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Multinomial analysis of behavior: statistical methods

Jeremy Koster1,2 & Richard McElreath2,3

Abstract Behavioral ecologists frequently use observational
methods, such as instantaneous scan sampling, to record the
behavior of animals at discrete moments in time. We develop
and apply multilevel, multinomial logistic regression models
for analyzing such data. These statistical methods correspond
to the multinomial character of the response variable while
also accounting for the repeated observations of individuals
that characterize behavioral datasets. Correlated random ef-
fects potentially reveal individual-level trade-offs across be-
haviors, allowing for models that reveal the extent to which
individuals who regularly engage in one behavior also exhibit
relatively more or less of another behavior. Using an example
dataset, we demonstrate the estimation of these models using
Hamiltonian Monte Carlo algorithms, as implemented in the
RStan package in the R statistical environment. The supple-
mental files include a coding script and data that demonstrate
auxiliary functions to prepare the data, estimate the models,
summarize the posterior samples, and generate figures that
display model predictions. We discuss possible extensions to
our approach, including models with random slopes to allow

individual-level behavioral strategies to vary over time and the
need for models that account for temporal autocorrelation.
These models can potentially be applied to a broad class of
statistical analyses by behavioral ecologists, focusing on other
polytomous response variables, such as behavior, habitat
choice, or emotional states.

Keywords Generalized linearmixedmodels . Multinomial
logistic regression . Scan sampling . Focal observations .

RStan

In both naturalistic and experimental contexts, observational
methods are mainstays in the research designs of behavioral
ecologists. The sampling methods for observational studies
have been established for decades, and the canonical
overview by Altmann (1974) has been cited thousands of
times. Although continuous monitoring of focal individuals
occasionally focuses on the timing of transitions between be-
havioral states (Martin and Bateson 2007), it is also common
for behavioral ecologists to document the behavior of a sam-
pled individual at a particular moment. The behaviors of mul-
tiple individuals may be documented simultaneously, as in
instantaneous scan sampling, or the behavior of a focal indi-
vidual may be recorded at regular, prespecified intervals. In
both cases, the basic unit of analysis is the behavior that is
exhibited by an individual at a given moment in time.

Ethograms, or coding schemes, vary considerably depend-
ing on the species being observed and the goals of the re-
search. In rare cases, behavioral researchers may elect to re-
cord only two behaviors, perhaps contrasting a behavior of
interest against a reference category that subsumes all other
behaviors (e.g., foraging behavior versus all alternative behav-
iors). More commonly, however, behavioral researchers use
ethograms in which they document K behaviors, where K is a
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quantity of behavioral categories that can vary considerably
from study to study. An assortment of statistical approaches
has been applied to these data, including regression analyses
of aggregated proportions (or their principal components) and
logistic regression of discrete, binarized behavioral categories
(Isbell and Young 1993; Mainguy and Côté 2008; Singh et al.
2010; Willisch and Neuhaus 2010; Dantzer et al. 2012; Koster
et al. 2013). Although informative, these statistical methods
depart from the multinomial data structure that characterizes
observational research, and they are incongruous with behav-
ioral ecologists’ theoretical models of time budgets that center
on trade-offs and opportunity costs. That is, time allocated to
one behavior precludes time devoted to alternative, fitness-
enhancing behaviors (Sharpe and Rosell 2003; Johnson and
Bock 2004; Morrell 2004; Reaney 2007; Hamel and Côté
2008). Prevailing statistical methods are not well suited for
elucidating these trade-offs and the ensuing individual-level
correlations across behavioral categories.

The primary goal of this paper is to explain and promote a
multilevel, multinomial logistic regression approach to the
analysis of behavioral data. These statistical models corre-
spond to the multinomial character of the response variable
while also accounting for the repeated observations of indi-
viduals that typify behavioral datasets. Not only does our
modeling approach account for the pseudoreplication stem-
ming from repeated observations but also the correlated ran-
dom effects potentially reveal individual-level covariation
across behaviors. In other words, it is possible to comment
on the extent to which individuals who regularly engage in
one behavior also exhibit relatively more or less of another
behavior.

The statistical methods that we promote are not an original
development, but rather a repurposing of existing methods. To
some extent, it is surprising that multinomial models for be-
havioral data are not more common given the ubiquitous use
of multinomial logistic models for diverse ecological applica-
tions, such as vegetation analysis, community ecology, and
parentage assignment (Augustin et al. 2001; Hadfield et al.
2006; Brienen et al. 2010; Hatala et al. 2011; Witter et al.
2012; Cristescu et al. 2015; Ackerly et al. 2015). Behavioral
ecologists have likewise employed multinomial models for
research topics such as habitat selection, food choices, and
behavioral responses (Chancellor and Isbell 2008; May et al.
2008; Sagata and Lester 2009; Marshall et al. 2012). As con-
ceptual understandings and software for multilevel (mixed-
effects) models have advanced among behavioral ecologists,
some researchers have recently begun to use the multilevel,
multinomial model that we espouse in this paper to account
for the repeated observations of individuals (Browning et al.
2012; Koster et al. 2015). To our knowledge, however, no
previous study has reported the correlated random effects
from these models, overlooking a potentially rich source of
inferential insight into behavioral strategies and trade-offs.

In this paper, we provide an overview of our modeling ap-
proach, which we demonstrate via an analysis of ethnographic
data collected using a variant of instantaneous scan sampling
(Altmann 1974; Borgerhoff Mulder and Caro 1985). A second-
ary goal is to demonstrate the use of two relatively new R pack-
ages, RStan and rethinking, for model fitting and analysis (Stan
Development Team 2016; McElreath 2015). It is possible to fit
multinomial models in other packages, ranging from R packages
such as MCMCglmm to general-purpose multilevel modeling
software such as MLwiN (Hadfield 2010; Charlton et al.
2017). An advantage of RStan relative to other software is supe-
rior and faster estimation of models, courtesy of its Hamiltonian
Monte Carlo algorithm (Monnahan et al. 2017). Whereas con-
ventionalMCMC chains potentially require millions of iterations
to reach stationarity (e.g., Browning et al. 2012), our models
require only a few thousand iterations to achieve an adequately
mixed posterior distribution. In the supplemental files, we in-
clude the script and empirical data from our case study so that
researchers can replicate our models and extend the modeling
approach to new data.

To illustrate the models, we use a case study from
observational data on the activities of adult and adolescent
males in an indigenous Nicaraguan society. An additional
substantive goal of this paper is to test hypotheses drawn
from life history theory about age-related time allocation
decisions among humans in subsistence-oriented societies.
The interest in this question stems from the unique fea-
tures of human life history traits, which are distinguished
from primate life history traits by delayed onset of repro-
duction, comparatively brief inter-birth intervals, and an
extended post-reproductive lifespan (Jones 2011). The
adaptive origins of these traits plausibly lie in cooperative
production strategies, as mates and post-reproductive in-
dividuals provide the resources needed to sustain
women’s high reproduction (Hooper et al. 2015). For the
maximization of group-level synergies and pooling of re-
sources, individual members of kin groups should divide
themselves among activities that capitalize on the compar-
ative advantages that result from their respective combi-
nations of physical abilities and acquired skills. Among
indigenous Peruvians, younger individuals focus on low-
strength, low-skill activities (e.g., domestic tasks) before
transitioning to high-strength, high-skill activities in mid-
dle adulthood (e.g., hunting) and eventually as elders to
activities that require advanced skills but fewer physical
demands, such as agriculture and manufacture (Gurven
and Kaplan 2006). The current analysis tests similar pre-
dictions in a different population of subsistence-level
horticulturalists.

Owing to the focus on life history predictions, the anal-
ysis centers on age as a predictor of behavior. In addition
to this individual-level variable, other covariates in the
models include predictors that have parallels in behavioral
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ecology more generally, such as time-varying environ-
mental predictors (e.g., rainfall), characteristics of the in-
dividuals’ residence groups (e.g., household size), and
both continuous and categorical temporal controls (i.e.,
time of day and day of the week). We emphasize the
importance of calculating and plotting model predictions
to avoid the pitfalls that commonly arise from an overre-
liance on estimated coefficients for the interpretation of
multinomial models. In addition to the basic models with
random effects for individuals, we introduce models with
random effects that reflect common sources of clustering
in behavioral ecological datasets, specifically the cluster-
ing of individuals in social groups (e.g., Browning et al.
2012) and temporal units, such as the months or years in
which behavior was recorded (e.g., Griesser and Nystrand
2009). These general considerations are accompanied by
an emphasis on the most original aspect of this analysis,
specifically the use of correlated random effects to under-
stand individual-level trade-offs.

The multilevel multinomial behavior model

For the basic multilevel multinomial behavior model
(MMBM), we assume that ethograms are composed of K be-
havioral categories. By convention, we use positive integers to
index these categories: 1, 2, 3, . . ., K. Following the categor-
ical (generalized Bernoulli) distribution, the probability of ob-
serving each category k is defined as πk. One of these catego-
ries serves as the reference category around which other cate-
gories Bpivot.^ In other words, the model is composed of
K − 1 equations that contrast the odds of exhibiting behavior
k instead of the reference behavior.

It is common for ecologists to observe individuals onmultiple
occasions, which introduces pseudoreplication that necessitates
statistical models to account for this higher-level clustering
(Bolker et al. 2009). In the context of these multinomial models,
the use of multilevel modeling allows the probabilities of
exhibiting behavior k to vary across individuals. For each of
the sub-equations, a random effect (varying intercept) is added
that allows individuals to have greater or lesser odds of being
observed in category k instead of the reference category. A note-
worthy advantage of the multinomial approach is that we can
estimate the correlations of these random effects across theK − 1
response categories, thus providing insights into the co-
occurrence of different behaviors by individuals. In addition to
these insights about co-occurrence, the correlations facilitate
pooling of information across behavioral categories, reducing
overfitting and improving estimates of parameters in the model.

For simplicity, imagine an ethogram that records only three
possible behaviors (k = 1, 2, 3). The last category (k = 3)
serves as the reference category. Assuming discrete observa-
tions at time t, the log-odds that individual i exhibits the

remaining behaviors instead of the reference category is no-
tated as

log
π1it

π3it

� �
¼ β1it þ v1i

log
π2it

π3it

� �
¼ β2it þ v2i

v1i
v2i

� �
∼Normal 0;Ωvð Þ : Ωv ¼ σ2

v1
σv1;2 σ2

v2

� �

π1 þ π2 þ π3 ¼ 1

where β1it and β2it are the intercepts that contrast the first
and second behaviors against the reference category, and
v1i and v2i are the individual-level random effects,
which are assumed to be multivariate normally distrib-
uted with zero means and a homogenous 2 × 2
variance-covariance matrix. For brevity, we present
equations with only intercepts, but additional covariates
(i.e., fixed effects) can be included to model the extent
to which the individuals exhibit relatively more or less
of the k behavior instead of the reference.

When an individual-level varying intercept is positive
(vki > 0), it indicates that individual i has an above-
average chance of exhibiting behavior k instead of the
reference behavior. The inverse is true of varying inter-
cepts that are negative. The above parameterization
models the correlation of these random effects across
the K − 1 response categories. In the above example,
the correlation is derived per usual: ρ1,2 = σv1,2/(σv1σv2).
The correlation is standardized to lie between − 1 and
1. When the correlation is positive, it indicates that
individuals who do more of the first behavior also do
more of the second behavior (relative to the reference
category in both cases). A negative correlation implies
that individuals who do relatively more of the first be-
havior do relatively less of the second behavior.

Whereas this model assumes an ethogram with only
three behaviors, the model can be expanded to accom-
modate a greater number of behavioral categories. When
K equals 10, for example, then there are nine sub-
equations and a corresponding 9 × 9 variance-
covariance matrix of the individual-level random effects.
From the basic version of the MMBM in this example,
behavioral ecologists therefore can generalize broadly to
datasets in which individuals exhibit K possible behav-
iors at time t.

In addition to fixed effect covariates, this modeling ap-
proach can also accommodate additional random effects for
hierarchical or cross-classified data structures. See
Supplemental File 2 for simplified notation corresponding
to models in this paper that include random effects for group
membership and the temporal intervals in which observa-
tions occurred.
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Example dataset

We illustrate our modeling approach using observational data
on the activities of 45 adolescent and adult males in a com-
munity of indigenous Nicaraguan horticulturalists (Koster
et al. 2013; Koster and Leckie 2014). The data were collected
during a 12-month study period in 2004–2005, with approx-
imately 7 days per month devoted to data collection.
Observations were scheduled during daylight hours and orga-
nized by household, as in other anthropological applications
of scan sampling methods (Borgerhoff Mulder and Caro
1985). The initial observation was scheduled randomly be-
tween 5:30 and 6:00 a.m., and then subsequent observations
were scheduled every 30 min, concluding no later than 6:00
p.m. During an observation, the lead author documented the
activities of all household residents. Households were sam-
pled without replacement on a daily basis such that no house-
hold was observed more than once per day.

The example dataset focuses on the activities of males be-
cause there is a pronounced sexual division of labor in this
community, and women rarely engage in several of the activ-
ities in our ethogram, such as agriculture, collecting firewood,
and hunting. (There is no a priori reason why females would
need to be excluded, however, as the individuals’ sex could be
included as a fixed effect predictor and the number of response
categories could also be expanded to include female-specific
behaviors, such as childcare.) For this analysis of male activ-
ities, Table 1 describes the behaviors that characterize men’s
work in this setting. The reference category in this analysis
consists of non-work activities, including sleeping, idleness,
socializing, and recreation. We choose this as the reference
category partly because individual-level correlations between
this and other categories are substantively less interesting than
correlations between the remaining work-related activities.

Table 2 presents descriptive statistics on the fixed effect
covariates. Our initial focus is on age, following predictions
that individuals behave in ways that capitalize on their
strength and skills at different ages. For example, adolescent
males are expected to focus on activities that require relatively
little strength and skill, such as fishing and livestock care. As
they mature, adult men are predicted to focus on high-
strength, high-skill activities, such as hunting and clearing
fields. Older men whose strength has declined are expected
to transition into activities such as manufacturing tools and
routine agricultural activities. We fit first- and second-order
polynomials of age to allow the propensity for certain kinds
of work to increase and decline across the lifespan (and vice
versa).

Other covariates include standard demographic variables,
such as household wealth and household size. The remaining
variables reflect the temporal patterning of work that charac-
terizes this setting. For instance, members of this community
work less on Sunday because they observe the Sabbath, and
Saturday is regarded as an ideal day for hunting and collecting
firewood. Although non-human animals do not necessarily
follow such calendars, we note that behavioral ecologists
may wish to make analogous categorical distinctions, such
as distinctions between ruminants’ rutting periods and other
times (e.g., Miquelle 1990). Regarding circadian variation,
behavioral ecologists regularly control for Btime of day^ in
their statistical models (e.g., Hill et al. 2003), which we in-
clude as a proportional variable with first- and second-order
polynomials given our expectation that certain work activities
are particularly common at midday. Finally, there is often
seasonal variation in behavior (e.g., Wittemyer et al. 2007),
and several subsistence activities in Nicaragua depend partly
on rainfall and river levels, such as agriculture and fishing. As
a control variable, we use measurements of average monthly

Table 1 Description of activities
that comprise the response
categories

Response Description

(1) Agriculture Activities including clearing fields, planting, weeding, and harvesting crops

(2) Domestic chores Cooking, laundering clothes, cleaning the residence, bringing water, etc.

(3) Staying at finca Extended time at makeshift upstream residences, involving overnights

(4) Firewood Either collecting firewood from forest or chopping firewood in community

(5) Fishing Excursions specifically devoted to fishing

(6) Gold panning Either preparing sites or actively panning for gold in streams around community

(7) Hunting Excursions devoted specifically to hunting activities, not opportunistic hunting

(8) Livestock Either direct care of domestic animals or preparation of pastures and shelters

(9) Manufacture Constructions of items such as dugout canoes, residences, or homemade tools

(10) Miscellaneous work Involves community labor, errands, providing routine assistance to others

(11) School Attending school as a student

(12) Steady work Regular employment as a schoolteacher, contract worker, or project assistant

(13) Wage labor Working for pay locally, including clearance of fields and construction tasks

(14) Reference Non-work reference level for idleness, sleeping, leisure, church, socializing, etc.
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rainfall at a nearby weather station (Koster et al. 2016). All
continuous variables are z-score standardized, both to facili-
tate estimation using RStan and to facilitate interpretation and
the generation of predictions from the posterior samples.

Estimation

Multilevel, multinomial logistic regression models are not
routinely implemented in several statistical packages that are
commonly used by behavioral ecologists, such as lme4 (Bates
et al. 2015). Furthermore, for high-dimensional multilevel
models, Markov chain Monte Carlo (MCMC) estimation is
generally superior to maximum likelihood methods (see
Bolker et al. 2013). With the advent of packages that facilitate
MCMC estimation, behavioral ecologists are better able to
specify models that meet the challenging nature of their data
structures.

For this analysis, we demonstrate the use of RStan, which
uses Hamiltonian Monte Carlo (HMC) methods that depart
from the Gibbs samplers and Metropolis-Hastings algorithms
that were implemented in earlier packages, such as BUGS and
MLwiN (Lunn et al. 2000; Browne and Rasbash 2009).
Hamiltonian Monte Carlo estimation has clear advantages
for complex models, and we refer readers to McElreath
(2015) for a helpful overview of the method, including advice
on convergence diagnostics and interpretation. Despite the
advantages, however, HMC methods alone are not a panacea
for all challenges of estimation. Care must still be taken to
choose a parameterization of the model that mixes well. In
this case, we rely on a non-centered parameterization of the
varying effects, using a Cholesky factorization of the
variance-covariance matrices (McElreath 2015:405). To fur-
ther promote good mixing of the HMC chains, we supply
weakly informative priors for the fixed effect parameters and
variance-covariance matrices. These priors prevent the sam-
pler from considering highly implausible values, and the
priors are weak because they otherwise assume that zeroes
represent the highest probabilities for parameters (including
correlations). When the posterior distributions of parameters

are centered around non-zero values, it is because the empir-
ical data provides contravening evidence to the weak prior.
When the data are not informative about the parameters, by
contrast, the model will default to the weak prior.

We present four models, which vary in their random effects
structure and the inclusion of fixed effect covariates. That is,
the simpler models include only random effects for the ob-
served individuals while expanded models add random effects
for household and month. Then for each of these random
effect structures, we present models with and without the fixed
effects, which receive an F suffix to help users navigate be-
tween the models in the paper and the supplemental script.

Supplemental Folder 1 includes the data and annotated
script that we use for specifying models and processing the
posterior samples. To complement RStan, the rethinking pack-
age includes convenience functions for preparing data, sum-
marizing the posterior, and plotting model predictions. For all
model fitting, we specify three chains of 2000 iterations, half
of which are devoted to the warm-up. Model diagnostics in-
dicate adequate mixing of the chains.

For each model, we calculate the Widely Applicable
Information Criterion (WAIC), which has fewer restrictive
assumptions than the Deviance Information Criterion (DIC),
a commonly used analogue (McElreath 2015). As with other
information criteria, lower values indicate preferred models
that successfully balance predictive accuracy against model
complexity and overfitting. Although this paper does not em-
phasize a model comparison approach, in turn fitting many
candidate models to determine which set of parameters best
balances the bias-variance trade-off (Symonds and Moussalli
2011), such approaches are nonetheless possible with multi-
nomial logistic regression models. In this paper, the WAIC is
included partly to familiarize behavioral ecologists with this
metric.

Results: WAIC

Of the four models, the most complex model (mfit_ihmF)
receives the strongest support from the WAIC comparison

Table 2 Predictor variable names, descriptions, and summary statistics

Variable Description Mean Std dev.

Age Age in years of observed individuals 31.13 15.63

Wealth Log-transformed value of household possessions (measured in Nicaraguan currency) 8.60 0.93

House size Number of residents in the household of the observed individual at the time of the observation 8.16 3.04

Sunday Binary variable to denote observations that occurred on Sunday .12

Saturday Binary variable to denote observations that occurred on Saturday .15

Time of day Proportional variable that denotes that percentage of a 24-h day that had elapsed at the time of observation 0.49 0.15

Monthly rainfall Average monthly rainfall (mm) for the month in which the observation occurred 222.10 112.19
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(Table 3; see also Supplemental Fig. 1). This model includes
the full set of fixed effects and random effects for individuals,
households, and the months in which observations occurred.
In addition to having the lowest WAIC, this model also re-
ceives full support from the comparison of WAIC weights,
which are analogous to AIC weights (Johnson and Omland
2004). The WAIC weight of a model is interpretable as the
probability that the model will make the best predictions on
new data relative to the other models under consideration.

Results: interpreting the variance/covariance
of the Bintercept-only^ model (mfit_i)

A common approach to multilevel modeling analyses is to
begin with a model that includes the random effects but no
fixed effects other than the covariates. These models provide
insight into the hierarchical data structure and the correlations
among random effects. The first model therefore includes only
the intercepts and the random effects (i.e., varying intercepts)
for the observed individuals. The coefficients for the inter-
cepts are presented in Supplemental Table 1, de-emphasized
here because their predicted probabilities correspond almost
identically to the corresponding percentages from the empiri-
cal data.

For each categorical response, the variance of the ran-
dom effects is reported in the first column of Table 4,
which includes the variance estimates from all fitted
models. The extent of the individual-level variance is het-
erogeneous across the responses. Behaviors that exhibit
relatively low variance, such as agriculture and firewood,
are largely compulsory for all individuals in this setting.
By contrast, high-variance activities such as gold panning
and steady work represent the economic specializations of
a subset of men. Another high-variance activity, school, is
limited to adolescents.

The lower half of the matrix in Table 5 presents the
correlations of the individual-level random effects across
the 13 behavioral responses (other than the reference cat-
egory). Most correlations are modest and lacking strong
statistical support. However, some moderate correlations
are evident. Males with a high relative risk of agriculture
also have relat ively high random intercepts for
manufacture (ρ1 ,9 = 0.39) and other work (ρ1 ,10 = 0.37).
These correlations plausibly relate to age given the afore-
mentioned prediction that older men dedicate themselves
to high-skill, low-strength activities. Similarly, the nega-
tive correlation between school and wage labor (ρ11 ,13 =
− 0.48) relates to the unavailability of adolescent males
for wage labor opportunities on weekdays when they are
attending school.

Table 3 Model comparison
using WAIC Model WAIC (SE) Effective parameters ΔWAIC (SE) Weight

mfit_ihmF 8447.0 (122.72) 362.4 1

mfit_iF 8721.6 (123.68) 284.3 274.6 (31.83) 0

mfit_ihm 9267.0 (113.26) 324.5 820.0 (52.34) 0

mfit_i 9574.4 (112.97) 231.5 1127.4 (60.67) 0

Lower values indicate preferable models. The weight of a model is its Akaike weight, interpretable as the
probability that a candidate model will make superior predictions on new data

Table 4 Variance estimates of the random effects in the four models presented in this paper. The reported quantities are the standard deviations of the
random effects while the values in parentheses are the standard deviations of these quantities in the posterior samples

Individual House Month

mfit_i mfit_iF mfit_ihm mfit_ihmF mfit_ihm mfit_ihmF mfit_ihm mfit_ihmF
1. Agriculture .67 (.10) .50 (.11) .62 (.11) .41 (.14) .24 (.15) .30 (.15) .52 (.16) .46 (.15)
2. Domestic 1.08 (.28) .87 (.33) .80 (.33) .62 (.36) .73 (.41) .62 (.38) .28 (.22) .23 (.19)
3. Finca 1.80 (.31) 1.89 (.33) 1.47 (.37) 1.58 (.44) 1.09 (.53) 1.30 (.69) 1.00 (.30) 1.11 (.32)
4. Firewood .29 (.19) .23 (.17) .25 (.18) .22 (.17) .31 (.20) .28 (.20) .79 (.25) .74 (.25)
5. Fishing .90 (.28) .89 (.30) .38 (.27) .34 (.27) .98 (.36) 1.00 (.37) .71 (.37) .71 (.35)
6. Gold 2.23 (.38) 2.28 (.43) 1.60 (.39) 1.39 (.44) 1.64 (.62) 1.76 (.57) .56 (.19) .32 (.20)
7. Hunting 1.31 (.27) 1.29 (.30) .92 (.31) .80 (.43) .96 (.47) 1.00 (.53) .23 (.18) .35 (.26)
8. Livestock .70 (.36) .74 (.40) .41 (.32) .46 (.35) .72 (.37) .83 (.41) 1.28 (.73) 1.14 (.67)
9. Manufacture 1.02 (.19) .81 (.19) .87 (.22) .37 (.26) .47 (.28) .74 (.27) .27 (.18) .24 (.17)
10. Other work .82 (.20) .57 (.24) .73 (.21) .42 (.25) .32 (.22) .38 (.25) 1.59 (.57) 1.38 (.46)
11. School 1.64 (.35) .81 (.38) 1.68 (.41) .43 (.33) .60 (.50) .59 (.40) 2.36 (.99) 1.78 (.77)
12. Steady work 2.91 (.63) 2.85 (.56) 2.84 (.60) 2.80 (.57) .84 (.81) .71 (.62) .32 (.20) .30 (.19)
13. Wage 1.10 (.21) .53 (0.24) .83 (.26) .31 (.22) .73 (.32) .67 (.24) 1.06 (.34) 1.01 (.31)
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Results: interpreting the variance/covariance
of the fixed effects model (mfit_iF)

In addition to the random effects for individuals, our second
model includes the predictor variables, but before addressing
their interpretation, we revisit the variances and correlations
across responses. As a cautionary note, Snijders and Bosker
(2012, 307–309) emphasize that the inclusion of fixed effects
potentially raises the higher-level variance in multilevel
models because whereas the lowest-level variance is fixed,
the scale of the higher-level variance is arbitrary. Unlike linear
mixed models of normally distributed response variables, in
which comparisons of variance across models can facilitate
Bpercentage of variance explained^ calculations (similar to
conventional R-squared measures), changes in generalized
linear models merit caution because the inclusion of fixed
effects may have unanticipated effects on the variance. Thus,
although the variance estimates increase for several of the
responses (e.g., finca), such changes cannot be conclusively
regarded as a by-product of a correlation between predictor
variables and random effects (see Gelman and Hill 2007, 480–
481). Despite those caveats, it is evident that the fixed effects
account for substantial individual-level variance in several
behavioral categories, such as school and wage labor
(Table 4).

The standardized correlations across the behavioral catego-
ries are not equally sensitive to the arbitrary scaling of the
variance. A comparison of the correlations from the model
with fixed effects (mfit_iF) to the earlier Bintercept-only^
model shows that several correlations exhibit moderate effects
(see the top half of Table 5). For example, there are positive
correlations between hunting and finca and gold panning,
respectively, which remain robust in both models. As a possi-
ble explanation, these correlations suggest a peripatetic life-
style in which some men frequently sojourn through the for-
est, staying at their makeshift homes and using their hunting
expeditions as an opportunity to evaluate the streams they
encounter as possible sources of gold.

Not all correlations remain robust across models. For ex-
ample, the aforementioned correlation between agriculture
and manufacture is now weaker (ρ1 ,9 = 0.30). Such changes
relate to the impact of fixed effects on the estimated random
effects. A misconception is that random effects are static
across models and that, for instance, an individual with a high
random intercept in the initial model will have a similarly high
random intercept in all subsequent models. This misconcep-
tion may stem from the nomenclature and the emphasis on
Bintercepts.^ Instead, random effects are estimated in relation
to the effects of all covariates (including the intercept). An
individual may exhibit a high propensity for a behavior rela-
tive to the fixed part prediction, yielding a positive random
effect, but with the addition of further covariates, the positive
random effect may change its magnitude and sign. Thus, the T
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correlations of the random effects must be considered in rela-
tion to the predictor variables in the model.

For similar reasons, correlations that were weak in the
Bintercept-only^ model may now exhibit stronger effects.
For example, the negative correlation between gold panning
and steady work increased from −0.19 to −0.36, evidently
because of the relationship between these behaviors and the
individuals’ age and household wealth (note that adolescent
males do comparatively little of either behavior). Controlling
for these variables, males who conduct more steady work are
less frequently observed to be gold panning.

Results: interpreting the coefficients and predicted
probabilities of the fixed effects model (mfit_iF)

Table 6 presents coefficients of the fixed effects, which are
interpreted as the effect of a one-unit increase in the predictor
on the log-odds of exhibiting behavior k instead of the refer-
ence category, conditional on the other parameters. The focus
on this contrast is important to reiterate because the coeffi-
cients are not straightforward indicators of the effect of a pre-
dictor on the probability of doing behavior k. As noted by
Retherford and Choe (1993, 153), there are scenarios in which
covariates predict higher probabilities of a behavior despite a
coefficient that is zero or even the opposite sign.

Such insights underscore the importance of computing the
predicted probabilities. In the script that accompanies this pa-
per, we include a function that assists with these calculations.
Directly analogous to the link function in the rethinking pack-
age (McElreath 2015), this function is specific to multinomial
logistic models. Dubbed link.mn in the accompanying script,
this function allows users to supply customized values for the
covariates, which are then multiplied by the corresponding
coefficients for each sample in the posterior. Complementary
functions then summarize the means and prediction intervals
of the values generated by the link.mn, which relies on the
softmax function to normalize the predicted K probabilities
to sum to 1. The function provides the option to incorporate
the random effects or to calculate probabilities only from the
fixed effects, which is the method used in this example.

Figure 1 depicts the predicted probabilities for the 14 be-
havioral categories across the range of observed ages in the
empirical data. For these predictions, only age varies while all
other coefficients are held at a constant value. Noteworthy
results are that time allocation to agriculture increases across
the lifespan whereas other behaviors are more common in
middle age, such as gold panning, hunting, and wage labor.
These results are largely consistent with the aforementioned
hypothesis from life history theory, but contrary to predic-
tions, manufacture likewise exhibits a peak in middle age.

Predicted probabilities can also be generated for categorical
predictors. Figure 2 shows the predicted probabilities for

weekdays, Saturday, and Sunday. On Saturdays, hunting be-
havior increases dramatically, suggesting that hunting trips are
motivated in part by cultural norms rather than dynamic re-
sponses to short-term nutritional needs or favorable conditions
for foraging (Stephens and Krebs 1986; Sosis 2002). On
Sundays, the results indicate that several work activities are
less common, particularly laborious activities that require so-
journs away from the residential site (e.g., agriculture,
firewood, gold panning, hunting).

On the other hand, other work is evidently more common
on Sundays than other days. This example is instructive be-
cause of the evidence that the coefficient itself is near zero
(β = − 0.08), paralleling the earlier note about possible misin-
terpretations of parameters in multinomial models. That is,
other work increases in frequency on Sundays, but so does
the reference category, and so the ratio of other work to the
non-work reference category remains largely constant across
weekdays, Saturdays, and Sundays. Hence the coefficients are
effectively indistinguishable from zero even though there are
evident differences in the probability of this behavior on dif-
ferent days.

Researchers are often interested in testing for differences
among multiple categorical predictor variables (e.g., the post
hoc tests in conventional ANOVA models). Continuing this
example, there might be substantive interest in testing for dif-
ferences between weekdays, Saturdays, and Sundays on the
probability of other work. The prediction intervals depicted in
Fig. 2 are inadequate for this purpose because they incorporate
uncertainty from all of the parameters in the model, not just
the contrasts of interest (i.e., the overlapping prediction inter-
vals are not an indication that there are no distinguishable
differences between other work on different days).

To test for differences among categorical predictors, one
recommended strategy is to calculate the differences between
each contrast for each sample in the posterior, then use the
distribution of those differences for inference. Supplemental
Fig. 2 shows these differences, which reveal a consistent, al-
beit modest increase in the probability of other work on
Sunday. The predictions offer less confidence that there is a
difference in the probability of other work on weekdays and
Saturdays.

As a final set of predictions from this model, Supplemental
Fig. 3 shows that the frequency of several behaviors is depen-
dent on the time of day. In general, work activities increase
until midday, then decline as dusk approaches.

Results: interpreting the models with additional
random effects (mfit_ihm and mfit_ihmF)

The impetus for including random effects for households and
months partly relates to the significant effects exhibited by
fixed effects that are defined at these levels of the data
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structure. For instance, in the preceding model (mfit_iF), the
relative risk ofwage labor declines with increasedwealth, and
the relative risk of agriculture declines with rainfall. That
model, however, does not account for the clustering of the
data by household and month. A distinct advantage of multi-
level modeling is that higher-level predictors can be included
in models while the corresponding random effects adjust for
the clustering (Goldstein 2011).

To generate predictions across the range of the fixed ef-
fects, we modify the link.mn function to account for the addi-
tional random effects structure. Based on the model that in-
cludes the additional random effects and the full set of fixed
effects (mfit_ihmF), simulated predictions for wealth show
that individuals from wealthier households tend to conduct
less wage labor, but wealth is not a strong predictor of other
behaviors (Supplemental Fig. 4). Similarly, few behaviors
seem contingent on house size (Supplemental Fig. 5).
Finally, there is a tendency for agriculture to decline with
monthly rainfall while gold panning increases, but the effects
are relatively modest (Supplemental Fig. 6). In general, the
predictions of the fixed effects change little when incorporat-
ing the additional random effects.

The extended models continue to include the variance/
covariance matrix for the individual-level random effects,
but with the inclusion of the household-level random effects,

the interpretation has changed. In this parameterization of the
model, the individual-level random effects are interpretable as
the deviation from the household-level average (i.e., the
household’s random effect). The variance estimates now re-
flect the within-house variation among individuals, not the
variation across individuals in the population. The correlations
across behavioral responses therefore provide less insight into
individual-level trade-offs, though they remain largely consis-
tent with earlier inferences (see Supplemental Tables 2–4 for
all correlation matrices pertaining to models mfit_ihm and
mfit_ihmF).

With a data structure that includes only 45 males
distributed among 25 households, the household-level
random effects are estimated imprecisely. There is little
inferential insight to be gained from considering the
variance estimates or their correlations. Regarding the
random effects for month, some behaviors exhibit sub-
stantial variance across months, and this variance is on-
ly moderately explained by the fixed effects (see again
Table 4). Predictor variables such as rainfall explain
relatively little behavioral variation, for instance. Other
variables could potentially be included in the models to
account for this temporal heterogeneity, such as a binary
variable to denote extended school vacations, but we do
not pursue those extensions here.
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Fig. 1 Model predictions of response behaviors as a function of age. Predictions assume a time of 8:00 a.m. on a weekday. All other covariates are held
at the sample mean. The shaded regions are the 89% percentile intervals, as calculated from the posterior samples of model mfit_iF
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Discussion

This paper describes a multilevel multinomial behavior
model that employs principles of generalized linear
mixed models for the analysis of observational data. A review
of the behavioral ecological literature suggests that this model-
ing strategy has been used rarely, appearing intermittently on-
ly recently. However, because multinomial models are well
suited to the structure of observational data collected via scan
sampling methods, these models merit strong consideration as
the default choice for future studies. Instead of relying on
aggregations across behavioral categories or within observed
individuals, we use unaggregated data to model the probabil-
ity of observing behavior k by individual i at time t. These
models therefore permit the inclusion of time-varying covari-
ates (e.g., seasonal heterogeneity) while relying on random
effects to address the pseudoreplication and the imbalanced
sampling of individuals that typify field research. Beyond
treating this individual-level variance as a nuisance to be
remedied, the models presented here show how correlated
random effects across the response categories can elucidate
behavioral dimensions and trade-offs that interest behavioral
ecologists. Because of the potentially valuable inferences
afforded by these correlations, explaining the mechanics and

interpretation of the correlated random effects has been the
primary emphasis of this paper.

The multinomial format does not fully relieve researchers
of important decisions about ethograms and the coding of
behavioral categories. In principle, there is not a maximum
number of response categories that can be accommodated in
multinomial models. In practice, however, when there are few
observations of a particular behavior, then the posterior distri-
bution will merely reflect the model’s prior for those rare
behaviors, suggesting possible benefits for combining behav-
iors from the original coding scheme. For the dataset used in
this paper, for instance, the original ethogram distinguished
between different components of livestock care, which were
subsequently combined because of the rarity of these behav-
iors. There are few clear solutions to automate this process,
and we anticipate that similar decisions about the definition of
categories will largely depend on the researchers’ familiarity
with the behaviors and the population being studied.

In addition to the basic multinomial modeling approach
presented here, possible extensions include options that char-
acterize generalized linear mixed models more generally.
Whereas the models in this paper focused only on varying
intercepts (individuals, households, and months), it would al-
so be possible to estimate varying slopes for covariates in the
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Fig. 2 Model predictions of response behaviors as a function of day.
Predictions assume a time of 8:00 a.m. while all other covariates are
held constant at the sample mean. The confidence intervals are the 89%
percentile intervals, as calculated from the posterior samples of model

mfit_iF. Note the similarity of ratios between other work (k = 10) and
the reference level (k = 14), whichwas addressed as an example in the text
of the manuscript
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models (Leckie and Goldstein 2015). For example, if a longi-
tudinal dataset were to include observations of individuals at
different ages, then the effect of age could be allowed to vary
across individuals. The expansion of the variance-covariance
matrix to accommodate these varying slopes would result in
additional correlations that could reveal the extent to which
time allocation at older ages is contingent on behavioral strat-
egies earlier in life.

A final methodological consideration pertains to tem-
poral autocorrelation. In many empirical settings, obser-
vations conducted at temporally proximate intervals are
likely to document similar patterns of behavior. For the
example dataset, we accounted for temporal variation in
different ways. For behavioral variation related to time of
day, we used first- and second-order polynomial effects,
which account for the gradual increase and subsequent
decline of work activities throughout the day (see also
Wright et al. 2014). For variation related to the month in
which activities were observed, we used conventional ran-
dom effects for month, paralleling similar longitudinal
studies that use random effects for calendar date, month,
or year (Griesser and Nystrand 2009; McElreath and
Koster 2014; Requena and Machado 2015; Kerhoas
et al. 2016). This latter approach has limitations, namely,
that it implies an exchangeable correlation structure in
which observations within a cluster are equally unrelated
to all other clusters. In many cases, though, researchers
may anticipate that behaviors exhibited at proximate times
are more similar than behaviors across temporally dispa-
rate intervals. For example, behaviors in April and May
are potentially more similar than behaviors occurring 5 or
6 months apart.

Similar concerns have recently motivated statistical ap-
proaches that address temporal autocorrelation (Fürtbauer
et al. 2011; Nakayama et al. 2016). In addition to these alter-
natives, multinomial models potentially benefit from the de-
velopment of Gaussian process regression (Rasmussen and
Williams 2006), as summarized by McElreath (2015) and fa-
cilitated by the implementation of the Gaussian process in the
RStan package. Instead of discrete boundaries between cate-
gories, such as discrete months or households, Gaussian pro-
cess models rely on a matrix of distances between pairs of
observations (e.g., the amount of time between the respective
observations). Thus far, extensions of the approach to multi-
nomial logistic models have largely been limited to the ma-
chine learning literature (e.g., Chai 2012). As behavioral ecol-
ogists contend with temporal autocorrelation both across and
within individuals, however, we anticipate promising alterna-
tives that incorporate principles and methods of Gaussian pro-
cess regression. The caveat is that statistical models by ecol-
ogists can be unnecessarily complex (Murtaugh 2007; Cressie
et al. 2009), and the sample sizes that typify observational
studies may not accommodate the added complexity.

In terms of substantive contributions, the results of this
paper provide intermediate support for the prevailing hypoth-
esis that heterogeneous combinations of strength and skill
across the lifespan predict variation in behavioral strategies
(Gurven and Kaplan 2006). The behavior that most closely
adheres to the prediction is agriculture, which becomes more
frequent later in life, arguably because it requires advanced
botanical knowledge but not strenuous activity. Other behav-
ioral categories roughly conform to predictions. Some activi-
ties, such as fishing and domestic chores, are modestly more
frequent among adolescents while strenuous, high-skill activ-
ities such as hunting and gold panning are more common
among middle-aged men. Overall, however, age explains only
a limited amount of the variation in the behavioral outcomes,
and many behaviors exhibit considerable individual-level het-
erogeneity. Given the intellectual and capital investments re-
quired of some subsistence activities, this variation could po-
tentially be explained by long-term returns to specialization
(Schniter et al. 2015). More generally, at a time when
individual-level behavioral variation and personality are
attracting attention from behavioral ecologists (Bell et al.
2009; Beleyur et al. 2015), the present statistical approaches
align with efforts to use multilevel models to quantify the
repeatability of behavior (Nakagawa and Schiezeth 2010;
Dingemanse and Dochtermann 2013).

Conclusion

This paper emphasizes a modeling approach that lever-
ages correlated random effects to gain insight into the
surprisingly elusive question of how time spent in one
activity precludes time allocation to other activities.
Behavioral ecologists have theorized at length about
these trade-offs, but the analysis of observational data
has been limited by prevailing methods that require ag-
gregations of the original data. The development of sta-
tistical tools can stimulate new theorizing (Gigerenzer
1991), and much like the proliferation of multiple re-
gression software formerly led to broader multicausal
hypothesizing in the behavioral sciences, the availability
of multinomial models for observational data potentially
revitalizes theorizing about trade-offs and predictors of
behavior. The accessibility of statistical software for es-
timating models is essential, and this paper benefits
from the development of the RStan package and its
Hamiltonian Monte Carlo algorithm. As a complement
to the coding script that accompanies this paper, there is
potential for the preparation of additional convenience
functions to facilitate analyses that rely on the basic
modeling framework that we have espoused for behav-
ioral data.
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