBT-HIO3_75, and TBT-HIO3_100 photocatalysts.
It corresponds well with previously analysed XRD spectra. For iodic acid content of 50 mol% and
higher, rutile phase is starting to dominate as a titanium(IV) oxide most stable polymorph, which could
also affect absorbance spectra shifting [56]. The energy bandgaps of all samples were calculated from
the plot of (Kubelka–Munk·E)0.5 versus E, where E is energy equal to hv, as shown in Figure 8b and
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summarized in Table 4. The sample TBT-HIO3_20 exhibited the narrowest bandgap of 2.70 eV among
the defective TiO2_HIO3 photocatalysts.

Materials 2020, 13, x FOR PEER REVIEW 11 of 25 

 

Simultaneously, the intensity of the primary rutile signal at 27° 2θ ([110], ICDD’s card No. 9004141), 
increased significantly with the increase of iodic acid dosage for samples TBT-HIO3_50, TBT-HIO3_75, 
and TBT-HIO3_100. It is known that for an unmodified sample, anatase to rutile transition takes place 
at temperatures above 600 °C [54]. Obtained TBT-HIO3 samples calcination was carried out at 300 °C. 
On this basis, it could be assumed that the high content of HIO3 may disturb the TiO2 anatase 
crystalline structure, therefore promoting the low-temperature formation of rutile. It is in agreement 
with the study of Hanaor and Sorrell [55], which reported that impurities, dopants, and defects 
influence anatase to rutile transition (ART) kinetics. 

 

Figure 7. XRD patterns for defective TiO2-HIO3 photocatalysts (A–anatase, B–brookite, and R–
rutile). 

Table 5. Crystalline phases characteristic for the obtained defective TiO2-HIO3 samples. 

Sample 

Crystalline Size and Phase Content 

Anatase Rutile Brookite 

Size (nm) 
Phase Content 

(wt%) 
Size (nm) 

Phase Content 

(wt%) 
Size (nm) 

Phase Content 

(wt%) 

TBT 5.97 ± 0.04 95.5 ± 1 - - 6.1 ± 0.3 4.5 ± 0.9 

TBT-HIO3_0.5 6.09 ± 0.03 86 ± 1 - - 5.50 ± 0.19 14 ± 1.5 

TBT-HIO3_5 5.43 ± 0.03 89 ± 0.5 - - 5.2 ± 0.2 11 ± 1 

TBT-HIO3_20 5.14 ± 0.03 96 ± 1 - - 4.0 ± 0.6 3.5 ± 0.5 

TBT-HIO3_50 5.70 ± 0.04 68 ± 3.5 9.08 ± 0.17 32 ± 17 - - 

TBT-HIO3_75 5.67 ± 0.05 20.5 ± 3.5 6.57 ± 0.09 7± 1.8 - - 

TBT-HIO3_100 6.3 ± 0.2 15 ± 3.5 7.45 ± 0.06 85 ± 1 - - 

The UV/Vis diffusion reflectance spectra of pure TiO2 and defective TiO2-HIO3 obtained with a 
different dosage of iodic acid are presented in Figure 8a. The pure TiO2 absorbs radiation up to 400 
nm. For titanium(IV) oxide samples obtained in the presence of HIO3 as an oxidant, the absorption 
edge shifted to the visible region. It corresponds to the yellow colour of these samples and indicates 
the bandgap narrowing due to changes in electronic structure in TiO2. The most significant shift of 
absorbance maximum was noticed for TBT-HIO3_50, TBT-HIO3_75, and TBT-HIO3_100 
photocatalysts. It corresponds well with previously analysed XRD spectra. For iodic acid content of 

15 25 35 45 55 65 75

In
te

ns
ity

 (a
.u

.)

2 Theta (deg)

A A A A A

R

R
R

R

R

R

TBT

TBT-HIO3_0.5

TBT-HIO3_5

TBT-HIO3_20

TBT-HIO3_50

TBT-HIO3_75

TBT-HIO3_100

Figure 7. XRD patterns for defective TiO2-HIO3 photocatalysts (A—anatase, B—brookite, and R—rutile).

Table 5. Crystalline phases characteristic for the obtained defective TiO2-HIO3 samples.

Sample

Crystalline Size and Phase Content

Anatase Rutile Brookite

Size (nm) Phase Content (wt%) Size (nm) Phase Content (wt%) Size (nm) Phase Content (wt%)

TBT 5.97 ± 0.04 95.5 ± 1 - - 6.1 ± 0.3 4.5 ± 0.9
TBT-HIO3_0.5 6.09 ± 0.03 86 ± 1 - - 5.50 ± 0.19 14 ± 1.5
TBT-HIO3_5 5.43 ± 0.03 89 ± 0.5 - - 5.2 ± 0.2 11 ± 1

TBT-HIO3_20 5.14 ± 0.03 96 ± 1 - - 4.0 ± 0.6 3.5 ± 0.5
TBT-HIO3_50 5.70 ± 0.04 68 ± 3.5 9.08 ± 0.17 32 ± 17 - -
TBT-HIO3_75 5.67 ± 0.05 20.5 ± 3.5 6.57 ± 0.09 7± 1.8 - -
TBT-HIO3_100 6.3 ± 0.2 15 ± 3.5 7.45 ± 0.06 85 ± 1 - -
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Figure 8. The diffuse reflectance (DR)/UV-Vis spectra for pure TiO2 and defective TiO2-HIO3

photocatalysts (a) together with exemplary Tauc transformation (b).



Materials 2020, 13, 2763 12 of 25

For further confirmation of creating titanium vacancies, EPR analyses for the selected samples
(TBT-HIO3_20, TBT-HIO3_50, and TBT-HIO3_75) were performed. The obtained results, compared
with spectra for TBT-TiO2 are presented in Figure 9.
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Figure 9. The EPR spectra recorded in the room temperature for selected defective TiO2-HIO3

photocatalysts, compared with the pure TiO2–TBT sample (blue line).

As it was reported in the previous subsection, for defective TiO2 photocatalysts obtained in a
different oxidative environment, the intense signal attributed to titanium vacancies (VTi) appeared
in the range of g from 1.998 to 2.001 for TBT-HIO3_20 and TBT-HIO3_50 samples, respectively. No
additional signals were detected. It is also worth noting that the VTi signal increased with the
increase of the iodic acid mol% used for the synthesis of defective TiO2. It could suggest that more
intrinsic defects are formed after oxidant concentration increase. Moreover, the presented trend was
inversely proportional to the observed light absorbance spectra in the range of 400–500 nm (see in
Figure 8). For the TBT-HIO3_20 photocatalyst, visible light absorption was the highest, while for
TBT-HIO3_75, the lowest, which indicated that too high concentration of defects could also have a
negative impact on TiO2 photocatalytic activity. Titanium vacancies formation was also analyzed
by Li et al. [57] and Ma et al. [58]. Obtained hydroxyfluorinated and lithium intercalated defected
TiO2-based photocatalysts were characterized by cationic vacancies, which successfully could work in
the electrochemical applications.

The photoluminescence spectra of irradiated semiconductor materials give information on
electron-hole recombination properties. Figure 10 shows normalized PL spectra of the pure TBT-TiO2

as well as defective TBT-HIO3_5, TBT-HIO3_20, TBT-HIO3_50, TBT-HIO3_75, and TBT-HIO3_100
photocatalyst samples. The excitation was carried out at 250 nm at a room temperature. The PL
emission of maximum intensity in the high-energy region was observed at 400 nm for all samples, which
was equal to 3.10 eV. It corresponds to indirect band-to-band recombination across the bandgap [59].
Other emission peaks in the visible light region were detected at 485 nm (2.56 eV) and 530 nm (2.24 eV).
The emission in the 380–700 nm range could be assigned to the transition of electrons from the defect
states to the valence band of titanium(IV) oxide [60] as well as trapped holes [59]. The emission in the
blue region at 480 nm is related to indirect recombination via defects [60].
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Figure 10. Photoluminescence (PL) spectra for defective TiO2-HIO3 samples.

In order to evaluate the surface properties and the state of elements, the XPS analyses were
performed. The obtained results for the selected samples are presented in Figure 11a–d and in Table 6.
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Figure 11. Deconvolution of X-ray photoelectron spectroscopy (XPS) spectra for Ti 2p3/2 and 2p1/2 for
TBT-HIO3_20 (a,b) and TBT-HIO3_100 (c,d).



Materials 2020, 13, 2763 14 of 25

Table 6. Fraction of oxidation states of Ti as well as surface composition of the selected defected
TBT-HIO3 photocatalysts determined by X-ray photoelectron spectroscopy analysis.

Photocatalyst
Ti 2p3/2 (%)

O 1s (%)
Ti4+ Ti3+

TBT-HIO3_20 27.56 0.9 71.54
TBT-HIO3_100 27.47 0 72.54

The Ti 2p spectrum could be deconvoluted into two components at 459 eV and 465 eV binding
energies that refer to Ti 2p3/2 and 2p1/2, respectively. Ti 2p3/2 after deconvolution could be divided
into 459.0 eV and 459.5 eV peaks and identified as Ti4+, resulting from the presence of anatase and
rutile, respectively. For sample TBT-HIO3_20 a trace quantity (0.9 at.%) of Ti3+ was observed, which
could be assigned to oxygen vacancies [61]. However, apart from this sample, there was no Ti3+ signal
observed, suggesting the lack of reduced form of titanium as well as oxygen vacancies. The presented
XPS titanium peaks corresponding to both anatase and rutile correlate with XRD analysis. Together
with the increase of HIO3 oxidant amount used for the synthesis, the rutile content increase, which is
also clearly visible in the presented spectra. The Ti/O ratio for all analyzed photocatalysts was equaled
to 0.38. It suggests no surface and state of elements change between TBT-HIO3 samples.

For final evaluation, since the synthesized photocatalysts do not have admixtures but their color
as well as physicochemical and photocatalytic properties arise from created intrinsic defects the region
I 3d was analyzed to check the presence of iodine species in the obtained samples. The results are
presented in Figure 12.
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Figure 12. XPS analyses spectra for TBT-HIO3_20 sample (a) with the I 3d states binding energy
enlargement (b).

As mentioned in the literature [62–64] I 3d states are in the range of 620–635 eV. However, as it
could be seen in Figure 12b, there is no peak, which could be assigned to I 3d states. In this regard,
for TBT-HIO3 samples changes in physicochemical and, what is the most important, photochemical
properties are caused by intrinsic defects, not titania doping with impurities.

In order to evaluate morphological differences among the obtained defective TiO2 photocatalysts,
the SEM analysis for selected samples was conducted, and the results are presented in Figure S1 in
the Supplementary Materials. It was found that both samples are formed from aggregated particles.
However, it is noticeable that aggregates of TBT-HIO3_50 had a much smaller size, comparing to
the TiO2-TBT photocatalyst, although no differences were determined in crystalline sizes or the BET
specific surface area.
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The photocatalytic activity of defective TiO2-HIO3 samples was evaluated in the phenol
degradation reaction, both in UV-Vis and Vis (λ > 420 nm) light. Simultaneously, the effect of
e−, h+, •O2

−, and •OH scavengers’ presence on photoactivity was studied. The results, presented as
the efficiency of phenol removal (%) as well as phenol degradation rate constant k are presented in
Figure 13a,b and Figure 14.
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Figure 13. Efficiency of phenol degradation in UV-Vis and Vis light for defective TiO2-HIO3

photocatalysts, presented as % of degradation (a) and rate constant k (b).
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Figure 14. UV-Vis photocatalytic degradation of phenol for TiO2-HIO3 photocatalyst in the presence of
e−, h+, •O2

−, and •OH scavengers.

The best photocatalytic activity was obtained for the defective TBT-HIO3_50 sample. After 60
min of irradiation, about 42% of phenol was degraded in UV-Vis and 19% in Vis light. It may also
be noticed a characteristic normal distribution of the obtained results, where maximum falls on 50
mol% of iodic acid. Both smaller and higher concentrations of oxidant used in hydrothermal synthesis
process caused a decrease in obtained TBT-HIO3 photoactivity.

The obtained photodegradation efficiency results correlate well with photoluminescence (PL)
spectra, UV-Vis spectra, and EPR spectra analyses. From the three analyzed samples (TBT-HIO3_20,
TBT-HIO3_50, and TBT-HIO3_75), the most intense EPR signal was assigned to defective TBT-HIO3_75,
where the highest concentration of oxidant (75 mol%) was used. From the PL spectra analysis, the
TBT-HIO3_75 sample showed the highest intensity among analyzed photocatalysts, which indicated
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the highest electron-hole recombination as well as the lowest phenol degradation efficiency. It could
suggest that too high of a concentration of defects in the TiO2 structure could significantly decrease the
photocatalytic activity of the defective material. The presented results also correlate with the crystalline
structure of the obtained materials. With the increase of the HIO3 concentration, the rutile content was
increased (up to 80% for the TBT-HIO3_75 photocatalyst). According to the literature, too high rutile
concentration could also be responsible for decreasing of the TiO2 photocatalytic activity [65].

The addition of BQ as an •O2
− scavenger caused a significant reduction of photoactivity of all

obtained TBT-HIO3 photocatalysts, regardless of the used HIO3 concentration for their synthesis. It
indicated that superoxide radical anions are the most crucial reactive oxygen species in the photocatalytic
reaction with the use of defective TBT-HIO3 samples. After introducing to the photoreactive SN, AO,
and t-BuOH, the changes of the phenol degradation rate constant k, comparing to the process without
scavenger, were negligible.

The physicochemical and surface properties of the most active defective TiO2 photocatalyst
(TBT-HIO3_50) was analyzed before and after 1 hour of phenol degradation process in the presence
of UV-Vis irradiation to confirm the photocatalyst stability. The obtained results are presented
in Figures S2–S4 and in Table S1 in the Supplementary Materials. The additional XPS as well as
XRD analysis showed, that after 1 hour of degradation process the physicochemical properties, e.g.,
crystalline size and surface composition did not change. Moreover, both TBT-HiO3_50 samples showed
also a similar FTiR spectra (see in Figure S3) with a broad band at 3450–3050 cm−1 attributed to the
stretching mode of the hydroxyl group on the TiO2 surface. The Ti-O bending mode and deformative
vibration of the Ti-OH stretching mode may be observed at 498-463 cm−1 and 1629 cm−1 respectively.
The band at 1629 cm−1 may be attributed to water adsorbed on the TiO2 surface.

Final stability and reusability test of defective TBT-HIO3_50 photocatalyst was performed in three
3-hours-long subsequent cycles of phenol degradation under UV-Vis light. The obtained results are
presented in Figure 15.
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After 9 h of irradiation, the percentage of degraded phenol was 80%, which is almost equal to
photodegradation efficiency after 3 h (82%). A slight drop in the rate constant k could be seen (from
k = 0.8·× 10−2 min−1 after first cycle to k = 0.75·× 10−2 min−1 after the second and the third cycle).
However, the analysed photocatalyst still revealed good stability and reusability.

3.3. The Effect of Thermal Treatment on Defective TiO2-HIO3 Physicochemical and Photocatalytic Properties

Further, the investigation on defective photocatalysts concerned with the thermal stability
of TiO2-HIO3 samples was undertaken. A series of five TiO2-HIO3 photocatalysts, calcined in
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different temperatures from 300 to 1000 ◦C was obtained. As a reference, as characterized earlier,
the TBT-HIO3_20 photocatalyst was used, named as TBT-HIO3_20_300, as it was calcined at 300 ◦C.
General physicochemical characteristics of the obtained defective TiO2-HIO3_T samples, i.e., BET
surface area, pore volume, calculated bandgap (Eg), and their images are shown in Table 7.

Table 7. Physicochemical characteristic of the obtained defective TiO2-HIO3_T samples.

Sample BET (m2
·g−1) V Pores (cm3

·g−1) Eg (ev) Photo

TBT 169 0.0836 3.2
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The addition of HIO3 to the reaction environment had a negligible effect on changing the
BET surface area as well as particles and crystallites sizes. Nonetheless, increasing the calcination
temperature by 100 ◦C led to a 50% surface area decreasing (from 172 to 88 m2

·g−1 for TBT-HIO3_20_300
and TBT-HIO3_20_400, respectively). Further increasing of the thermal treatment up to 1000 ◦C caused
the decrease of the BET surface area to 0.4 m2

·g−1.
Changes in the BET surface area correlate well with differences noted on the XRD patterns for

TBT-HIO3_T samples, presented in Figure 16. The higher the calcination temperature, the more
intense the XRD diffraction peaks, which resulted from the increase in photocatalysts crystallinity [66].
Other changes concern crystallites growth (for anatase: from 5 to 12 nm TBT-HIO3_20_300 and
TBT-HIO3_20_450, respectively and for rutile: from 17 to 53.5 nm for TBT-HIO3_20_400 and
TBT-HIO3_20_1000, respectively) as well as the anatase to rutile phase transition. No rutile phase
was present in TBT-HIO3_20_300 photocatalyst, while its content increased rapidly as the calcination
temperature increased until it reached 100% at T = 650 ◦C. As mentioned before, the anatase to rutile
transition takes place in about 600 ◦C. However, the introduction to crystal structure various types of
defects promotes this transformation at lower temperatures [67].

The detailed information about crystallite sizes and phase contents presented with standard
deviation are given in Table 8.
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Figure 16. XRD patterns for defective TiO2-HIO3_T photocatalysts (A—anatase, B—brookite, and
R—rutile).

Table 8. Crystalline phases characteristic for the obtained defective TiO2-HIO3_T samples.

Sample

Crystalline Size and Phase Content

Anatase Rutile Brookite

Size (nm) Phase Content (wt%) Size (nm) Phase Content (wt%) Size (nm) Phase Content (wt%)

TBT 5.97 ± 0.04 95.5 ± 1 - - 6.1 ± 0.3 4.5 ± 1
TBT-HIO3_20_300 5.14 ± 0.03 96 ± 1 - - 4.0 ± 0.6 4 ± 0.5
TBT-HIO3_20_400 8.34 ± 0.05 70.5 ± 0.5 17.4 ± 0.2 29.5 ± 0.5 - -
TBT-HIO3_20_450 12.13 ± 0.09 40 ± 0.5 22.51 ± 0.19 60.5 ± 0.5 - -
TBT-HIO3_20_650 - - 40.3 ± 0.3 100 ± 0.5 - -

TBT-HIO3_20_1000 - - 53.5 ± 0.3 100 ± 0.5 - -

Shifting of the absorption maximum on DR/UV-Vis spectra for defective TiO2-HIO3_T samples
(Figure 17) was mostly related to the anatase to rutile phase transition. It was mentioned by
Valencia et al. [68] that anatase bandgap is equal to 3.23 eV, while rutile from 3.06 to 3.10 eV. From Tauc
transformation, bandgap values forr TiO2-HIO3_T photocatalysts were calculated and are in the range
from 2.7 to 2.9 eV. Despite the changes in photocatalysts phase contents a slight decrease in bandgap
value, in response to TiO2, could be caused by defects formation in the crystal structure [69].
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Figure 17. UV-Vis diffuse spectra for pure TiO2 and defective TiO2-HIO3_20_T photocatalysts calcined
in different temperatures.
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Similarly to TBT-HIO3 photocatalysts, TBT-HIO3_20_T samples’ surface properties, as well as the
state of elements, were analyzed using XPS analysis. The obtained results are presented in Figure 18a–f
and Table 9.
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Figure 18. Deconvolution of X-ray photoelectron spectroscopy (XPS) spectra for Ti 2p3/2 and 2p1/2 for
TBT-HIO3_20_300 (a,b), TBT-HIO3_20_400 (c,d) and TBT-HIO3_20_450 (e,f).

Table 9. Fraction of oxidation states of Ti as well as surface composition of selected defected
TBT-HIO3_20_T photocatalysts determined by X-ray photoelectron spectroscopy (XPS).

Photocatalyst
Ti 2p3/2 (%)

O 1s (%)
Ti4+ Ti3+

TBT-HIO3_20_300 27.56 0.9 71.54
TBT-HIO3_20_400 27.99 0 72.01
TBT-HIO3_20_450 28.43 0 71.58

States of elements for thermally treated TBT-HIO3_20_T are identical as for previously described
TBT-HIO3 samples. Oxygen vacancies are not detected, except TBT-HIO3_20_300 photocatalyst with
0.9 at.% of Ti3+ form. Observed deconvoluted spectra for Ti 2p3/2 and 2p1/2 corresponded well with
XRD analysis and showed the anatase–rutile transition.
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For the final evaluation, photocatalytic activity tests for TiO2-HIO3_20_T samples in the phenol
degradation reaction, both in UV-Vis and Vis (λ > 420 nm) light, were performed. Simultaneously, the
effect of e−, h+, •O2

−, and •OH scavengers’ presence on photoactivity was studied. Results, presented
as phenol removal in % as well as phenol degradation rate constant k, are presented in Figure 19a,b
and Figure 20.
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Figure 19. Efficiency of phenol degradation in UV-Vis and Vis light for defective TiO2-HIO3_20_T
photocatalysts, presented as % of degradation (a) and rate constant k (b).
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Figure 20. UV-Vis photocatalytic degradation of phenol for TiO2-HIO3_20_T photocatalysts in the
presence of e−, h+, •O2

−, and •OH scavengers.

According to the literature, the optimum calcination temperature for iodine-doped photocatalysts
is between 300 and 400 ◦C, with the temperature of 300 ◦C preferred when potassium iodide is
used as an iodine precursor, while 400 ◦C when iodic acid is applied as a precursor [70,71]. Above
these temperatures, the photoactivity of prepared materials decreased significantly. Nonetheless,
for TBT-HIO3 defective photocatalysts, where iodic acid was used as an oxidative environment for
titanium vacancies generation, the highest efficiency in phenol degradation reaction was noticed for
sample calcined in 450 ◦C (57% of phenol removal after 1 h of UV-Vis light irradiation). Moreover, the
yellow color of the sample was maintained even after calcination at 1000 ◦C (see in Table 7). It suggests
that the obtained intrinsic defects in the crystal structure of TiO2 were stable even in higher calcination
temperatures. A slightly different situation was observed when photoactivity tests were carried out in
the visible light. Apart from TBT-HIO3_20_300 photocatalyst, all samples showed negligible efficiency
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in phenol degradation reaction. However, this could be caused by increasing rutile phase content in
the photocatalyst structure [72].

For TiO2-HIO3_20_T photocatalysts, there was no difference in mechanistic studies as compared
to the previously discussed defected TiO2 series. The superoxide radical anions remained the most
crucial for the phenol degradation reaction, while the addition of ammonium oxalate, tert-butyl alcohol,
and silver nitrate as scavengers did not affect the photoactivity.

4. Conclusions

Hydrothermal treatment in the presence of an oxidative environment led to titanium vacancies
generation in the structure of TiO2. Created intrinsic defects caused yellow coloration of titania, while
at the same time, absorption of semiconductor was shifted to visible light as well as bandgap was
reduced to 2.9 eV. Among studied oxidants, defective TiO2 samples obtained in the presence of iodic
acid were characterized by the highest phenol degradation efficiency in visible light. In-depth analysis,
including EPR and XPS measurements, confirmed that increasing in photoactivity, compared to pure
material, is directly caused by defects, not by doping. Further analysis regarding the optimum amount
of HIO3 as well as the thermal stability of synthesized defected TiO2-HIO3 photocatalysts, showed
that from 20 to 50 mol% of oxidant added to hydrothermal reaction is capable of creating material with
a great photoactivity and no loss in photoactivity up to 450 ◦C.
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Deconvolution of X-ray photoelectron spectroscopy (XPS) for Ti 2p3/2 and O 1s for TBT-HIO3_50 before (a,b)
and after phenol photodegradation (c,d). Figure S3: XRD patterns for defective TBT-HIO3_50 photocatalyst
before and after a photocatalytic phenol degradation (A–anatase, R–rutile). Figure S4: Fast-Fourier transformation
spectroscopy (FTIR) spectra of defective TBT-HIO3_50 before and after phenol photodegradation. Table S1:
Fraction of oxidation states of Ti as well as surface composition of defective TBT-HIO3_50 photocatalyst before
and after phenol degradation.
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