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Abstract

This study investigated the utility of the pupillary light reflex as a method of differentiating

DSPD patients with delayed melatonin timing relative to desired/required sleep time (circa-

dian type) and those with non-delayed melatonin timing (non-circadian type). All participants

were young adults, with a total of 14 circadian DSPD patients (M = 28.14, SD = 5.26), 12

non-circadian DSPD patients (M = 29.42, SD = 11.51) and 51 healthy controls (M = 21.47

SD = 3.16) completing the protocol. All participants were free of central nervous system act-

ing medications and abstained from caffeine and alcohol on the day of the assessment. Two

pupillary light reflex measurements were completed by each participant, one with a 1s dim

(~10 lux) light exposure, and one with a 1s bright (~1500 lux) light exposure. Circadian

DSPD patients showed a significantly faster pupillary light reflex than both non-circadian

DSPD patients and healthy controls. Non-circadian patients and healthy controls did not dif-

fer significantly. Receiver operating characteristic curves were generated to determine the

utility of mean and maximum constriction velocity in differentiating the two DSPD pheno-

types, and these demonstrated high levels of sensitivity (69.23–-100%) and specificity

(66.67–91.67%) at their optimal cut offs. The strongest predictor of DSPD phenotype was

the mean constriction velocity to bright light (AUC = 0.87). These results support the poten-

tial for the pupillary light reflex to clinically differentiate between DSPD patients with normal

vs. delayed circadian timing relative to desired bedtime, without the need for costly and

time-consuming circadian assessments.

Introduction

Delayed sleep phase disorder (DSPD) is categorised as a circadian rhythm sleep disorder

according to the International Classification of Sleep Disorders (ICSD2 [1]. However, the

delayed sleep-wake behaviour seen in those with DSPD may have different physiological

causes between patients. Recently, two distinct phenotypes within the DSPD population were
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characterised [2]: one with a circadian delay, and one with typical circadian timing relative to

the desired sleep time. Thus, nearly half of patients diagnosed with this circadian rhythm sleep

disorder do not have a circadian basis to their sleep problems, and are therefore potentially

being misclassified.

Current recommended treatments for DSPD include interventions which are designed to

normalise circadian timing, such as morning bright light therapy or melatonin administration

[3]. Each of these are intended to advance circadian timing. However, the impact of these

treatments differs depending on the biological time at which they are administered. Therefore,

their impact will differ between circadian and non-circadian DSPD patients when given rela-

tive to sleep (as opposed to biological time), and these two distinct phenotypes would likely

benefit from different treatment approaches. Clinically viable methods of differentially diag-

nosing these distinct phenotypes would allow for individualized treatments.

A potential mechanism for the development of abnormal circadian entrainment in DSPD

patients is altered sensitivity of the circadian system to light. Environmental light cues play a

critical role in determining circadian timing [4], with light exposure in the evening resulting in

delays in circadian phase, and light exposure in the late night to early morning resulting in

advances in circadian phase [5]. It has been demonstrated that DSPD patients exhibit an

increased sensitivity to night time light exposure, whereby they experience increased melato-

nin suppression relative to healthy controls [6, 7]. It is hypothesised that this increased sensi-

tivity, combined with exposure to light at night results in the development and maintenance of

circadian delays in these patients. However, whether hypersensitivity to light exists in both the

circadian and non-circadian phenotypes of DSPD has not been studied.

The pupillary light reflex (PLR) describes the acute response of the pupil to a pulse of light.

In mammals, the pupillary light reflex is mediated by retinal cells including rods, cones and

melanopsin-containing intrinsically-photosensitive retinal-ganglion cells (ipRGCs) [8]. Mela-

nopsin-containing ipRGCs also play a critical role in circadian entrainment by transmitting

light information to the suprachiasmatic nucleus (SCN) [9, 10], the master circadian clock [11,

12]. As the PLR is mediated by ipRGCs, it may reflect the sensitivity of the circadian system to

light input. Recent studies have revealed relationships between pupillometric outcomes and

sleep-wake parameters such as diurnal preference and sleep-wake timing [13, 14]. However,

pupil responses have not been related to a clinical sleep disorder diagnosis. The current study

investigated the utility of a brief PLR measurement in distinguishing DSPD phenotypes. Addi-

tionally, we examined differences in the PLR between DSPD patients and healthy controls.

Given the likely association between the PLR and circadian light sensitivity, we hypothesised

that the circadian DSPD patients would exhibit a significantly faster PLR than the non-circa-

dian DSPD patients. Additionally, we hypothesised that the circadian DSPD patients would

exhibit a significantly faster PLR than healthy controls, indicating a hypersensitivity to light.

Materials and methods

Ethical approval was obtained from the Monash University Human Research Ethics Commit-

tee (MUHREC). All participants provided written informed consent and were reimbursed for

their time.

Participants

A total of 26 patients completed the study, 14 circadian DSPD patients, 12 non-circadian

DSPD patients. Circadian and non-circadian DSPD patients were categorised according to

our previously developed criteria [2], using a combination of physician diagnosis and circa-

dian phase assessments. In summary, all patients initially met with a sleep physician to confirm
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a diagnosis of DSPD (ICSD-2 criteria). Potential participants who did not meet criteria for

DSPD were excluded. All eligible patients subsequently underwent an evening in-laboratory

assessment of salivary melatonin levels, to determine melatonin onset time. Patients were cate-

gorised as circadian DSPD if they exhibited a dim-light melatonin onset (DLMO) time of up

to 30 minutes before, or any time after their desired or required sleep time. Patients were clas-

sified as non-circadian DSPD if they had a DLMO time of more than 30 minutes before their

desired bedtime. We classified our patients based on melatonin onset relative to desired bed-

time (DBT), as an inability to initiate sleep at DBT forms part of the criteria for the diagnosis

of DSPD [1]. Melatonin onset occurs an average of 2 hours before bedtime in healthy individu-

als [15]. Therefore, it was determined that if melatonin onset occurred at least 30 minutes

prior to desired bedtime, an inability to initiate sleep was not likely to be caused by a delay in

the circadian drive for sleep (i.e., the patient is considered ‘non-circadian’). Alternatively, if

melatonin onset occurred less than 30 minutes before DBT, the patients is likely to be

experiencing sleep-onset difficulties due to this delay in circadian phase.

At the time of the PLR assessment, participants were not taking central nervous system act-

ing medications. We recruited participants from a previously established cohort of DSPD par-

ticipants [2], approximately 1.5–2 years (M = 1.74 years, SD = 0.51) after their initial diagnosis.

Thus, the clinical diagnoses and circadian assessments used to classify them were retrospective.

We compared PLR results from DSPD patients with those of 51 healthy volunteers from a

database of healthy sleepers. Healthy participants were not taking any medications and had no

diagnosed sleep disorders or psychiatric conditions. Participant demographics are presented

in Table 1.

Procedure

Participants were instructed to refrain from drinking alcohol or consuming any caffeine for 24

hours prior to their PLR assessment. The assessment was ~12 minutes in duration and was

conducted between 2 and 8 hours after habitual wake time. This time frame was selected as

ipRGC mediated pupil responses are stable during this period [16]. Participants were initially

dark-adapted for 10-minutes, before two light pulses (dim followed by bright in all cases) were

delivered. There was an inter-stimulus-interval of 2 minutes between the onset of light stimuli.

Dark adaptation involved sitting in a completely dark, quiet room, with the screen of the

device (which is viewable to only the researcher) being filtered with neutral density filters

(LEE, Lightmoves, VIC, AU), and covered by a dark sheet before and between measurements.

Table 1. Participant demographics.

Age Sex M-F DLMO 10pMol Habitual Bedtime Phase Angle

Circadian DSPD 28.14 (5.26) 9–5 23:09 (72.69) 25:07 (64.05) 1.96 (1.43)

Non-circadian DSPD 29.42 (11.51) 5–7 20:52 (60) 24:10 (63.45) 3.15 (1.07)

Healthy controls 21.47 (3.16) 32–19 20:32 (68.36) 23:06 (47.10) 2.57 (0.99)

p value < .001 .38 < .001 < .001 .029

Sig pairwise comparisons HvNC��

HvC��
CvNC��

CvH��
CvNC�� CvH�� NCvH�� CvNC�

�p < .05

��p < .01, error denoted as SD (in minutes for clock times). Between group comparisons are one-way ANOVAs, post-hoc tests are reported with a Bonferroni-Holm

correction. M:F proportions compared between groups using a chi-square statistic. C = circadian DSPD, NC = non-circadian DSPD, H = healthy controls, phase

angle = difference in hours between DLMO and bedtime. For DLMO and Phase angle non-circadian n = 11 as DLMO could not be determined (occurred prior to the

measurement period) for n = 1.

https://doi.org/10.1371/journal.pone.0204621.t001
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A measure of baseline pupil size (for the calculation of change metrics) was taken for 3 seconds

preceding the onset of light stimuli for each measurement. In the case of a measurement being

compromised due to a loss of the pupil image (typically due to blinking) participants repeated

the entire protocol, including the 10-minute dark adaption period.

Pupillometry

The Neuroptics PLR-2000 (Neuroptics, Irvine, CA, USA) was used to conduct all pupillometry

assessments. This device is Therapeutic Goods Administration (TGA) approved, and allows

customised measures of the PLR and steady-state pupil size using an infrared camera. The

device takes monocular measurements, and all measurements in this study were conducted on

the left eye. The in-built light source (14 white LEDs, CCT: 7192 peak nm: 449) was used to

deliver two 1-second light stimuli, described here as dim (~10 lux) and bright (~1500 lux). The

relative retinal impact for each light stimuli is presented in Table 2, as per Lucas et al [17].

Pupillary light reflex metrics

The two primary outcome metrics were mean constriction velocity (CV) and maximum CV.

The mean CV is the average speed of the constriction in mm/s between the onset of constric-

tion and peak constriction for the measurement. Maximum CV represents the fastest 33ms

epoch during the constriction period (between onset and max constriction) in mm/s. Both of

these metrics are automatically calculated by the device immediately following a successful,

artefact free measurement.

Data analysis

One-way analyses of variance were used to examine differences in constriction velocity

between circadian DSPDs, non-circadian DSPDs and healthy controls. Although our sample

sizes were not equal, this did not result in heterogeneity of variances between groups. Post-hoc

analyses were conducted using a Bonferroni-Holm correction [18]. Receiver Operating Char-

acteristic (ROC) curves were generated to determine the utility of each of our pupil constric-

tion metrics in determining DSPD phenotype and generate potential cut-off scores for clinical

use using Sigmaplot v13.0 (Systat Software, San Jose, CA, USA). For n = 1 circadian DSPD

patient only dim mean CV could be determined; analyses for dim max CV, bright mean CV

and bright max CV therefore include n = 13 circadian DSPD patients.

Results

Between group comparisons

ANOVAs revealed significant between group differences for mean constriction to dim light,

and mean and max constriction to bright light. The ANOVA for max constriction to dim light

was approaching significance (p = .051). Post-hoc analysis for the three significant ANOVAs

showed that circadian DSPD patients exhibited faster constriction velocity on all outcomes,

compared to non-circadian DSPD patients. Circadian DSPD patients also exhibited a faster

Table 2. Effective illuminance for human photopigments, and total irradiance for each light stimulus.

Irradiance

μW/cm2
Photopic lux Cyanopic lux Melanopic lux Rhodopic lux Chloropic lux Erythropic lux

Dim 4.86 13.00 16.30 12.03 12.36 12.80 12.57

Bright 476.36 1,417.78 1,832.76 1,294.79 1,337.42 1,392.80 1,364.59

https://doi.org/10.1371/journal.pone.0204621.t002
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PLR than healthy controls for bright light exposures, while non-circadian DSPD patients did

not differ from controls on any outcomes (see Table 3). Although bedtime differed between

groups, it did not correlate with any pupil constriction outcomes (r’s < .18, p’s>.11), and so

was not considered a possible covariate.

ROC curves for circadian vs. non-circadian DSPD phenotypes

Each of the ROC curves and the associated area under the curve (AUC) values are presented in

Fig 1. The optimal cut-off scores (determined using Youden’s Index [19]) for each of these

curves, with associated specificity and sensitivities, are presented in Table 4. The highest over-

all predictive value (as measured by total AUC) was achieved with the mean constriction veloc-

ity of the bright light pulse exposure.

Discussion

This study investigated the utility of the PLR as a method of differentiating DSPD phenotypes,

and distinguishing DSPD patients from healthy controls. We were able to successfully predict

DSPD phenotype using a simple cut-off score for the mean and maximum constriction veloc-

ity of the PLR to both dim and bright light pulses. As hypothesised, circadian DSPD patients

consistently demonstrated a faster PLR than non-circadian DSPD patients. Only circadian

DSPD patients were distinguished from healthy controls using bright light PLR outcomes,

exhibiting a significantly faster PLR than healthy controls, which may indicate a hypersensitiv-

ity to light. Non-circadian DSPD patients exhibited a ‘typical’ PLR, which was similar to that

of our control participants. These findings suggest that PLR may be a useful clinical test in the

diagnosis of DSPD phenotype.

Although our DSPD patients and healthy controls differed in age, this is unlikely to explain

the observed differences in the PLR between groups. Previous studies have demonstrated

reductions in mean and max constriction velocity in elderly patients [20]. Our groups each fell

below a mean age of 30 years, and are unlikely to be demonstrating such age-related changes.

Additionally, our circadian DSPD patients exhibited an increase in constriction velocity rela-

tive to our younger group of healthy controls, which is counter to any age-related change

which could be expected.

The relationship between pupil responses and sleep-wake timing has been attributed to the

direct stimulation of melanopsin containing ipRGCs [13, 14]. Previous studies have been

designed to distinguish the action of melanopsin from the action of rods and cones [8, 21, 22].

However, our results suggest a rod cone-mediated pathway may be informative in distinguish-

ing individual differences in circadian light sensitivity, and therefore sleep-wake outcomes.

Table 3. Results from ANOVAs for constriction velocity and subsequent pairwise comparisons.

Constriction velocity (mm/s)

Dim Mean Dim Max Bright Mean Bright Max

Circadian DSPD 2.62 (0.31) 4.59 (0.43) 2.86 (0.31) 5.19 (0.80)

Non-circadian DSPD 2.21 (0.38) 3.99 (0.61) 2.38 (0.32) 4.25 (0.56)

Healthy controls 2.39 (0.34) 4.33 (0.63) 2.59 (0.38) 4.52 (0.79)

p value .01 .051 .005 .006

Sig pairwise comparisons CvNC�� N/A CvNC��, CvH� CvNC��, CvH�

Error denoted in SD, C = circadian DSPD, NC = non-circadian DSPD, H = healthy controls

� p < .05

�� p < .01, pairwise comparisons conducted using a Bonferroni-Holm correction.

https://doi.org/10.1371/journal.pone.0204621.t003
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The PLR is mediated by melanopsin-containing ipRGCs, which receive additional light input

from rods and cones. Optimal activation of ipRGCs occurs with bright, long duration light sti-

muli [21, 23]. However, ipRGC activation may also occur using short duration light exposures

of high light intensity [22]. Our findings suggest that adequate activation of these cells can

Fig 1. ROC curves demonstrating the sensitivity and specificity of the mean and maximum pupil constriction

velocity to dim and bright light in determining circadian vs. non-circadian DSPD. a = area under the curve with a

value closer to 1 representing better predictive value.

https://doi.org/10.1371/journal.pone.0204621.g001

Table 4. Sensitivity and specificity metrics for each of the Receiver Operating Characteristic curves.

Sensitivity (%) Specificity (%) AUC Optimal cut-off p-value

Dim Mean CV 92.86 75 0.85 (.09) 2.26 .002

Dim Max CV 92.31 66.67 0.79 (.10) 4.11 .015

Bright Mean CV 100 66.67 0.87 (.08) 2.45 .002

Bright Max CV 69.23 91.67 0.85 (.08) 4.93 .003

Optimal cut-off scores and associated sensitivity/specificity calculated using a pre-test probability of 50%, and a cost-ratio of 1. Error for AUC values denoted as

standard error.

https://doi.org/10.1371/journal.pone.0204621.t004
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occur through a rod-cone mediated pathway alone. Our bright, 1-second exposure may have

had adequate intensity to activate melanopsin directly [22], however, it is highly unlikely that

there was melanopsin activation with our dim light stimulus (~10 lux), which still successfully

differentiated the DSPD phenotypes. Thus, the PLR produced by the activation of rods and

cones alone using short, dim light pulses alone may provide highly informative clinical data.

This is of high clinical interest, as the PLR can be produced with commercially available

devices and does not require any particular expertise to calculate or interpret measurement

outcomes.

In clinical practice, the misdiagnosis of sleep disorders as a result of common symptomol-

ogy is a prevalent issue [24]. DSPD patients are often miscategorised as insomnia patients, due

to seemingly similar presentations when adequate sleep opportunity at the desired sleep time

is not present [1, 3]. A recent study reported that up to 22% of insomnia patients have abnor-

mal circadian timing relative to the sleep-wake cycle, suggesting a circadian mechanism for

their sleep disturbances [25]. Further, the two phenotypes of DSPD receive the same clinical

diagnosis based on behavioural symptomology, despite exhibiting distinct physiology (i.e., dif-

ferences in circadian timing). It has been previously reported that DSPD patients exhibit a

hypersensitivity to night-time light exposure [6], as measured by melatonin suppression. This

hyper-sensitivity to light may result in a circadian system that is more vulnerable to the phase-

shifting effects of night-time light exposure, leading to a circadian phase that is abnormally

delayed. However, it may be that only patients who present with a circadian delay relative to

the desired or required sleep-wake cycle exhibit this abnormal sensitivity to light. It’s likely

that this hypersensitivity to light results in the persistently late circadian and sleep phases seen

in circadian DSPD patients. In our study, the circadian DSPD patients exhibited a hypersensi-

tivity of the PLR to both dim and bright light, while non-circadian patients exhibited a

response that was similar to healthy controls. Therefore, the increased PLR may reflect a differ-

ence in the underlying physiology of these two phenotypes, which results in two distinct pat-

terns of circadian timing relative to sleep.

Current guidelines for the treatment of DSPD recommend morning bright light therapy,

and evening administration of melatonin [3]. Both of these interventions are designed to

achieve an advance in phase, to correct the presumed underlying circadian delay in DSPD

patients. As non-circadian DSPD patients lack a circadian delay relative to the desired sleep-

wake cycle, phase advancing the circadian pacemaker with bright light or melatonin is unlikely

to be efficacious in treating the disorder (although this remains to be tested). Administration

of melatonin can have a sleep promoting effect independent of its effects on circadian phase,

as demonstrated by a shorter sleep onset latency and increased sleep efficiency [26, 27]. How-

ever, when administered at times when endogenous melatonin is present, no improvements in

sleep quality are seen [28]. There are no specific guidelines as to when melatonin should be

administered for the treatment of DSPD. Administration times which range from relative to

DLMO (5 hours prior), relative to bedtime (20 minutes prior), to fixed clock times (ranging

from 19:35–22:00 h) have been reported [29]. Non-circadian DSPD patients do not exhibit a

circadian delay relative to their desired bedtime [2]. Therefore, treatments designed to advance

the pacemaker, or administration of melatonin close to bedtime when endogenous levels are

high, would be unlikely to produce clinical benefits. Non-circadian DSPD patients more

closely resemble the diagnosis of insomnia [1], with sleep-initiation being the primary dys-

function. As such, it may be that these patients benefit more from the recommended insomnia

treatment of Cognitive-Behavioural Therapy for Insomnia (CBT-i), with combined short-term

hypnotic use in some cases [30]. The non-circadian phenotype of DSPD made up approxi-

mately half of all patients in our previous phenotyping study [2], meaning DSPD patients may
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frequently be receiving interventions which are inappropriate based on the aetiology of their

condition.

A potential strength of the PLR in identifying circadian and non-circadian phenotypes

within a DSPD patient group is the apparently trait-like nature of our observed abnormal-

ity in constriction velocity. This is consistent with the previous finding that the circadian

light response is largely genetic [31]. Our categorisation of these patients was based on a

phase assessment and clinical diagnosis from ~1.5–2 years prior to their PLR assessment.

We found a distinct difference between these two groups, despite an extended period of

time elapsing between their clinical diagnosis and DLMO assessment, and the PLR assess-

ment. This suggests that the observed difference in PLR metrics may represent an under-

lying physiological vulnerability, rather than being reflective of a state-dependent change.

The hypersensitivity of the circadian system to light previously observed in DSPD patients

[6] may be a trait which makes patients vulnerable to developing the circadian phenotype

of DSPD in the presence of late sleep-wake opportunities or excessive night-time light

exposure. However, circadian sensitivity to light in individuals with a history of, but not

current diagnosis of DSPD, has not been studied. This would aid in better understanding

the relationship between circadian light sensitivity, circadian phase and the development

of circadian-DSPD.

Although we had up to 87% accuracy in determining DSPD phenotype, not all circadian

DSPD patients were captured by our test, and this is likely to be the case in larger samples as

well. Some DSPD patients (and patients with other sleep disorders) may exhibit a delay in cir-

cadian phase which is not related to a difference in ipRGC function. For example, abnormal

SCN activation in response to light, altered behavioural patterns in light exposure, or an

abnormally short phase advance region of the phase response curve could all result in the cir-

cadian DSPD phenotype in the absence of abnormal pupil function. Therefore, a measure such

as ours would serve best to confirm a likelihood that sleep disturbance is related to circadian

function, rather than to rule out the role of circadian phase in producing sleep disturbance for

an individual patient.

In this study, we used a pupillary measure to better-characterise a clinical sleep disor-

der diagnosis. Of note, DSPD is associated with abnormally high circadian light sensitiv-

ity, and pupil responses are a measure of circadian light input. Although further

validation of these pupil responses in relation to direct circadian outcomes are required,

this study demonstrates the potential for the PLR to be used diagnostically in circadian

medicine. Given the measure is brief and has no associated per-use cost, this could be eas-

ily adapted into clinical practice. Improved characterisation of these two distinct pheno-

types of DSPD will allow for more targeted treatment recommendations, based on the

specific aetiologies. This represents a critical step in the shift toward personalised sleep

medicine.
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