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Summary

Industrial biotechnology involves the utilization of
cell factories for the production of fuels and chemi-
cals. Traditionally, the development of highly pro-
ductive microbial strains has relied on random
mutagenesis and screening. The development of pre-
dictive mathematical models provides a new para-
digm for the rational design of cell factories. Instead
of selecting among a set of strains resulting from
random mutagenesis, mathematical models allow the
researchers to predict in silico the outcomes of dif-
ferent genetic manipulations and engineer new
strains by performing gene deletions or additions
leading to a higher productivity of the desired chemi-
cals. In this review we aim to summarize the main
modelling approaches of biological processes and
illustrate the particular applications that they have
found in the field of industrial microbiology.

Introduction

The rapid progress in molecular biology and the devel-
opment of tools for directed genetic modifications, high-
throughput measurements and genome sequencing
have made available important quantities of data that
can be used to validate mathematical models and fit
their parameters as well as the means to test in vivo the
validity of the predictions of the models (Price et al.,
2003). Combining knowledge of various disciplines
(biology, mathematics, physics, biochemistry, molecular
biotechnology and computer science) enhances the pos-
sibility to elucidate the complexity of biological systems
and predict their behaviour.

In the field of industrial biotechnology there is currently
much focus on how systems biology can improve the
efficiency of cell factories and in particularly speed up the
development process (Nielsen and Jewett, 2008), and
hereby ensure that new products can be brought to the
market faster or there can be a faster improvement of
existing bioprocesses. The use of metabolic engineering
for improvement of cell factories is not a novel concept
(Nielsen, 2001; Stephanopoulos, 2002), but recent syner-
gies with tools developed in systems biology enabled the
production of variety of products through biotechnology
with significantly reduced time and resources required for
commercialization (Otero and Nielsen, 2010; Tyo et al.,
2010).

Developing computational tools for data integration
and generating in silico genome-scale metabolic models
(GSMM) enables analysis of the effects of different
media and specific mutations on growth and metabolic
network adjustments. Numerous valuable predictions
have been obtained from GSMM, with the relatively high
success rate of 70–90%, depending of the organism
and the predictions (Price et al., 2003). Escherichia
coli and Saccharomyces cerevisiae are some of the
most exploited organisms in industrial biotechnology.
Escherichia coli has been used for production of many
different recombinant proteins (like human growth
hormone) and the yeast S. cerevisiae is used for
bioethanol production, production of a range of pharma-
ceutical proteins, fine and bulk chemicals, and
nutraceuticals (Table S1).

Biological systems are complex and generally not
entirely understood. Mathematical models provide means
to better understand processes and unravel some of the
complexities. The aim is to construct the model in the
simplest possible way, but still retain the most important
features of the system. A good model will be able to agree
as closely as possible with the real world observations of
the phenomenon we are trying to model and at the same
time be interrogative.

Depending on the process we want to model, the
available data and the goal, biological processes can
be modelled using either kinetic or stoichiometric
methods.
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Dynamic models

Dynamic modelling (Fig. 1) requires knowledge of the
kinetics including the parameters of kinetic expressions.
Kinetics of the different reactions is used to describe
dynamic changes in the state variables, which are typi-
cally the concentrations of key compounds. These
dynamic models are typically represented as difference
equations (discrete dynamical systems) or differential
equations (continuous dynamical systems).

The most common technique for dynamic modelling of
biological systems is the ordinary differential equation
(ODE) approach. The main characteristic of ODEs is that
we can obtain deterministic time series for the variables
under investigation. Linear ODE can be solved analyti-
cally, while non-linear ODEs are much harder, and in
some cases it is impossible to find the solution analyti-
cally. In this case the approximate solution is derived
using numerical algorithms for solving differential
equations.

The rapid development in the field of systems biology
led to enormous expansion of computational tools that
can be used for system analysis. Most of the tools are
freely available for the scientific community and their use
will greatly depend on the user’s preferences and exper-
tise (Klipp et al., 2007).

Dynamic modelling approaches are used in modelling
regulatory processes, like central carbon metabolism
(Savageau, 1969a,b; Savageau et al., 1970; Curto et al.,
1995; Sorribas et al., 1995; Teusink et al., 1998; 2000;
Chassagnole et al., 2002), cell cycle regulation (Novak
and Tyson, 1997; Rizzi et al., 1997; Novak et al., 1998;
2001; Chen et al., 2000; 2004; Barberis et al., 2007) and
different signalling pathways (Klipp et al., 2005; Papin
et al., 2005; Kholodenko, 2006 ). These models help in
understanding complicated dynamic features, such as
glycolytic oscillations, regulatory feedback effects or cell
cycle oscillations.

A dynamic model describing the central carbon metabo-
lism in E. coli (Chassagnole et al., 2002) includes the
phosphotransferase system (PTS), glycolysis, pentose–
phospahte pathway and storage material and represents
the first step towards systematic analysis of metabolism in
E. coli. The main feature of this model is its application in
improvement of microbial production processes. The
underling framework for improvement of production capa-
bilities of desired compounds is built on metabolic control
analysis (MCA). Assuming that in a metabolic network,
the kinetics of the individual enzymes is known, MCA
allows estimating the individual flux control coefficients
and hereby identifying targets for overexpression with the
objective to increase the flux through the pathway.

Flux control coefficients of glucose uptake by the PTS
were calculated from the general model. The highest flux

control coefficient was expectedly observed for the PTS
since glucose uptake is irreversible and in the model it is
independent of any preceding reactions. The results
(Fig. S1) further suggest that there are other enzymes
that control glucose uptake apart from the PTS. Phospho-
fructokinase (PFK) has the second highest value, and
equivalent flux control coefficients are observed for pyru-
vate dehydrogenase (PDH) and glucose-6-phosphate
dehydrogenase (G6PDH). The PTS is feedback inhibited
by glucose-6-phosphate (G6P) and by its co-product
pyruvate, and this explains why G6PDH has a high control
on glucose uptake due to its role in G6P-consuming reac-
tion and PDH is exerting flux control on glucose uptake as
it is a pyruvate-degrading reaction.

Through combining kinetic modelling and MCA Hoefna-
gel and colleagues (2002) demonstrated that it was pos-
sible to identify targets for improving the flux trough
biotechnologically relevant pathways in Lactococcus
lactis. Their approach allowed for simple estimation of flux
control coefficients and a further advantage was that the
effect of genetic manipulations can be tested directly
using the kinetic model. The kinetic model of L. lactis
comprises of a set of ODEs which describes the time
dependence of the metabolite concentrations, while
enzymes were modelled using reversible Michaelis–
Menten equation.

Metabolic control analysis of the pyruvate branches in
L. lactis (Fig. S2) indicated that the highest flux control
coefficients of the acetolactate branch are not within this
branch, as intuitively one would assume, but can be found
in the enzymes outside this branch – lactate dehydroge-
nase (LDH) and NADH oxidase (NOX) (Table S2). Further
analysis indicated that 92% of the pyruvate is converted
via the acetolactate branch when LDH knockout is com-
bined with NOX overexpression.

Another approach to model complex biological system
is to provide detailed representation of smaller modules
and then stitch these together to describe a larger system.
Fine tuning and wiring of the components in small
modules is more effective and controllable than in larger
systems. A challenge with this approach is the linking of
the different modules, but this can be achieved by defining
appropriate input and output signals for each module.
Extending this further gives the possibility to link different
pathways (modelled as single independent modules) into
a larger network.

The high osmolarity glycerol (HOG) pathway has been
intensively studied in the literature (Albertyn et al., 1994;
Van Wuytswinkel et al., 2000; de Nadal et al., 2002;
Hohmann, 2002). The pathway represents the fundamen-
tal process by which cells regulate their water balance. It
consists of two branches – Sho1 and Sln1, both being
transmembrane proteins, being placed upstream of other
players in HOG signalling pathway. The fact that HOG
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Fig. 1. Dynamic modelling approach –
flowchart. The schematic representation of
essential steps in the development of dynamic
models. Formulation of the set of ODEs
based on the given problem and a literature
review. The set of ODEs, with the general
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pathway activity can easily and rapidly be controlled
experimentally by extracellular stimuli (Hohmann et al.,
2007) makes it a suitable candidate for system level
studies via mathematical modelling.

The model developed by Klipp and colleagues (2005)
represents a good example of an integrated approach
towards a quantitative understanding of the osmotic
shock response in yeast, and it also is a good example of
linking regulation to a (small-scale) metabolic model. The
model has four modules: Phosphorelay, MAP kinase
cascade, Gene expression and Metabolism module. Each
module was modelled and analysed individually.

This model comprises the HOG signalling pathway,
gene expression, cellular metabolism of glycerol produc-
tion and control of cellular volume and osmotic pressure.
The entire reaction network consists of 32 ordinary equa-
tions and 70 parameters, which were estimated on the
basis of steady state and time-course experiments. The
model was validated with physiological and genetic per-
turbations.

Several new aspects of yeast osmoregulation have
been revealed using in sillico approach: (i) the contri-
bution of osmotic and turgor pressure changes to the
regulation of biochemical processes, (ii) the role of aqua-
glyceroporin Fps1p in controlling glycerol accumulation
and signalling through the HOG pathway, and (iii) the
function of the induced changes of gene expression as
long-term contributions to the upregulation of glycerol
(Klipp, 2007).

Genome-scale metabolic models (GSMM)

Kinetic models have their limitation in terms of describing
large metabolic networks. Here simple stoichiometric
models are more appropriate (Fig. 2), and with the appear-
ance of genome sequences it became possible to recon-
struct metabolic networks at genome scale. Four years
after the first sequences were revealed, the first metabolic
model was reconstructed (Haemophilus influenzae, Schill-
ing and Palsson, 2000), and today more then 80 recon-
structed models exist (Feist et al., 2009; Milne et al., 2009).

In GSMM the metabolic network is represented as a
stoichiometric matrix containing the stoichiometric coeffi-
cients for all the metabolites in all the cellular reactions.
Relevant data on the stoichiometry and occurrence of
metabolic reactions are often extracted from annotated
genome sequences, pathway databases (KEGG,
ExPASy, ERGO), biochemical textbooks and research
papers. Based on the stoichiometric coefficients for each
metabolite in all reactions it is possible to set up mass
balance equations for each metabolite. By assuming that
the level of the metabolites is in steady state it is possible
to constrain the set of fluxes (or reaction rates) of each of
the cellular reactions, resulting in an underdetermined

system of linear equations. The assumption of steady
state implies that for each internal metabolite in the
network, the sum of the rates of the reactions producing it
is equal to the sum of the rates of the reaction consuming
it. This assumption has proved to be realistic due to the
fact that the relaxation time that the internal metabolites
take to reach a steady state after a perturbation is several
magnitude orders lower than the doubling time of the
cells.

To identify a particular solution to this set of linear
equations requires determination of constraints under
which the system functions. These constraints can be
based on thermodynamics, enzyme activity and ‘-omics’
data (genomics, proteomics, transcriptomics, metabolom-
ics) (Beard et al., 2002; Palsson, 2002; Price et al., 2002),
and the integration of high-throughput biological data gen-
erally increases the predictive capabilities of genome-
scale models.

For exploiting the capabilities of metabolic networks a
number of tools are available. Constraint base modelling
can be performed using the COBRA TOOLBOX (Becker
et al., 2007) and web-based BioOpt application available
in BioMet Toolbox (Cvijovic et al., 2010). Structural
properties of metabolic networks, like elementary flux
modes (EFMs) and null space matrix, can be analysed
in METATOOL (von Kamp and Schuster, 2006) or
FluxAnalyzer (Klamt et al., 2003). FluxAnalyzer is also
able to detect dead-end metabolites in the network,
that is, metabolites present only in one reaction, which
can therefore not be used. BioMet Toolbox also
features tools for transcriptome/proteome/metabolome
data analysis (Reporter Features and Reporter Subnet-
works applications).

Metabolic networks can be analysed using two different
approaches: (i) identification of a unique solution and (ii)
pathway analyses (Patil et al., 2004).

Identification of a unique solution

Metabolic flux analysis (MFA) is the solution of the
system of linear equations obtained from the mass bal-
ances around each internal metabolite. In order to find a
unique solution for the fluxes, as many fluxes as degrees
of freedom should be determined experimentally. The
number of degrees of freedom of the system is equal to
the number of reactions minus the rank of the stoichio-
metric matrix. The number of degrees of freedom is typi-
cally big (several hundreds for genome-scale models) and
exact solutions using MFA can only be found for simplified
metabolic networks.

Flux balance analysis (FBA) is an approach that relies
on imposing an objective function to be maximized (or
minimized) on the system and then find among the many
possible solutions for the system, one that maximizes (or
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Fig. 2. Genome-scale models – flowchart.
This figure illustrates the work-flow from the
reconstruction of genome-scale metabolic
models to their different applications as
predictive tools for metabolic engineering.
More detailed information about each step is
included in the text.
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minimizes) the selected objective function. The objective
function used for microorganisms is normally the specific
growth rate (Edwards et al., 2002), which is consistent
with the evolutionary advantage of fastest-growing
species. FBA problems are solved using linear program-
ming and the obtained solution is in a corner of the fea-
sible region in the solution space. In order to have growth
rate as an objective function, it is crucial to define a
biomass stoichiometric equation which should be
obtained from the biomass composition of the corre-
sponding microorganism. The biomass equation deter-
mines the drainage of the different biomass precursors
per unit of biomass produced and therefore the metabolic
demands for growth. The processes involved in biomass
production, such as protein synthesis or DNA replication,
have also an cost in terms of ATP, which is difficult to
estimate a priori. The right estimation of the energetic
costs for biomass production is extremely relevant for the
predictive power of the metabolic models.

Pathway analysis

The set of constrains will determine all possible functions
of the reconstructed network or all feasible phenotypes.
We refer to this set of possible solutions as a solution
space. The solution space can be characterized by a set
of solutions that span the whole spectrum of steady-state
solutions attainable by a metabolic network. The elements
of this set are EFMs and extreme pathways (EPs). A
recent review on pathway analysis and its applications
has been published by Trinh and colleagues (2009).

Elementary flux modes (EFMs) are minimal sets of
reactions that can operate in steady state. This means
that if any reaction used by an EFM is removed, the
remaining reactions will not be able to operate together in
steady state (Schuster et al., 1999). The EFMs of a
network provide an easy way to understand the effects of
gene deletions due to the fact that the deletion of a par-
ticular reaction simply makes disappear all the EFMs in
which it was involved. This allows the identification of
essential reactions and the evaluation of the degree of
coupling between different fluxes. However, the number
of EFMs grows exponentially with the size of a metabolic
network and makes its calculation impossible for genome-
scale metabolic networks. Despite the mentioned limita-
tions, the pathway analysis of simplified metabolic models
has led to several successful metabolic engineering appli-
cations involving the identification of both deletion and
overexpression targets as well as the introduction of het-
erologous genes.

The first successful practical application of pathway
analysis for a metabolic engineering application was
the optimization of 3-deoxy-D-arabino-heptulosonate-7-
phosphate (DAHP) production in E. coli (Liao et al., 1996).

A recent application was the development of high-ethanol-
producing E. coli strains (Trinh et al., 2008). These
approaches consist essentially in the deletion of reactions
involved in pathways with low yields of the product of
interest and the overexpression of reactions involved in
the pathways with high yields. However, as Liao and
co-workers highlighted in their paper (Liao et al., 1996),
there are also examples of unsuccessful overexpression
strategies deduced from the EFM approach.

Extreme pathways (EPs) are the elements of the
convex basis that characterizes the solution space (Schill-
ing et al., 2000). They are a subset of the EFMs and none
of them can be expressed as a positive linear combination
of the others. Schilling and colleagues (2000) showed
how the projection of the different EPs on a plane defined
by the input fluxes of oxygen and the carbon source
defines several differentiated regions in the phenotypic
phase plane.

Algorithms for in silico strain optimization

Traditionally, the improvement of the industrial strains pro-
ducing valuable compounds was carried out by inducing
random mutations and selecting the strains that showed
improvements in the production yield. This iterative blind
method allowed obtaining high-yield microorganisms;
however, the availability of reconstructed metabolic net-
works allows much more rational and efficient approaches
to the problem.

The first rational manipulations of metabolic pathways
were focused on genes directly connected with the
product-synthesizing pathway (Mingot et al., 1999;
Stafford et al., 2002; Koffas et al., 2003; Padilla et al.,
2004). All these manipulations part from the identification
of a key branch point in a precursor of the desired product.
The flux through the path leading to the target product is
then increased by deleting genes in the competing path-
ways or by overexpressing enzymes involved in the
desired pathway. In some cases the path leading to the
product of interest was not present in the wild-type strain
and was introduced by the heterologous expression of
enzymes from a different organism.

In order to predict the effects of genetic manipulations
on a broader scale, two main methods have been used:
FBA and minimization of the metabolic adjustment
(MOMA). The FBA method is based on the assumption
that the metabolic fluxes in a microorganism are such to
maximize the cell growth yield (Edwards and Palsson,
2000). The MOMA approach (Segre et al., 2002) mini-
mizes the distance between the flux distributions of the
wild-type strain and the deletion mutant. Another algo-
rithm developed with the same purpose as MOMA is the
regulatory On/Off minimization of metabolic flux changes
(ROOM). It aims to minimize the number of fluxes that
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pass zero to a non-zero flux (or the opposite) between the
two metabolic states (Shlomi et al., 2005).

The mentioned methods provided prediction tools for
the effects of gene deletions; however, the combinatorial
number of possible gene deletions to be tested required
the introduction computer algorithms to find the optimal
combinations of deletions necessary to optimize the
desired target.

The first algorithm introduced for microbial strain opti-
mization was OptKnock (Burgard et al., 2003). The func-
tion to be optimized by this algorithm is the production rate
of the target product and the variables are the genes to be
deleted. The solution involves two nested optimizations,
which makes it difficult to solve. In order to overcome this
problem, the dual optimization problem for growth is also
formulated (Fig. 3). In this way the nested optimization
can be transformed into a simple optimization of the pro-
duction rate of the desired chemical with the constraints
corresponding to the primal and dual problems plus the
condition of equality between the two solutions.

The OptKnock algorithm was used to construct lactic
acid-producing strains of E. coli with very positive results
(Fong et al., 2005).

The OptKnock algorithm found three optimal solutions
for the optimization of lactic acid production. The first one
involved the deletion of the adhE and pta genes
(Fig. S3). This solution seems trivial, as those genes are
involved in the production of ethanol and acetate, which
are the two main products secreted under anaerobic
conditions. The second solution involved pta and pfk
deletions. The pfk deletion is a less trivial solution. It
deviates flux through the Entner–Doudoroff pathway and

increases the production of NADH and pyruvate, the two
necessary metabolites for lactic acid production. The
third solution involves the already three mentioned
targets plus the glk gene. The deletion of the glucokinase
couples the phosphorylation of glucose to the transfor-
mation of PEP into pyruvate.

Three new strains were built with the adhE-pta, the
pta-pfk and the adhE-pta-pfk-glk deletions. The designed
deletion strains did not show optimal growth rates and
lactic acid yields in the first generation; however, after a
process of adaptive evolution, the growth rate and the
lactic acid production (which is coupled to the growth rate
in these strains) showed up to threefold increases. This
finding clearly shows that the growth rate is a suitable
objective function for microorganisms.

OptKnock has found a number of industrial applica-
tions, which is reflected in an increasing number of
patents. Some examples are: ‘Methods and organisms for
the growth-coupled production of succinate’ (Burgard and
Van Dien, 2007); ‘Methods and Organisms for Growth-
Coupled Production of 3-Hydroxypropionic Acid’ (Burgard
and Van Dien, 2008a,b); ‘Methods and organisms for the
growth-coupled production of 1,4-butanediol’ (Burgard
et al., 2009).

The OptKnock algorithm, when it is applied to genome-
scale models, is computationally demanding, and nor-
mally only a relatively small set of deletion candidates can
be tested, such as the reactions in the central carbon
metabolism (Burgard et al., 2003) or amino acid metabo-
lism (Pharkya et al., 2003).

Other authors (Alper et al., 2005) have used an iterative
approach that consists in simulating the effects of single

Fig. 3. Formulation of the OptKnock
algorithm. The primal and dual problems for
the growth optimization are formulated and
their solutions are set to be the same. The
use of the dual formulation transforms a
nested optimization into a single optimization
for vchemical. The presence of a gene is
expressed by multiplying the maximal and
minimal rates of its corresponding reaction by
the variable yj with values 1 or 0 depending
on if the gene is present or deleted. The
index e represents the reactions with known
maximal values (normally exchange fluxes).
The rest of the reactions can be constrained
to zero when the corresponding genes are
deleted or take arbitrary maximal and minimal
values when the genes are present. The
coefficients l and g represent, respectively,
the shadow prices for the stoichiometric and
maximal rate constraints. The primal and dual
problems have the same optimal solution and
the shadow prices of the maximal rate
constraints become zero when yj = 1. The
selected knockouts transform the space of
solutions in a way that makes the maximal
growth rate attainable correspond to a high
rate of production for the target chemical.
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deletions, selecting the deletion that results in the highest
increase in the product yield and performing new dele-
tions on the selected mutant. This approach was success-
fully applied to the production of lycopene in E. coli.

The parallelism existing with the process of biological
evolution and their lower computational cost make genetic
algorithms an attractive tool for the design of new strains.
OptGene (Fig. S4) (Patil et al., 2005) is an algorithm that
relates the production rate of the desired compound to the
evolutionary fitness of the microorganism.

The OptGene algorithm is more computationally effi-
cient than the OptKnock algorithm and allows using non-
linear objective functions (such as the amount of product
per unit of time). However OptGene does not guarantee
finding the absolute optimal solution. The optimal conver-
gence rates for OptGene were found for a population of
125 individuals and a mutation probability of 1 per
genome size and generation. The method was used to
optimize the production of vanillin, glycerol and succinate
in S. cerevisiae and it converged to the final solution in
less than 1000 generations.

OptGene has been used to improve the production of
sesquiterpenes in S. cerevisiae (Asadollahi et al., 2009).
It has also inspired the apparition of new genetic algo-
rithms such as CiED (Fowler et al., 2009), which differs in
the mutant selection method and has been used to
increase the production of flavanone in E. coli.

In order to illustrate OptGene’s applications it is inter-
esting to mention its recent utilization for the design of
high-succinic-acid-producing strains of S. cerevisiae (J.M.
Otero, D. Cimini, K.R. Patil, S.G. Poulsen, L. Olsson and
J. Nielsen, submitted). The use of yeasts for the produc-
tion of succinic acid has some advantages in relation to
the traditional producing microorganisms (all of them
prokaryotic). Saccharomices cerevisiae can grow under
pH conditions between 3 and 6, which allows the produc-
tion of succinic acid and not succinate salts, as it is the
case under the neutral pH conditions necessary for bac-
teria. The acid growth medium also protects the reactor
against bacterial contamination.

The OptGene algorithm proposed a combination of
three gene deletions for the overproduction of succinic
acid: sdh3, ser3 and ser33. The sdh3 enzyme catalyses
the transformation of succinate into fumarate in the Krebs
cycle; this is a straightforward solution. The deletions of
ser3 and ser33 act in a more complex way. The deletion of
these genes cuts the pathway from 3-P-Glycerate to
serine. After this deletion, the only way left to the cell to
produce serine (which is necessary for growth) is to syn-
thesize it from glycine (Fig. S5). Glycine is obtained from
glyoxylate which is itself synthesized from isocitrate-
producing succinate as a by-product that must be
secreted. In this way the production of succinato is
coupled to the cell growth.

The mutant sdh3Dser3Dser33D was constructed. The
new strain was cultivated in a series of six flasks with
decreasing concentrations of glycine in order to create a
selective pressure favouring the production of glycine
from isocitrate and therefore releasing succinate. An
increase of almost eightfold in the succinate yield was
observed in the evolved strain. Three more cultures in
absence of glycine were performed in order to select the
strain for faster growth.

The algorithms mentioned so far are used to improve
microbial phenotypes by performing gene deletions. In
many cases, metabolic engineering involves expressing
heterologous genes in host organisms that lack reactions
involved in the production of the desired compound. The
creators of the OptKnock algorithm developed the
OptStrain algorithm (Pharkya et al., 2004), which uses a
database of known biological transformations to find the
minimal set of non-native genes to be expressed in a host
organism in order to obtain the desired product with an
optimal yield.

OptStrain is limited by the reactions contained in the
available database. A more general algorithm named
BNICE (Hatzimanikatis et al., 2005) has been proposed to
generate de novo pathways using generalized enzyme
reactions. This method can involve metabolic intermedi-
ates that are not included in the available reaction data-
bases.

As we have seen, the existing algorithms for strain
optimization rely on stoichiometric considerations and do
not include regulatory information. The obtained outputs
are sets of reactions to be removed or added to a meta-
bolic network in order to modify its topology and couple
the growth rate with the production of the desired com-
pounds. The effects of overexpression of metabolic genes
are still poorly understood and a systematic algorithm to
find overexpression targets with efficiency comparable to
OptKnock or OptGene is still missing.

Integration of thermodynamics in the analysis of
metabolic networks

According to the second law of thermodynamics, a chemi-
cal transformation at constant pressure and temperature
occurs in the direction of negative Gibbs free energy.

The thermodynamic feasibility condition must be satis-
fied by all the reactions in the metabolic network simulta-
neously. This condition allows defining additional
constraints to the mass balances. It has been used to
determine the feasibility of biosynthetic pathways under
physiological conditions (Mavrovouniotis, 1993; Pissarra
and Nielsen, 1997) and is a useful tool for the design of de
novo biosynthetic pathways (Hatzimanikatis et al., 2005).

The analysis of thermodynamic feasibility in metabolic
networks has been denominated Network-embedded
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thermodynamic analysis (NET analysis, Fig. 4) and is
based on the integration of metabolomics data (Kümmel
et al., 2006). NET analysis consists in the application of
an optimization procedure to find the interval of variation
of reaction Gibbs free energy for each metabolic reaction.
The concentrations of unmeasured metabolites are
allowed to vary between 0.001 and 10 mM (Fraenkel,
1992).

Network-embedded thermodynamic analysis can be
used to check the thermodynamic consistency of metabo-
lomic data and the assumed flux directions. It also allows
specifying concentration ranges for unmeasured metabo-
lites and determining whether each reaction operates far
or close to the equilibrium. The reactions operating far
from the equilibrium are more likely to be flux controlling
(Wang et al., 2004).

There are several important limitations for the use of
NET analysis. The metabolomics data are often incom-
plete and lacking enough precision to predict accurately
the in vivo chemical potentials. For example, from seven
metabolomics data sets analysed (Kümmel et al., 2006),
only four were thermodynamically consistent. The effects
of ionic strength and pH have been often overlooked and
in many cases change completely the results of the analy-
sis (Maskow and von Stockar, 2005). The standard chemi-
cal potentials of most of the metabolites in genome-scale
models are unknown and the errors in their estimations
play also a role in decreasing the accuracy of the thermo-
dynamic analysis. An improved group contribution method
for the determination of standard chemical potentials in
complex metabolic networks has been recently published
(Jankowski et al., 2008).

The first effort to estimate the reaction Gibbs free ener-
gies for all the reactions in a genome-scale model (Henry
et al., 2006) led to the iHJ873 model for E. coli. This model
included standard Gibbs free energies for each of its
reactions. It contains fewer reactions than the iJR904
model because those reactions involving metabolites with
unknown chemical potentials were lumped together. The
iHJ873 model was used to identify the less thermody-
namically favourable reactions in the network and analyse
the biological implications of removing them from the
model.

The same authors moved a step forward (Henry et al.,
2007) and included in their analysis the effects of ionic
strength and pH. In the same paper, an improved analysis
framework with respect to NET analysis was proposed.
The new framework was named thermodynamics-based
metabolic flux analysis (TMFA) and differs from NET
analysis in the fact that the reaction rates are not obtained
independently of the thermodynamic analysis. In TMFA,
the thermodynamic directionality constraints are added to
the mass balance constraints during the calculation of the
flux distribution.

The flux distributions obtained using TMFA do not
include loops, which are by definition thermodynamically
infeasible. The infeasibility of loops has been mentioned
in the literature (Beard et al., 2004); however, a reliable
method to remove loops from the flux distributions has not
yet been implemented in the common calculus packages.
TMFA would be the ideal framework.

Other important finding of Henry and co-workers was
the fact that the reactions that operate far from the equi-
librium are likely to be situated at the beginning of linear
pathways or in branching points. This is consistent with
their expected role as flux-controlling steps.

The range of concentration variability allowed for the
metabolites was between 20 and 0.001 mM. Only one
essential reaction appeared to be infeasible under the
used concentration rank, it was the dihydroorotase. The
reaction became feasible by allowing the estimated
reference Gibbs free energy to vary in an interval of
two standard deviations (obtained from the group
contribution method) or increasing the concentration
rank of its metabolites by 20%. The thermodynamic
bottleneck nature of dihydroorotase is consistent with
the fact that in mammals, this enzyme belongs to a mul-
tienzyme complex, which could be a way to use sub-
strate channelling to overcome unfavourable Gibbs free
energies.

The main weakness of the existing thermodynamic
analysis approaches is the fact that they assume a
concentration rank for the metabolites a priori. Once the
reaction directions have been determined using TMFA, a
new concentration rank can be defined for each metabo-
lite; however, this rank is still very broad (Henry et al.,

Fig. 4. Schema of NET analysis. Each reaction in the network has
to be thermodynamically feasible. This limits the interval of variation
of the metabolite concentrations.
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2007) and is not really a useful predictor of the cellular
metabolic pools.

Conclusions and perspectives

Mathematical models have shown to be promising tools
for the design of new highly productive microbial strains.
These models provide a predictive framework that allows
testing in silico the outcomes of genetic manipulations. In
this way some manipulations can be discarded a priori
and others can be selected for further validation. This
allows saving both time and resources in the strain devel-
opment process.

Mechanistic models based on differential equations
have been applied to study relatively small systems such
as metabolic or signalling pathways but their scale-up at
the genome-scale level has proved a complex task that
would require collecting kinetic information from all the
biochemical processes in the cell. Genome-scale sto-
ichiometric metabolic models have together with various
simulation algorithms shown to be very efficient for iden-
tification of complex metabolic engineering strategies. A
major advantage of these models is that they do not rely
on any information about the kinetics of the individual
reactions within the metabolic network.

In this review some interesting examples of the appli-
cations of mathematical modelling to the design of effi-
cient cell factories have been discussed. Biological
systems are still too complex to be analysed in the deter-
ministic way typically applied in other branches of
science, but systems biology is providing an increasing
number of success stories in the field of industrial biotech-
nology. These examples are a very encouraging trend that
could be the beginning of a shift from the traditionally
descriptive approach of biology to a predictive one.
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Additional Supporting Information may be found in the online
version of this article:

Fig. S1. Flux control coefficients of the reactions in the
system on the glucose uptake by phosphotransferase
system.
Fig. S2. Schematic representation of pyruvate branch in L.
lactis.
Fig. S3. The OptKnock algorithm found four deletions to
improve the lactic acid production in E. coli.
Fig. S4. Flow chart of an evolutionary algorithm. OptGene
defines a population with a fixed number of individuals. Each
individual is characterized by a ‘chromosome’, which is a list
of genes labelled with ones if they are present or zeros if they
are absent. The algorithm can be initialized by assigning
present status to all genes or by assigning present or absent
status randomly. Each individual in the population is assigned
a fitness score that determines whether it will be propagated
to the next generation. The fitness score is calculated using
FBA, MOMA or other optimization criteria. The individuals to
be propagated to the next generation are selected with a
probability determined from the fitness score. The ‘chromo-
somes’ of the selected individuals are crossed over to gen-
erate the next population and the next iteration starts. The
iterations are repeated until an individual with the desired
phenotype appears.
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Fig. S5. Deletions coupling succinate production to growth.
After deleting the genes ser3 and ser33, the cell is forced to
synthesize the serine necessary for growth from glyoxylate.
Glyoxylate itself is obtained from isocitrate, generating suc-
cinate as a by-product. The deletion of sdh3 avoids the deg-
radation of succinate, which has to be secreted from the cell.
The first-generation mutant grows very slowly and needs
external serine supply, but after evolution in a medium with
decreasing serine concentration the cells become adapted to
produce serine via glyoxilate-secreting succinate as a
by-product.

Table S1. Overview of available genome-scale metabolic
models of some of the industrially most exploited organisms.
Table S2. Flux control coefficients predicted by the model
through acetolactate synthesis (ALS) in Lactococcus lactis.
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