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a b s t r a c t

At the beginning of August 2020, the Rio Grande Valley (RGV) of Texas experienced a rapid
increase of coronavirus disease 2019 (abbreviated as COVID-19) cases and deaths. This
study aims to determine the optimal levels of effective social distancing and testing to slow
the virus spread at the outset of the pandemic. We use an age-stratified eight compart-
ment epidemiological model to depict COVID-19 transmission in the community and
within households. With a simulated 120-day outbreak period data we obtain a post 180-
days period optimal control strategy solution. Our results show that easing social
distancing between adults by the end of the 180-day period requires very strict testing a
month later and then daily testing rates of 5% followed by isolation of positive cases.
Relaxing social distancing rates in adults from 50% to 25% requires both children and se-
niors to maintain social distancing rates of 50% for nearly the entire period while main-
taining maximum testing rates of children and seniors for 150 of the 180 days considered
in this model. Children have higher contact rates which leads to transmission based on our
model, emphasizing the need for caution when considering school reopenings.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications
Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativeco

mmons.org/licenses/by-nc-nd/4.0/).
1. Introduction

An outbreak of coronavirus disease 2019 (COVID-19) caused by a novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) was documented in Wuhan, Hubei Province, China in December 2019 (World Health Organization, 2020). By
March 11, 2020, COVID-19 had been declared a pandemic by the World Health Organization (WHO) (World Health
Organization, 2020a) and is currently affecting almost every territory and country in the world (World Health
Organization, 2020b) resulting in more than 120 million COVID-19 confirmed cases and 2.7 million deaths (World Health
Organization, 2020b) as of March 15, 2021. COVID-19 activity in the United States (U.S.) has been heterogeneous with
broad regional variation and more than 29.5 million cases and over 535,000 deaths as of March 15, 2021 (Dong, Du, &
Statistical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX,
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Gardner, 2020). The duration and severity of each pandemic interval can vary depending on the characteristics of the
outbreak and the public health response (Centers for Disease Control and Prevention, 2021). Early in the COVID-19 pandemic
across the world an exponential growth trajectory was reported (Sanche et al., 2020; Yuan, Li, Lv,& Lu, 2020). In that case, the
rate of the spread of the infection was proportional to the number of people infected.

COVID-19 transmits predominantly through respiratory droplets produced when an infected person coughs or sneezes
and possibly through very small, aerosolized particles and by contaminated surface contact (Centers for Disease Control and
Prevention, 2021a). The Centers for Disease Control and Prevention (CDC) provided guiding principles regarding the
Implementation of Mitigation Strategies for Communities with local COVID-19 transmissions, including limiting community
movement and school and work closures in the setting of substantial or widespread community transmission; these guiding
principles are frequently updated based on the status of the community (Centers for Disease Control and Prevention, 2021a).
COVID-19 vaccine distribution began in the U.S. on December 14, 2020 and as of March 15, 2021 only 21.4% of the total U.S.
population had been vaccinated (NPR, 2021). Strategies, efficiency, and equity of the distribution vary from state to state (NPR,
2021). The CDC and public health experts continue to recommend the public to practice social distancing, hand washing,
cough etiquette, and wearing a mask covering themouth and nose as more is understood about how COVID-19 vaccines work
in real-world conditions (Centers for Disease Control and Prevention, 2021; Centers for Disease Control and Prevention,
2021a).

Studies have shown that school closures, workplace dismissal, reduced community contact, stay-at-home orders, and
isolation of symptomatic individuals will delay and reduce the peak attack rate; thus diminishing pressure on health services,
and reducing mortality of respiratory infections (Bolton et al., 2012; Chowell et al., 2011; Herrera-Valdez, Cruz-Aponte, &
Castillo-Chavez, 2011; Kelso, Milne, & Kelly, 2009; Koo et al., 2020; Nasrullah et al., 2012; Shim, 2013). A mathematical
modeling study conducted in Singapore confirms that implementing the combined intervention of isolating infected in-
dividuals and quarantining their family members, workplace distancing, and school closures could substantially reduce the
number of COVID-19 infections (Koo et al., 2020).

Apart from the coordinated and consistent stay-at-home orders, rapid increase of SARS-CoV-2 testing is also one of the
tools implemented to respond to the COVID-19 pandemic (Guest, Del Rio, & Sanchez, 2020). Broader and faster turnaround
testing can improve our understanding of the outbreak and informmodeling and analysis decision making. In Iceland, testing
of individuals suspected of having COVID-19 and those who are asymptomatic showed that of those infected, approximately
50% were asymptomatic according to early reports (The Week, 2020). Recent studies indicate that pre-symptomatic and
asymptomatic transmission likely play a significant role in the spread of COVID-19 (Pan et al., 2020; Tong et al., 2020; World
Health Organization, 2020b) and estimate the prevalence of asymptomatic SARS-CoV-2 in the range of 40%e45% (Oran &
Topol, 2020). By using a broad testing strategy, Germany was able to trace and rapidly identify cases of COVID-19 resulting
in early isolation of infected individuals, preparedness of the hospital system, and low fatality rates (The Conversation, 2020).

The Rio Grande Valley (RGV) includes four Texas counties located along the U.S.-Mexico border: Starr County, Hidalgo
County, Willacy County, and Cameron County. The first case in RGV was reported in Cameron County on March 19, 2020
followed by Hidalgo on March 21 and Willacy and Starr County on March 26 (KVEO-TV, 2020). Most of the initial cases were
travel related (KVEO-TV, 2020). Strict rules, such as travel restrictions and shelter in place orders were implemented across
the RGV in an effort to stop the spread of the disease (FOX News San Antonio, 2020). As the first phase of reopening Texas
started on May 1, 2020, the number of confirmed COVID-19 cases in the RGV increased from 768 to 55,740 at the beginning of
August 2020, and 100,617 cases on March 15, 2021; and the number of reported deaths increased from 25 to 2373 at the
beginning of August 2020, to 4159 on March 15, 2021 (Texas Health and Human Services. Texas Department of State Health
Services, 2021).

According to the U.S. Census Bureau, the estimated RGV populationwas 1,305,782withmore than 90% of the population as
Hispanic or Latino on July 1, 2019 (The United States Census Bureau, 2020). Several studies have characterized the Mexican
American population living in this region as having high poverty rates, low educational attainment, low health literacy, lack of
health care coverage, extremely high rates of obesity, type 2 diabetes, metabolic complications, cardiovascular diseases and
other diseases (Laing et al., 2015; Vatcheva, Fisher-Hoch, Reininger, & McCormick, 2020).

Based on currently available information and clinical expertise on COVID-19, the CDCwarns that older adults and people of
any age who have serious underlying medical conditions, such as chronic lung disease or moderate to severe asthma, dia-
betes, severe obesity, liver disease, serious heart conditions, and chronic kidney disease might be at higher risk for severe
illness resulting from COVID-19 (Centers for Disease Control and Prevention, 2021b). Therefore, optimal COVID-19 prevention
strategies are crucial everywhere, but especially for the RGV population.

Various deterministic compartmental (SEIR) models have been proposed to describe the COVID-19 transmission dynamic
and to examine the effectiveness of current strategies to face the COVID-19 outbreak (Kim, Kim, Peck, & Jung, 2020; Pasco
et al., 2020; Wan et al., 2020; Weissman et al., 2020). These models include non-pharmaceutical interventions (NPI) to
control the coronavirus disease by slowing its spread and are used to predict hospital capacity needs. Some of those
mathematical models did not incorporate the rapidly evolving understanding of COVID-19 underreporting and the likely
significant role of pre-symptomatic and asymptomatic transmissions of COVID-19.

In this study we use an optimal control approach in a deterministic epidemiological model to depict the COVID-19
outbreak in the RGV. The model is comprised of a system of ordinary differential equations to model the transmission of
the virus between three age groups in the community and within households and the transitions of infected individuals
between the different compartments. Optimal control is a powerful optimization technique to determine the appropriate
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levels of effective interventions required to slow viral transmission, including social distancing and the extent of testing
needed. These optimal strategies could assist in determining the feasibility of return to work and school reopenings.
2. Methods

2.1. Deterministic model description

We use a deterministic epidemiological model to depict COVID-19 transmission in the community and within households
(Fig. 1). The model is comprised from the following eight compartments: susceptible (S); exposed (E); infected but asymp-
tomatic (IA); mildly infected and symptomatic (IM); severely infected, symptomatic, and hospitalized (IH); confirmed
infected and isolated at home (Q ); recovered/removed (R); and dead (D). We assume that all severely infected individuals get
hospitalized and that exposed individuals do not transmit the disease until they move out of compartment E. We classify
individuals by one of the three age groups: children (0e18 years), denoted by subscript c; adults (19e64 years) denoted by
subscript a; and seniors (65 years or older) denoted by subscript s. The subpopulation sizes are denoted by Nc, Na, and Ns,
respectively, and they add up to the total population size N. We assume an initial number of individuals in the compartments
S;E; IA; IM ; and IH which are provided in Table 1.

The age-stratified mathematical model to depict the dynamics of disease transmission is provided with the following
system of ordinary differential equations that incorporate the time-dependent age-stratified control functions rjðtÞ (in the
definition of pjÞand djðtÞ:

dSj
dt

¼ �pj Sj (1)

dEj

dt
¼ pj Sj � a Ej (2)

dIAj
dt

¼ að1� pÞEj � mAI
A
j � djI

A
j (3)

dIMj
dt

¼ apEj � ðmM þ g þ qÞIMj (4)

dIHj
dt

¼ gIMj þ nQQ j � �
mH þ sj

�
IHj (5)
Fig. 1. Deterministic epidemiological model to depict COVID-19 transmission between compartments in the Rio Grande Valley, Texas. The compartments are:
susceptible (S); exposed (E); infected but asymptomatic (IA); mildly infected and symptomatic (IM ); severely infected, symptomatic, and hospitalized (IH );
detected infections and isolated at home (Q ); recovered/removed (R); and dead (D).
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Table 1
Definition of parameters and baseline values used in the mathematical model.

Parameters
or variables

Description Base value Source/Reference

Demographic
Nc Children population (0e18 y) size 437,722 The United States Census Bureau (2020)
Na Adult population (19e64 y) size 776,293 The United States Census Bureau (2020)
Ns Senior population (65þ y) size 163,848 The United States Census Bureau (2020)

Disease-specific
bc Children infection probability upon contact with an infectious

individual
bc ¼ 0:2287 Based on calibration

ba Adult infection probability upon contact with an infectious
individual

ba ¼ 0:0396 Based on calibration

bs Senior infection probability upon contact with an infectious
individual

bs ¼ 0:4994 Based on calibration

a Rate of removal from exposed compartment (per day)
(reciprocal of incubation period)

a ¼ 1
5:1

Lauer et al., 2020;
Linton et al. (2020)

z Scale parameter for infected asymptomatic (IA) z ¼ 1 Assumption based on worst case
asymptomatic infectiousness

p Probability of showing symptoms among those exiting the
exposed compartment

p ¼ 74% The New York Times (2020)

nM Rate of progression from mild to severe infection nM ¼ 1
14

World Health Organization (2020c)
mA Recovery rate of asymptomatic mA ¼ 1

7
Assumption

mM Recovery rate of mildly infected mM ¼ 1
12

Assumption
mH Recovery rate for severely infected and hospitalized mH ¼ 1

31:5
G. Huang et al., 2020; World Health

Organization, 2020c
g The rate of hospitalization of mildly infected g ¼ 0:0071 Based on calibration
mQ Recovery rate of quarantined mQ ¼ ðm�1

M � q�1Þ�1
e

nQ Hospitalization rate of originally quarantined individuals nQ ¼ ðg�1 � q�1Þ�1 e

sj Disease-specific death rate for children (c), adults (a), and
seniors (s)
for j2fc;a; sg

(j0.0%, 0.6%, 4.6%) CDC COVID-19 Response Team (2020)

Social and Household
C Social contact matrix

(rates per day)

0
@6:8335 3:6995 0:1356

1:1996 7:1355 0:0928
0:1642 0:8274 0:1483

1
A Prem, Cook, and Jit (2017)

CH Household contact matrix
(rates per day)

1
5

0
@2:4119 2:3297 0:0550

1:9084 1:7166 0:0623
1:5759 1:4757 0:2529

1
A Prem et al. (2017)

Interventions
rj Initial proportion of individuals practicing social distancing

prior to optimal control analysis
for j2fc;a; sg

rc;a;s ¼ ð0:36;0:36;0:36Þ Based on calibration

½t0;i ; t1;i� Beginning and end times of social distancing for the three age
groups for i ¼{c, a, s}

[0, 120] days Assumption

q Probability of quarantine 60% CDC, 2021b
dj Initial testing rates prior to optimal control analysis

for j2fc;a; sg
dc;a;s ¼ ð0:02;0:02;0:02Þ
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dQj

dt
¼ qIMj þ djI

A
j � �

mQ þ nQ
�
Q j (6)

dRj

dt
¼ mAI

A
j þ mMIMj þ mH IHj þ mQQ j (7)

dDj

dt
¼ sj I

H
j (8)

where j2fc; a; sg is the subscript for age.
Note that we are making the simplifying assumption that Nj is constant given that our model only considers a relatively

short span of time of 180 days and thus, we define Nj as follows

NjðtÞ ¼ SjðtÞ þ EjðtÞ þ IAj ðtÞ þ IMj ðtÞ þ IHj ðtÞ þ Q jðtÞ þ RjðTÞ
for j2fc; a; sg
The social contact matrix C defines the contact rates between the three age groups
732
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C¼
0
@Ccc Cca Ccs

Cac Caa Cas
Csc Csa Css

1
A; (10)

and the household contact matrix CH defines the contact rates between the three age groups
CH ¼

0
BBB@

CH
cc CH

ca CH
cs

CH
ac CH

aa CH
as

CH
sc CH

sa CH
ss

1
CCCA (11)
Their values are provided in Table 1.
Furthermore, notice that in equations (1) and (2) the social distancing control rj appears quadratically. This is due to the

fact that the social distancing control is prescribed to the susceptible, asymptomatic and mildly infected groups alike. The
interactions amongst these groups in the same age bracket are responsible for the quadratic terms.

While the inclusion of these quadratic control terms adds computational complexity to the optimal control model and
algorithm, it is necessary to more accurately model an epidemic that is driven largely by asymptomatic and mildly infected
carriers of the virus. Other papers model this dynamic linearly (Perkins & Espa~na, 2020; Tsay, Lejarza, Stadtherr, & Baldea,
2020).

For simplicity, we write equations (1) e (8) as

_x ¼ fðt; x;uÞ

where x ¼ ½ Sj; Ej; I
A
j ; I

M
j ; IHj ; Qj; Rj; Dj; j2fc;a; sg�T and u ¼ ½ rj; dj; j2fc;a; sg�T :

2.2. Objective functional

The optimal control problem has the state equations (1) e (8) with objective functional

FðuÞ ¼
ZT
0

X
j2fa; c; sg

n
Cr
j r

2
j ðtÞ

h
SjðtÞþEjðtÞþ IAj ðtÞ

i
þCTd

2
j ðtÞNjðtÞþCHI

H
j ðtÞ

o
dt (12)

where rjðtÞ2½0; 1� and djðtÞ2½0;0:1� are the six control variables. The control variable rjðtÞ describes the proportion of social

distancing among the three different age groups in compartments S;E; and IA. The control variable djðtÞ describes the
proportion of individuals per day to test among the three different age groups to determine which individuals to isolate. The
parameters Cr

j are the cost per day associated with the social distancing of group j; CT is the cost per test (which can be
interpreted as per person); and CH is the cost associated with hospitalization per person per day. The time interval ½0; T � is
given in terms of dayswhere T is the final time described as 180 days. The cost parameters do not represent cost in dollars, but
penalty terms, or weights meant tomodel the costs to the population assessed in this paper (Lenhart, S., Workman, J.T., 2007).
The values of the cost parameters used in our study are given below:

Cr
c ¼ 10; Cr

a ¼ 50; Cr
s ¼ 10; CT ¼ 100; CH ¼ 13;000:

r
The Cj values represent the cost of social distancing which is weighed five times as much for adults as children and se-
niors. Since we are using a well-mixed differential equation model, these values are meant to model average values, while
some adults may pay little cost to work from home and with this to maintain social distancing, others incur substantial costs
from social distancing. The cost of testing, which would include the cost of the test itself as well as the logistics for
distributing, administering and carrying out tests, was set as two days cost of an adult social distancing. The most substantial
cost is the cost of hospitalization. The daily cost of a hospitalization can vary dramatically for different patients based onwhat
procedures and interventions are required and level of health insurance. This cost can also be considered as a knob used to
dampen the infection incidence rates when optimally controlled.

Hence the goal is to minimize the cost due to social distancing, hospitalization, and testing. In summary, the optimal
control problem becomes

min
u

FðuÞ subject to _x ¼ fðt; x;uÞ.

2.3. Optimality conditions

In this section, we apply Pontryagin’s maximum principle to describe the first-order necessary conditions for the optimal
control problem with objective functional (12)

min
u

FðuÞ subject to _x ¼ fðt; x;uÞ.
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To apply Pontryagin’s maximum principle, we first define the Hamiltonian of the optimal control problem as

Hðx; l; uÞ ¼
X

j2fa; c; sg

n
Cr
j r

2
j ðtÞ

h
SjðtÞþEjðtÞþ IAj ðtÞ

i
þCTd

2
j ðtÞNjðtÞþCHI

H
j ðtÞ

o
þ lT fðt; x;uÞ (13)
where l≡lðtÞ ¼ ½lSj ðtÞ; lEj
ðtÞ; lIAj ðtÞ; lIMj ðtÞ; lIHj ðtÞ; lQ jðtÞ�

T for j2fc;a; sg is the vector of adjoint variables. Letting H ¼
Hðx; l;uÞ and expanding the right-most term in the Hamiltonian, we describe the Hamiltonian explicitly as

H ¼
X
j

n
Cr
j r

2
j ðtÞ

h
SjðtÞ þ EjðtÞ þ IAj ðtÞ

i
þ CTd

2
j ðtÞNjðtÞ þ CHI

H
j

o

þ
X
j

lSj
ðtÞ � � pjSj

�

þ
X
j

lEj
ðtÞ �pjSj � aEj

�

þ
X
j

lI
A
j ðtÞ

n
að1� pÞEj � mAI

A
j � djI

A
j

o

þ
X
j

lI
M
j ðtÞ

n
apEj � ðmM þ gþ qÞIMj

o

þ
X
j

lI
H
j ðtÞ

n
gIMj þ nQQ j �

�
mH þ sj

�
IHj

o

þ
X
j

lQj

n
qIMj þ djI

A
j � �

mQ þ nQ
�
Qj

o
:

(14)
The necessary conditions that the optimal control u*ðtÞ ¼ ½r*j ðtÞ; d
*
j ðtÞ� for j2fc;a; sg and state variable x* must satisfy are

the following:

l0ðtÞ¼ � vH
vx

Adjoint equation (15)

l
�
t
�

¼ 0 Transversality condition (16)
f

v Hðu*Þ

vu

¼ 0 Optimality condition (17)

_x ¼ fðt; x*;u*Þ ODE system:
The adjoint equations for j2fc;a; sg are given in the Appendix. Expanding on the transversality condition abovewe obtain

lSj

�
tf
�

¼ 0 lI
M
j

�
tf
�
¼ 0

l
�
t
�

¼ 0 l H
�
t
�

¼ 0 for j2fc; a; sg
Ej f I j f

l A
�
t
�

¼ 0 l
�
t
�

¼ 0:
I j f Q j f
Finally, the optimality condition vHðu*Þ
vu ¼ 0 provides the characterization for the optimal control u* ¼ ½ r*kðtÞ; d

*
kðtÞ� for

k2fc;a; sg and 0 � pkðtÞ � 1 and 0 � dkðtÞ � 0:1 which are given by

r*kðtÞ ¼ min
�
1;max

�
0;

AkðtÞ
BkðtÞ

		
where Gi ¼ z IAi þ IMi
Ni

for i2fc;a; sg and
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Fig. 2. Total infection incidence rates, total asymptomatic cases, total mild cases, and total hospitalization rates for 120-day period from February 27, 2020 to June
26, 2020 in the Rio Grande Valley, Texas.

K.P. Vatcheva, J. Sifuentes, T. Oraby et al. Infectious Disease Modelling 6 (2021) 729e742
AkðtÞ ¼
X
jsk

Sj
�
lEj

� lSj

��
bj
�
1� rj

�
CjkGk

�
þ

Sk
�
lEk

� lSk
�"

2 bkCkkGk þ bk
X
isk

Ckið1� riÞGi

#
;

BkðtÞ ¼ 2 Cr
k

h
Sk þ Ek þ IAk

i
þ SkðlEk � lSkÞ2 bkCkkGk

( ( ))

and d*kðtÞ ¼ min 0:1;max 0; IAk ½lI Ak�lQ k �

2CTNk

2.4. Model parameterization

Definition of parameters and baseline values used in the model are shown in Table 1. Data are limited due to unknown
times of transitions and the imperfect information on asymptomatic cases. Only the numbers of diagnosed individuals are
observed.

3. Results

The controls we investigated were social distancing rates rjðtÞ and testing rates per day djðtÞ in each of the three age
groups: children, adults, and seniors humans. We followed a two-stage approach to obtain a numerical solution of the
aforementioned controls. First, we simulated a 120-day outbreak period, with an initial condition of one exposed adult
(Eað0Þ ¼ 1) and all others in the susceptible category, in order to calibrate the parameters bj;g as well as the control
Fig. 3. (A) A plot of the value of the objective function (12) evaluated for each control at iteration k; demonstrating monotonic convergence. (B) A plot of the
relative residual where we set u* equal to the control at the iteration that satisfies our convergence criteria as optimal.
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parameters rjðtÞ and djðtÞ to create conditions similar to the outbreak conditions reported at the end of June 2020. While our
study aimed to determine optimal control strategies, certainly there were some social distancing and testing performed
during the 120-day period from February 27, 2020 to June 26, 2020. Therefore, with the simulation and calibration stage, we
sought to emulate the parameters and controls during the initial 120-day period, even if not necessarily coordinated to be
optimal or consistent. In the simulation we assumed that the reported rates undercount actual cases by a factor of 4 (Fig. 2).
For the 120-day period, the social distancing and testing rates were kept constant in time and across age groups. In this
simulation the parameters were calibrated to

bc;a;s ¼ð0:2287; 0:0396; 0:4994Þ; g ¼ 0:1
14

rc;a;s ¼ ð0:36; 0:36;0:36Þ; dc;a;s ¼ ð0:02;0:02;0:02Þ
In the second stage we obtained the optimal control strategy solution for the 180-day period June 26, 2020eDecember 26,
2020, using the ending condition from the 120-day stage as our initial conditions in this stage. The optimal control strategy
was computed numerically using the forward-backward scheme prescribed by Lenhart and Workman (2007) (Lenhart &
Workman, 2007). The goal was to minimize the cost function (12) with respect to the six control functions rjðtÞ and djðtÞ
for j2fc;a; sg. The forward component began with the ending state of the 120-day simulation and an initial guess for the
controls, which were chosen to be the control values taken in the 120-day precursor period. The solution to the outbreak
model equations (1)e(8) allowed us to solve the reverse time adjoint equation (15) with transversality final conditions (16). At
every iteration of the optimal control algorithm, the control iterate is updated by taking a convex combination of the previous
control iterate and unewðtÞ; which is computed by solving the optimality condition (17) using the solutions to the adjoint
equation. That is unew satisfies vH

vu ðunewÞ ¼ 0. Lenhart and Workman (2007) recommend taking a convex combination of the
previous and new controls uq ¼ ð1�qÞuprev þ q unew using q ¼ 1

2: However, we found that, for many parameter regimes,
this prevented convergence and the algorithm stagnated. To overcome this, we implemented a “greedy” convex combination
that evaluates the cost function Fðuq; xqÞ , where xq is the solution to the outbreak model using the controls uq over 100
evenly spaced values of q from 0 to 1. Then the new control was selected tominimize the 100 values of the cost function. Thus,
the convex combination parameter changed with each forward-backward sweep in a greedy fashion. We found that this
approach produced a lesser cost value than when a constant q approach converged. Furthermore, by construction, the
forward-backward algorithm was monotonically decreasing in the value of the cost function, see Fig. 3. The algorithm was
robust in that the same optimal controls were found at convergence when we used the calibrated values of rj and dj as our
starting optimal control guesses: u0 ¼ ðrj; djÞ or whenwe used theminimum ormaximumvalues allowed for the controls as
u0.
Fig. 4. Optimal control solution for 180-day period for social distancing less than or equal to 100% for the Rio Grande Valley, Texas. (A) Optimal social distancing
rates by age group, where rjðtÞ � 1 . (B) Optimal testing rates by age group, where djðtÞ � 0:1 . (C) Total infection incidences with control (solid black line) and
without control.
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Fig. 5. Optimal control solution for 180-day period for social distancing rates less than or equal to 50% for the Rio Grande Valley, Texas. (A) Optimal social
distancing rates by age group, where rjðtÞ � 0:5. (B) Optimal testing rates by age group, where djðtÞ � 0:1: (C) Total infection incidences with control (solid line)
and without control.
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In setting unew to the solution of the optimality condition, unew is a linear combination of the solutions to the reverse time
adjoint equation, which were set to zero at the final time in satisfying the transversality condition, and the initial control
values. This causes the values of the controls to become zero as t approached the end of the control period. While our ex-
periments showed that choosing the controls optimally can result in infection incidence near zero by the end of the control
period, easing social distancing and testing protocols near the end can cause a brief resurgence in the infection. This brief
uptick of infections near the end does little to increase the cost function, which is a definite integral over the control period.
Indeed, virus resurgences when social distancing mandates have been relaxed have been observed in several cases, including
Texas and specifically the RGV (The New York Times, 2020). Therefore, we set our numerical control period to be 20% longer
than 180 days, but only took the leading 180 days as our optimal control.

Fig. 4 (A) and (B) depict the optimal social distancing and testing rates, respectively, by age group. That is, these rates
minimize the objective function (12), which measures a daily cost or penalty value to social distancing, testing and hospi-
talization. As the cost to hospitalization is significantly larger than the other costs, we see in Fig. 4(C) that these rates greatly
reduce incidences of infection compared to the initial rates. The maximum social distancing rates were set to be 100% and the
maximum testing rates per day of the Rio Grande Valley population were set at 10%. The cost of social distancing for both
children and seniors were set to be the same, while the cost of social distancing for adults was five times higher. Based on our
results, it is feasible to not require extreme social distancing rates for adults, beginning at approximately 25% and decreasing
slowly to zero when approaching the end of the 180-day period. However, this requires a very strict testing regime during the
first month of the control period and then tapering to a near-constant daily testing rate of 5% for all adults. Fig. 4 shows that
children have the highest incidence of infectionwithout control. Children’s optimal social distancingwasmaximal for the first
month before a slow taper, but still remained above 50% for the entire control period. The need of a higher than 50% social
distancing for children to optimally control incidences of infection was due to the very low value placed on children’s social
distancing in comparison to adults, as well as due to children’s higher contact rates (10)e(11).

To better understand how upper bounds on the control parameters affect the results of our numerical algorithm, we
derived optimal social distancing rates when constrained to a maximum rate of 50% (Fig. 5). While the optimal controls
prescribed under this regime halt the upward trajectory of infections, the incidence of cases remain nearly constant for about
a month before decreasing down. Social distancing rates of adults must begin near the maximum of 50% for approximately a
month before decreasing slowly to near zero, as opposed to beginning near 25% and tapering down when social distancing
was allowed to reach 100%.

Fig. 6 illustrates an optimal control regime when the daily testing rate was limited to 5%. In this model the optimal social
distancing and the infection incidences are similar to those in the model with maximal testing rate of 10%. However, testing
rates are near the maximal 5% for both children and seniors, as well as adults for the first half of the control period (Fig. 6).
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Fig. 6. Optimal control solution for 180-day period at daily testing rate limited to 5% or less for the Rio Grande Valley, Texas. (A) Optimal social distancing rates by
age group, where rjðtÞ � 1. (B) Optimal testing rates by age group, where djðtÞ � 0:05: (C) Total infection incidences with control (solid line) and without control.
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4. Discussion

In this study we found optimal strategies of social distancing and COVID-19 testing to effectively slow the spread of the
disease in the RGV. We used optimal control theory in an eight-compartment epidemiological model that depicts COVID-19
transmission. The mathematical framework depicting the dynamics of disease transmission incorporated the time-
dependent age-stratified social distancing of susceptible, exposed, and infected asymptomatic cases and testing rates to
determinewhich individuals to isolate. The optimal controls were obtained for 180 days for the period June 26 - December 26,
2020 based on simulated data for a 120-day period from February 27, 2020 to June 26, 2020.

In our numerical experiments, we considered different maximal social distancing (100%, 50%) and testing rates (5%, 10%).
Based on our results, control of the spread of the virus involves lessening social distancing between adults by the end of the
180-day period, very strict testing during the first month of the control period andmaintaining a constant daily testing rate of
5% followed by isolation of positive cases. We further showed that when the social distancing rate in adults is about 50% and
decreases slowly to 25%, both children and seniors should maintain a maximal social distancing rate of 50% for nearly the
entire control period, with only the seniors able to ease up in the last two months. This easing of social distancing requires
maximal testing rates of children for five of the six months of optimal control and seniors for four of the six months. Adults
must also test at higher rates than in the previous scenario. Strict testing at the beginning of the control period and main-
taining testing rates are essential to decrease transmission while return-to-work policies are implemented. Testing not only
allows officials to isolate the positive cases and therefore limit the spread of disease, but also helps to determine when it is
safe to relax restrictions (Guglielmi, 2020).

Studies have evaluated the role of children in spreading virus during influenza season (Huang, Lipsitch, Shaman, &
Goldstein, 2014; Worby et al., 2015). The recent reopening of schools in the United States demonstrated that the COVID-19
situation may be similar to what is seen in influenza outbreaks. Within days of starting classes in early August 2020,
several clusters of COVID-19 cases emerged in Florida, Georgia, andMississippi schools (CNN, 2020). Our study supports these
early observations. In our model where children play a key role in the spread of the disease given their high contact rates,
controlling children’s social distancing but not the testing rates is especially crucial to lowering the spread of the infection.
Studies conducted in Europe suggested that the infection rate is different in children of different age groups (Edmunds, 2020).
Since it is still not clear if there are age-related differences in susceptibility and the likelihood of transmission between
children and adolescents, caution should be taken when considering school reopenings. Furthermore, returning to school
leads to an increase in work-related contacts in adults (Edmunds, 2020).

Several COVID-19 related studies conducted on different populations used optimal control theory to determine optimal
strategies of NPI controls (Perkins & Espa~na, 2020; Sasmita, Ikhwan, Suyanto, & Chongsuvivatwong, 2020; Tsay et al., 2020).
The majority of these studies modeled the transmission dynamics of COVID-19 using simpler epidemiological compartmental
models or used different control variables. Our results agree with prior research that conclude it is possible to achieve
relaxation of controls over a period of time (Perkins& Espa~na, 2020; Tsay et al., 2020). However, our analysis goes beyond the
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reported studies and considers a more complex epidemiological model that accurately incorporates a rapidly evolving un-
derstanding of COVID-19 and the likely significant role of pre-symptomatic and asymptomatic transmissions of COVID-19.
Moreover, in our study we modeled the transmission of the disease between three age groups in the community and
within households and considered the transitions of infected individuals between the different compartments, which is
crucial for the culturally unique and high-risk population in the RGV. Lastly, we computed optimal controls in different
scenarios, varying the social distancing in each of the age groups and the testing rates in order to suggest school reopenings
and return-to-work while controlling and reducing the spread of the virus.

Deterministic epidemiological models are tractable and are standard for making epidemiological inferences, especially
when it comes to control measures of the diseases. However, they do not reflect the stochasticity and uncertainty involving
the transmission process, especially with a disease like COVID-19. In our case, the compartmental model gave useful insights
into optimal control strategies that included qualitative rather than solely quantitative approaches.

In this study we recognize the limitations that the full extent of the current complex and variably effective public health
interventions - such as the use of different type face coverings - are not modeled and their impact for this model is uncertain.
However, the work by Sasmita et al. (2020) shows that the combination of face mask usage, large-scale social distancing,
contact tracing, and case detection and treatment resulted in the optimal strategy to significantly impair viral transmission
(Sasmita et al., 2020). The uncertainties regarding the duration of immunity after infection or after vaccination may impact
the results of this model over time if and when reinfection or infection is possible in the future. In addition, we did not model
the impact of comorbidities and socio-economic statuses in COVID-19 transmission patterns in the RGV. Since transmissibility
of the asymptomatic and symptomatic cases remains uncertain (Chen et al., 2020; He et al., 2020; Subramanian, He, &
Pascual, 2021), in our study we considered the worst-case scenario that both asymptomatic and mild symptomatic groups
are equally infectious. Our conceptual model differs from epidemiological, yet simpler, models proposed by Li et al. (2020) and
Lin et al. (2020) to depict early transmission dynamics in Wuhan, China, which assumed a period of zoonotic transmission
during December 2019 (Li et al., 2020; Lin et al., 2020) and emigration of a large proportion of population in a short period of
time before Wuhan’s official lockdown (Lin et al., 2020), both not applicable for the RGV. However, Lin et al. (2020) incor-
porated in their model’s transmission rate all prevention and control measures grouped into two large groups: individual
reaction (e.g., contact rate) and governmental action, and demonstrated their need in the model in order to capture the
observed pattern (Li et al., 2020). Based on collected epidemiological data from laboratory-confirmed COVID-19 cases in
Wuhan, China, the study conducted by Li et al. (2020) supports our findings, recommending considerable efforts in testing for
proactive case finding to reduce transmission even in location without local spread yet as well as to permit earlier clinical
management of cases (Lin et al., 2020).

Further research of other aspects of the epidemic/pandemic in our region is needed, including the impact of school
reopenings, the effectiveness of widespread use of face coverings, the impact of the upcoming flu season, COVID-19 vaccine
effectiveness and vaccination rates as well as the extent of vaccination required for optimal herd immunity.

5. Conclusions

Our study suggests that different and lower degrees of social distancing are feasible for adults compared to children.
Children have higher contact rates which leads to transmission based on our model, emphasizing the need for caution when
considering school reopenings. Over time, as revealed in this model, using similar epidemiological conditions to those of June
26, 2020, after 180 days adults may return to work in limited numbers, which could initially prioritize essential employees
followed by those who cannot continue to strive economically in lockdown. This model also highlights that testing and
subsequent isolation are crucial and need to continue in order to relax social distancing protocols, and it is possible to drive
the infection incidences to zero using a strategy consisting of appropriate social distancing and testing protocols.
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Appendix

The adjoint equations l0ðtÞ ¼ � vH
vxare explicitly given below for j2fc;a; sg; where

pj ¼ bj
P

i¼c;a;s
½Cjið1�riÞð1�rjÞþCH
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