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Atherosclerotic cardiovascular disease (ASCVD) caused by atherosclerosis (AS) is one
of the highest causes of mortality worldwide. Although there have been many studies
on AS, its etiology remains unclear. In order to carry out molecular characterization
of different types of AS, we retrieved two datasets composed of 151 AS samples
and 32 normal samples from the Gene Expression Omnibus database. Using the
non-negative matrix factorization (NMF) algorithm, we successfully divided the 151 AS
samples into two subgroups. We then compared the molecular characteristics between
the two groups using weighted gene co-expression analysis (WGCNA) and identified
six key modules associated with the two subgroups. Kyoto Encyclopedia of Genes and
Genomes (KEGG) and gene ontology (GO) enrichment analysis were used to identify
the potential functions and pathways associated with the modules. In addition, we used
the cytoscape software to construct and visualize protein–protein networks so as to
identify key genes in the modules of interest. Three hub genes including PTGER3,
GNAI1, and IGFBP5 were further screened using the least absolute shrinkage and
selection operator (LASSO) and support vector machine-recursive feature elimination
(SVM-RFE) algorithms. Since the modules were associated with immune pathways, we
performed immune cell infiltration analysis. We discovered a significant difference in the
level of immune cell infiltration by naïve B cells, CD8 T cells, T regulatory cells (Tregs),
resting NK cells, Monocytes, Macrophages M0, Macrophages M1, and Macrophages
M2 between the two subgroups. In addition, we observed the three hub genes were
positively correlated with Tregs but negatively correlated with Macrophages M0. We also
found that the three key genes are differentially expressed between normal and diseased
tissue, as well as in the different subgroups. Receiver operating characteristic (ROC)
results showed a good performance in the validation dataset. These results may provide
novel insight into cellular and molecular characteristics of AS and potential markers for
diagnosis and targeted therapy.
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Abbreviations: ASCVD, atherosclerotic cardiovascular disease; AS, Atherosclerosis; CRP, C-reactive protein; GO, gene
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INTRODUCTION

Atherosclerosis (AS) is a chronic inflammatory disease in which
atherosclerotic plaques are deposited on the walls of blood vessels
and induce arterial stenosis. In general, atherosclerosis is usually
asymptomatic in the early stages. However, increased severity

of the disease causes various diseases, such as coronary artery
disease, peripheral artery disease, and cerebrovascular disease
(Kong et al., 2014; Tern et al., 2018). It has been reported that
there was sharp increase in the incidence of AS in 2017, with
the AS-related mortality rising to 31% (Stefanadis et al., 2017).
In addition, the AS is characterized by vascular inflammation,

FIGURE 1 | A flowchart for the analysis procedure to identify potential molecular subtypes and key genes in this study.
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endothelial dysfunction, plaque formation, and diminished
oxygen supply to target organs (Jeong, 2010). Currently, the
underlying molecular mechanism of AS is still unclear, and an
understanding of the molecular pathogenesis of atherosclerosis
process could contribute to develop individualized treatment
strategies for AS patients.

Until now, most studies on AS were mainly focused on
the cardiovascular and cerebrovascular diseases, except for lipid
deposition theory and inflammatory response involving immune
cell, such as monocytes/macrophages, neutrophils, and T cells
involved in AS (Niccoli et al., 2018). Presently, the conventional
approaches for treating AS involve regulating some risk factors
including smoking, alcohol, genetic factors, hypertension, and
hyperlipidemia to prevent the development of AS. After the
development of AS, the treatment strategy switches to use of
anti-platelet aggregation and hypolipidemic drugs. In addition,
local vascular stents or bypass measures can be used for the
management of AS. However, these therapeutic strategies have
not been effective in the management of AS as seen by the
high morbidity and mortality associated with AS (Kelly et al.,
2018). Thus, there is urgent need to delineate the molecular
pathogenesis of AS, identify potential therapeutic markers, and
develop effective drugs. Moreover, the C-reactive protein (CRP)
has been involved in multiple processes of AS and is the optimal
inflammatory biomarker to the prognosis of atherosclerotic
events (Kampoli et al., 2009). The fibrinogen, apolipoproteins,
and interleukins are tightly correlated with the progression of AS
and have a strong relevance in risk prediction (Montagnana et al.,
2008). However, the clinical predictive value of these markers
is poor (Revkin et al., 2007). Therefore, a reliable and specific
biomarker for promoting the clinical diagnosis of atherosclerosis
is urgently required.

The present study aimed to identify potential subgroups
of AS through integrating multiple datasets based on the
gene expression profile. The protein–protein interaction (PPI)
network and hub genes were constructed and screened through
the weighted gene co-expression analysis (WGCNA) algorithm
and machine learning methods based on the two subgroups.
Moreover, the immune cells infiltration level for each AS sample
were estimated, and the relationship between immune cells,
subgroups, and hub genes was further explored. These findings
might improve our understanding of the molecular pathogenesis
of AS and identify potential markers for the diagnosis of AS.

MATERIALS AND METHODS

Data Collection
Three expression profile data sets including GSE20129,
GSE43292, and GSE57691 were downloaded from the Gene
Expression Omnibus database using the GEOquery R package
(Davis and Meltzer, 2007). The GSE20129 dataset consisted
of two independent sets of data generated using two different
General Public License (GPL) platforms. The dataset with
the largest number of samples (N = 119) generated using the
GPL6104 platform (Illumina humanRef-8 v2.0 expression
beadchip) was selected for further analysis. In addition, the
GSE20129 samples were collected from the peripheral blood
cell. The GSE43292 samples were originated from carotid
atheroma plaque, and the GPL platform for GSE43292 was
GPL6244 ([HuGene-1_0-st] Affymetrix Human Gene 1.0
ST Array [transcript (gene) version]), which includes 32 AS
samples and 32 normal samples. The GSE57691 were derived
from atherosclerotic vascular tissues, and the GPL platform

FIGURE 2 | Principal component analysis (PCA) for the two datasets (GSE20129 and GSE43292) before (A) and after merge (B).
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for GSE57691 was GPL10558 (Illumina HumanHT-12 V4.0
expression beadchip), which contained nine AS samples and 10
normal samples (Supplementary Table 1).

Batch Effect Removal
The sva R package was used to filter out any batch effect resulting
from the combination of the two datasets (Leek et al., 2012). The
expression values of the datasets (GSE20129 and GSE43292) were
transformed using log2 before cross-platform normalization was
carried out. We then used the comBat tool to eliminate the batch
effect between the two data sets. Principal component analysis
was applied to evaluate the performance of the comBat tools.

Clustering of AS Samples
The non-negative matrix factorization (NMF) algorithm was
used to carry out clustering analysis to identify potential
clustering groups of the AS samples (Possemato et al., 2011). The
cophenetic correlation coefficients were used to determine the
optimal cluster number.

Gene Set Variation Analysis
Gene set variation analysis (GSVA) is a non-parametric
and unsupervised gene set enrichment method that
evaluates the association between biological pathways
and gene signatures based on expression profile data

FIGURE 3 | Non-negative matrix factorization analysis for the merge dataset. (A) The cophenetic correlation coefficient was calculated for k = 2–7. (B) Non-negative
matrix heatmap was plotted when k = 2. (C) Principal component analysis (PCA) supported the stratification when k = 2.

Frontiers in Molecular Biosciences | www.frontiersin.org 4 April 2021 | Volume 8 | Article 628546

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-628546 April 22, 2021 Time: 14:55 # 5

Yang et al. Identification of Subtypes in AS

(Hänzelmann et al., 2013). The Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis data were retrieved
from the c2.cp.kegg.v7.1.symbols.gmt file. Using GSEA analysis,
the score for each AS samples on KEGG pathway was calculated.
The pathways in which the gene signatures were enriched were
identified using the “limma” R package with the cutoff fdr <0.05
and | log2FC| ≥ 0.2 (Ritchie et al., 2015; Yang et al., 2020).

Weighted Gene Co-expression Network
Analysis
Weighted gene co-expression analysis was conducted to identify
potential modules that characterize the pathways or function of
the subgroups on the basis of gene expression profile (Langfelder
and Horvath, 2008). Since there was no significant difference
in the expression levels of some genes, only genes with the
highest 25% variance were used for WGCNA analysis. Pearson
correlation analysis was carried out between gene pairs and the
results used to construct the corresponding Pearson correlation
matrix. The absolute values of the correlation co-efficient between
the gene pairs were considered to be the co-expression similarity
matrix. The power function formula, amn = | cmn| β (cmn
represent the Pearson correlation between gene m and gene n;
amn represent the adjacency between gene m and gene n), was
used to build a weighted adjacency matrix. Moreover, we chose
a β value to enhance the similarity matrix and achieve a scale
free co-expression network (scale free R2 = 0.9). The adjacency
matrix was further converted into a topological overlap matrix
(TOM) and module dendrograms were constructed using average

linkage hierarchical clustering methods. The gene in the min
modules was at least 30. After merging the gene modules on
the basis of similarity, we identified six valuable modules. The
Pearson correlation coefficient was calculated between modules
and subgroups using the cor function in the WGCNA R package.

Enrichment of the Modules and
Protein–Protein Network Construction
The “clusterProfiler” R packages were used to perform gene
ontology (GO) and KEGG enrichment analysis for the genes
contained in the modules (Van den Berg et al., 2009). Functions
or pathways that were significantly enriched were identified
based on the criterion: adjusted P < 0.05. The STRING
database was used to construct the PPI network (Yang et al.,
2020), while the cytoscape software was used to visualize the
network. The key modules and genes were identified using the
MCODE function within cytoscape with the criterion: score >2
(Szklarczyk et al., 2018).

Identification of Key Genes
After selecting genes from MCODE module, we performed
least absolute shrinkage and selection operator (LASSO) analysis
with a turning/penalty parameter conducted using 10-fold
cross validation to find the most relevant genes. LASSO is a
dimension-reduction algorithm that has superiority in analyzing
high-dimensional data when compared to regression analysis
(Tibshirani, 1996; Bader and Hogue, 2003). Moreover, the

FIGURE 4 | The involved pathway between two distinct subtypes were identified via the Gene Set Variation Analysis (GSVA) analysis.
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FIGURE 5 | Key modules identification of the two subgroups using weighted correlation network analysis. (A) Scale-free fitting index analysis for different
soft-thresholding forces (β). (B) Mean connectivity for different soft-thresholding powers. (C) Clustering dendrograms for the top 25% variance genes on the basis of
dissimilarity topological overlap and module colors. (D) Module-trait heatmap was constructed by using the correlation coefficient.

FIGURE 6 | Gene ontology (GO) (A) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (B) enrichment analysis for all gene modules.
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support vector machine-recursive feature elimination (SVM-
RFE) was also used to identify the key genes. SVM-RFE is
a machine learning algorithm to identify the best variables
by deleting SVM-generated eigenvectors (Huang et al., 2014).
Finally, we incorporated the genes from LASSO analysis and
SVM-RFE analysis to serve as the target genes.

Evaluation of the Immune Cell Infiltration
The gene expression profiles of the AS samples were uploaded
to CIBERSORTx online tools and the LM22 signature was used
as the reference for 1,000 permutations (Ma and Li, 2018).
The proportion of each immune cell was calculated through
bulk-mode batch correction and absolute mode algorithm
and an immune cells matrix was generated. Only samples
with a P value <0.05 were selected for further analysis. The
correlation coefficient between immune cells was calculated using
the “corrplot” R package, while the Wilcoxon test was used
to estimate the difference between subgroups. Moreover, the
receiver operating characteristic (ROC) curve was applied to
evaluate the accuracy of the key genes.

RESULTS

Data Preprocessing
A total of 151 AS samples and 32 normal samples from
GSE20129 and GSE43292 were used as the training dataset, and
GSE57691 (N = 19) data set served as the external validation
data set. The detailed flowchart was presented in Figure 1.
We then used the combat method to filter batch effects after
combining gene expression data from the two training datasets
and remained with data for 13,460 genes. We then conducted
principle component analysis (PCA) on the two data sets to
establish the relationship between the two training datasets.

As shown in Figure 2A, samples from the two independent
data sets formed different clusters before batch effect removal,
but clustered together after batch effect removal (Figure 2B).
This indicated that cross-platform normalization had successfully
removed the batch effect.

NMF Clustering of AS Samples and
GSVA Enrichment Analysis
After batch effect was filtered, the gene expression profiles of
151 AS samples were used to carry out NMF cluster analysis.
To identify the potential AS subgroups, we selected the top
1,000 variance genes for the clustering analysis. The cophenetic
correlation coefficients was used to determine the optimal k
number, with the results showing that k = 2 was the optimal
subgroup number (Figures 3A,B). Results of PCA analysis
showed that there was significant difference between the two
subgroups (Figure 3C). Consequently, we divided the AS samples
into two subgroups, subgroup 1 (N = 93) and subgroup 2
(N = 58). We further used the GSVA enrichment analysis to
compare the pathways enriched in the two groups. As shown in
Figure 4, the pathways associated with subgroup 1 include p53
signaling pathway, apoptosis, T cell receptor signaling pathway,
B cell receptor signaling pathway, NOD_LIKE receptor signaling
pathway, and TOLL_LIKE receptor signaling pathway. On the
other hand, the pathways enriched in subgroup 2 include fatty
acid metabolism, adherens junction, and tyrosine metabolism.

Gene Co-expression Network
Construction and Module Enrichment
Weighted gene co-expression analysis analysis was performed to
construct a co-expression network to identify potential modules
most relevant to the AS subgroups. First, in order to obtain good
quality results, genes with the highest 25% of variance in their
gene expression profiles were used to carry out WGCNA analysis.

FIGURE 7 | Identification of the top two sub networks by using the MCODE algorithm. (A) The first sub network. (B) The second sub network.
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As a result, clustering analysis was carried out on 3,365 genes with
151 AS samples using the average linkage method and Pearson’s
correlation method (Supplementary Figure 1). In the study, the
soft threshold power value of β = 5 soft power was selected to
obtain a scale-free co-expression network (scale-free R2 = 0.85).
From this analysis six modules were used for further analysis
(Figures 5A–C).

In order to investigate the association between modules and
the AS subgroups, the module significance (MS) was employed
as the gene expression level of the corresponding module to
calculate the Pearson correlation coefficient between the module
and the subgroups. As shown in Figure 5D, the turquoise module
had the highest correlation with subgroup 1 (cor = -0.85) and
subgroup 2 (cor = 0.85) and was therefore selected for subsequent
analysis. In addition, to systemically investigate the function and

pathway of each module, we further performed GO and KEGG
pathway enrichment analysis. As shown in Figure 6A, the GO
enrichment terms were different among the modules suggesting
that these modules play different roles in the subgroups. However,
the results of KEGG pathway analysis revealed that similar
pathways were enriched in the blue and turquoise module,
indicating that the two modules were similar (Figure 6B).

Protein–Protein Network Construction
and Key Modules Selecting
After selecting the turquoise module from the WGCNA analysis,
we further investigated the role of the genes in the module.
We then used the genes to build the PPI network based on
STRING database and used the cytoscape software to visualize the

FIGURE 8 | Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for the first (A,B) and second (C,D) sub networks,
respectively.
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network, in which a total of 23,023 edges and 1,835 nodes were
incorporated. The network was processed using the MCODE
module to identify possible key modules and the top two
important modules acquired (Figure 7). Results of GO and
KEGG analysis showed that the genes in the key module 1 and
key module 2 were significantly enriched in the immune-related
pathways and function (Figure 8).

Screening and Verification of Potential
Diagnostic Markers
We used the LASSO and SVM-RFE algorithms to identify
robust genes from the key modules. The algorithm identified
nine genes (Figures 9A,B), while the SVM-RFE algorithm
identified 4 genes (Supplementary Figure 2). Three of the
genes identified by the two algorithms overlapped including
PTGER3, GNAI1, and IGFBP5, suggesting that these were
the robust genes for AS (Figure 9C). The diagnostic efficacy
of PTGER3, GNAI1, and IGFBP5 was determined using a
validation dataset. When PTGER3, GNAI1, and IGFBP5 were
fitted into one variable, the diagnostic efficiency reached a

higher level in the validation set (AUC = 1) (Figure 9D),
indicating that PTGER3, GNAI1, and IGFBP5 had high diagnostic
value for the AS.

Immune Cell Infiltration Analysis
Since results of GO and KEGG enrichment analysis showed
that the genes were enriched in immune related pathways,
we used the CIBERSORTx online tool to determine the level
of immune cell infiltration. Samples were considered to have
immune cells infiltration if the P value < 0.05. The distribution
of immune cells was showed in a barplot (Figure 10A), and
the correlation between immune cells was calculated using
the corrplot R package (Figure 10B). Moreover, we further
explored the association between immune cells and the AS
subgroups. The results of this analysis showed that there
was a significant difference in the infiltration level of naïve
B cells, CD8 T cells, Tregs, resting NK cells, Monocytes,
Macrophages M0, Macrophages M1, and Macrophages M2
between the two subgroups (Figure 10C). In addition, we found
that the three key genes were positively correlated with Tregs

FIGURE 9 | Screening and validation of biomarkers. (A) L1-penalty of Least absolute shrinkage and selection operator (LASSO) regression. The dotted vertical lines
denote the optimal value: 9. (B) LASSO coefficient values of the sub networks genes. (C) The Venn graph shows the interaction between LASSO and SVM-RFE
algorithm. (D) Validation of the diagnostic value in the external dataset by using receiver operating characteristic curve (ROC) analysis.
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and negatively correlated with Macrophages M0 (Figure 11A–
C). Interestingly, the expression levels of the three genes
were significantly high in the normal tissue compared to AS
tissue (Figure 11D).

DISCUSSION

Recently, AS has been associated with high morbidity and
mortality (Ma and Li, 2018). AS is a heterogeneous disease,
and its pathogenesis is complex and poorly understood.
Therefore, there is a compelling need to identify biomarkers
that might be useful for diagnosing AS. Liu et al., using
the GSE20129 dataset, revealed five genes including APH1B,
JAM3, FBLN2, CSAD, and PSTPIP2 play an essential role in
the progression of AS and may be potential biomarkers for
diagnosis of AS (Liu et al., 2016). Huang et al. discovered
three differentially expressed genes (KDELR3, CD55, and
DYNC2H1) can serve as diagnostic and therapeutic targets
in AS macrophages through microarray analysis (Huang
et al., 2019). Wang et al. (2019) constructed a miRNA-TF-
gene network through microarray data analysis in the AS

macrophages. However, these studies only concentrated on
the characterization of potential biomarkers, and the samples
size of the dataset is small, which leads to low accuracy.
A previous review reported that a small sample size could
exert an impact on biomarker identification due to the
heterogeneity of AS, especially in the mRNA level (Chen and
Stewart, 2016). Considering that, we incorporated multiple
data sets to identify the robust subgroups of AS to better
understand the underlying molecular pathogenesis of AS. Using
the NMF algorithm, we successfully divided the AS samples
into two subgroups. Results of PCA analysis showed that
our transcriptome classification was robust. Moreover, GSVA
enrichment analysis showed that subgroup 1 and subgroup
2 were associated with different pathways. Subgroup 1 was
enriched in the immune-related pathways, while subgroup 2
was enriched in the metabolism pathways. Taken together,
the transcriptome classification of AS was closely associated
with specific pathways, which may have important clinical
implications for the treatment of AS.

Weighted gene coexpression network analysis is a systematic
biological method used to identify key gene modules associated
with phenotypic traits (Botía et al., 2017). Compared to

FIGURE 10 | The landscape of the level of infiltration of AS by 22 immune cells. (A) Barplot of the 22 immune cells infiltration level. (B) Correlation analysis of the 22
immune cells. (C) The comparisons of the 22 immune cells infiltration level between subtype C1 and C2.
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thousands of genes focus on differential expression, WGCNA
can exploit thousands of most variable genes or all genes
to explore the relationship between gene module and clinical
traits (Wan et al., 2017; Tang et al., 2019). It can provide a
specific measure for clinical prediction of AS diagnosis. Here,
the association of gene modules and subgroups was investigated
using WGCNA analysis. We identified the turquoise module is
an interest module that correlated with the molecular subgroups.
Further analysis using the LASSO and SVM-RFE algorithms
identified three robust key genes including PTGER3, GNAI1,
and IGFBP5 from the module. Among these genes, PTGER3
is usually involved in TLR4/PTGS2 signaling and has been
identified as an potential biomarker in atherosclerotic plaque
(Ferronato et al., 2018). IGFBP5 (insulin like growth factor

binding protein 5) is epigenetically silenced by H3K27me3 in
advanced atherosclerotic plaques, suggesting that targeting the
H3K27me3/IGFBP5 pathway may provide novel therapeutics
for atherosclerosis (Xu et al., 2018). GNAI1 (G Protein Subunit
Alpha I1) has been identified as a potential biomarker in multiple
tumors, such as ovarian cancer, colorectal cancer, and renal
cell carcinoma, but its role in AS has not yet been reported
(Liang et al., 2016; Zhan et al., 2018). These results indicated
that the three genes play a crucial role in the development of
AS. In addition, the three genes PTGER3, GNAI1, and IGFBP5
showed a high performance in the validation data set, indicating
that they have potential as diagnostic markers in AS. However,
in vitro experiments or in vivo experiments are required to
validate these findings.

FIGURE 11 | Correlation analysis between the three genes PTGER3 (A), GNAI1 (B), IGFBP5 (C), and 22 immune cells infiltration level. (D) The expression level of
three genes between normal and AS tissue.
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Since the subgroups were enriched in immune related
pathways, we further investigated the association between
immune cells and the AS subgroups. We discovered that the
naïve B cells, T CD8 cells, Tregs, resting NK cells, and Monocytes
are highly expressed in subgroup 2 compared to group 1, while
Macrophages M0, Macrophages M1, and Macrophages M2 had
low expression levels in subgroup 2. Previously studies have
reported that macrophages play a central role in the development
of atherosclerosis. In each vascular bed, macrophages contribute
to the maintenance of the local inflammatory response, propagate
plaque development, and promote thrombosis (Moore and Tabas,
2011; Moore et al., 2013). Thus, we speculate that subgroup 1 is
more prone to developing advanced AS compared to subgroup 2,
and further studies should be implemented to validate the result.

Despite the molecular subtypes and key genes associated with
AS that have been identified in this study, several limitations
should be elucidated. First, AS may have distinct pathologies in
gender and age, which exert an impact on our result. Second,
due to the different GPL version platforms, tissue source, and
experimental treatment of these datasets, the batch of effect could
not be completely removed. Third, the sample size for the current
study is relative small and may affect the accuracy of the result.
Finally, there was no experimental validation in this study, and
further validation should be carried out to validate these findings
and speculations.

In summary, we identified two novel subgroups of AS, which
provide novel insight into cellular and molecular characteristics
of AS. Moreover, we identified three key genes including
PTGER3, GNAI1, and IGFBP5 as potential markers for diagnosis
and targeted therapy of AS.
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