

The Study of Dried Ginger and Linggan Wuwei Jiangxin Decoction Treatment of Cold Asthma Rats Using GC–MS Based Metabolomics

Shan Ran¹, Fangfang Sun¹, Yan Song¹, Xiaoli Wang¹, Yan Hong^{2*} and Yanquan Han^{1*}

¹ The First Affiliated Hospital of Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, China, ² Clinical College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China

Dried ginger is the monarch drug in Linggan Wuwei Jiangxin (LGWWJX) decoction, which is used to treat cold asthma. The purpose of this study was to investigate and compare the effects of dried ginger and LGWWJX decoction for treatment of cold asthma rats at the metabolomics level using gas chromatography-mass spectrometry (GC-MS). OVA and ice water-induced cold asthma were induced in SD rats. The effects of dried ginger and LGWWJX decoction were evaluated by general morphological observation, hematoxylin and eosin staining, inflammatory cell count, IgE, IL-4, IFNy quantitation, and visceral index. GC-MS-based metabolomics was performed and analyzed using multivariate statistical analysis. Biomarker identification, pathway analysis, correlations between identified biomarker, and efficacy indices were performed. The results showed that dried ginger and LGWWJX decoction had obvious effects on cold asthma rats. Thirty-seven metabolites (15 in serum and 22 in urine) associated with cold asthma were identified. These metabolites were mainly carbohydrates, fatty acids and their products, organic acids, and others. Seven pathways were identified by MetaboAnalyst 4.0 metabolic pathway analysis. After intervention with dried ginger and LGWWJX decoction, the majority of altered metabolites and metabolic pathways returned to control levels. LGWWJX decoction regulated more metabolites of carbohydrates and fatty acids, which contribute to energy metabolism and oxidative stress in cold asthma, than dried ginger. We concluded that dried ginger and LGWWJX decoction both were effective for treatment of cold asthma. LGWWJX decoction was more effective than dried ginger for treatment of cold asthma. This study evaluated the effects of dried ginger and LGWWJX decoction on cold asthma at the metabolomics level. It provides a reference for the research on the compatibility of Chinese Medicine.

Keywords: dried ginger, Linggan Wuwei Jiangxin decoction, cold asthma, metabolomics, compatibility

INTRODUCTION

Ginger is a Chinese medicine (CM) used as a food and as a medicine, and is often used to treat cold syndrome through the property of warming. Dried ginger (Zingiberis Rhizoma, GanJiang, GJ) is processed from fresh ginger and is also commonly used in CM. It is used to treat cold asthma by "warming the stomach to dispel cold, warming the lung to resolve fluid," and it has significant anti-inflammatory, anticancer, antipyretic, and antioxidant properties (Bak et al., 2012;

OPEN ACCESS

Edited by:

Haitao Lu, Shanghai Jiao Tong University, China

Reviewed by:

Lei Chen, Fujian Agriculture and Forestry University, China Wei Song, Peking Union Medical College Hospital (CAMS), China

*Correspondence:

Yanquan Han hyquan2003@163.com Yan Hong hyan2003@163.com

Specialty section:

This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

Received: 17 September 2018 Accepted: 07 March 2019 Published: 11 April 2019

Citation:

Ran S, Sun F, Song Y, Wang X, Hong Y and Han Y (2019) The Study of Dried Ginger and Linggan Wuwei Jiangxin Decoction Treatment of Cold Asthma Rats Using GC–MS Based Metabolomics. Front. Pharmacol. 10:284. doi: 10.3389/fphar.2019.00284

1

Townsend et al., 2014). A previous report showed that phenolic compounds in GJ can prevent and treat asthma by inhibiting expression of TH2 and TH1 cells (Khan et al., 2015). However, CM in clinical application is mainly based on CM prescription.

Linggan Wuwei Jiangxin (LGWWJX) prescription originated from the "Jingui Yaolüe" ("Synopsis of Golden Chamber"), written by Zhongjing Zhang, who was one of the most famous Chinese doctors during the Han Dynasty. LGWWJX has been used to treat cold asthma for over a 1000 years. It consists of Zingiberis Rhizoma (Gan Jiang, GJ, monarch drug), Poria (Fu Ling, FL), Glycyrrhizare Radix Et Rhizoma (GanCao, GC), Asari Radix Et Rhizoma (Xi Xin, XX), and Schisandrae Chinensis Fructus (Wu Wei Zi, WWZ). Interestingly, GJ is the main component in LGWWJX, which can also be used to treat cold asthma. Our previous study demonstrated significant differences between various processed ginger products on blood stasis syndrome (Han et al., 2016). In this study, we proposed that there were differences in the compatibility of GJ for treatment of disease.

Metabolomics is a part of biological systems to monitor global small molecule endogenous metabolite changes induced by biochemical reactions under a given set of physiological conditions in vivo. It is a useful technique for study of CM. As metabolomics provides a comprehensive assessment of cellular pathways, it has recently attracted much attention in the treatment of diseases with CM (Wang et al., 2005; Shi et al., 2012; Qi et al., 2014). Gas chromatography-mass spectrometry (GC-MS) is a technique used for metabolomics analysis, which is characterized by high sensitivity and numerous available databases. GC-MS has been used extensively in metabolomics studies (Vinaixa et al., 2016). Therefore, a metabolomics study was performed using GC-MS profiling combined with multivariate statistical analysis to monitor biomarkers and altered metabolism in serum and urine in ovalbumin (OVA) and ice water-induced cold asthma rats. We compared the effects of GJ and LGWWJX on cold asthma at the metabolite level. First, differences in metabolomic biomarkers in serum and urine were identified between the control and the treated group. Then, the effects of treatment with GJ and LGWWJX on cold asthma were evaluated. In addition, the therapeutic mechanisms of GJ and LGWWJX on cold asthma were identified by analyzing metabolic pathways.

MATERIALS AND METHODS

Ethics Statement

Male Sprague Dawley (SD) rats were purchased from the Laboratory Animal Center, Medical University of Anhui Province. All experiments were subject to approval by the Committee on the Ethics of Animal Experiments of Anhui University of Chinese Medicine. All experiments were performed in accordance with the "Regulations for the Administration of Affairs Concerning Experimental Animals" issued by the National Science and Technology Commission. Rats from all groups were anesthetized by intraperitoneal injection with pentobarbital (50 mg narcoren/kg body weight) and fentanyl (0.05 mg/kg body weight).

Materials

Ovalbumin (A5253) was purchased from Sigma Aldrich, Co., St. Louis, MO, United States, *N*-methyl-*N*-trimethylsilyl-trifluoroacetamide (MSTFA, G35006), methoxyamine hydrochloride (90663189), and pyridine (20170104) were obtained from West Asia Chemical Industry, Co., Ltd., Shan Dong. Urease (EK170062) was supplied by Yi Ka, and methanol (20170905) and chloroform (20170321) were purchased from Sinopharm Chemical Reagent, Co., Ltd. (Beijing, China). All other chemicals were of analytical grade and used as received.

All herbs were purchased from the pharmacy of the First Affiliated Hospital of Anhui University of Chinese Medicine, and they were authenticated by Prof. Shoujin Liu (Anhui University of Chinese Medicine, Hefei, China). LGWWJX prescription contains the following five CMs:

- (1) Zingiberis Rhizoma (Gan Jiang, GJ), which warms the spleen and stomach for dispelling cold, warming the lungs, and resolving retained fluid.
- (2) Poria (Fu Ling, FL), which clears damp and promotes diuresis.
- (3) Glycyrrhizare Radix Et Rhizoma (Gan Cao, GC), which helps to relieve coughs and reduce sputum;
- (4) Asari Radix Et Rhizoma (Xi Xin, XX), which expels windevil and removes cold;
- (5) Schisandrae Chinensis Fructus (Wu Wei Zi, WWZ), which eases coughing and tonifies kidney yang and moderates the properties of herbs.

GJ and LGWWJX Decoction Preparations

Linggan Wuwei Jiangxin decoction was prepared according to the methods in our previous studies. Briefly, 20 times the minimum dose was weighed, which included Gan Jiang (180 g), Fu Ling (240 g), Gan Cao (180 g), Xi Xin (100 g), and Wu Wei Zi (100 g), and soaked in water at a 1:12 (w/v) ratio for 50 min. The water was then heated to boiling and was simmered for 40 min, then filtered. After filtration, the dregs were added to water and the above steps were repeated. The filtrates were then combined and concentrated to 2.2 g/mL. The preparation process for GJ decoction was identical to that of LGWWJX, and included 180 g of Gan Jiang. GJ was concentrated to 0.5 g/mL. GJ and LGWWJX decoctions were stored at 4°C and heated before use. The chemical components of LGWWJX decoction are shown in **Supplementary Figure S1** and **Supplementary Table S1**.

Animal Model Establishment and Assessment

Animal Model Establishment

Rats were randomly divided into five groups (n = 8 per group) as follows: control group (C), model groups (M), Gan Jiang group (GJ), LGWWJX treatment group, and positive control (Guilong

TABLE 1	Inflammator	cells and	cytokines ir	n the four	groups.
					3

Group		Cell count	in BALF		Inflamn	natory cytokines in s	serum
	Total cells (\times 10 ⁶)	Eosinophils (%)	Mononuclear (%)	Neutrophil (%)	lgE (μg⋅mL ^{−1})	IL-4 (ng⋅mL ⁻¹)	IFN-γ (ng⋅mL ^{−1})
С	2.23 ± 1.27	1.06 ± 0.98	12.50 ± 1.70	11.25 ± 1.39	102.10 ± 3.47	248.70 ± 5.02	1322.00 ± 12.61
Μ	$28.41 \pm 3.24^{\#\#}$	30.44 ± 3.87 ^{##}	$62.88 \pm 2.13^{\#\#}$	$25.31 \pm 3.06^{\#\#}$	$290.40 \pm 5.96^{\#\#}$	$927.50 \pm 30.63^{\#\#}$	507.10 ± 16.16 ^{##}
GJ	3.70 ± 1.00**	$19.81 \pm 5.74^{*}$	42.73 ± 2.14**	18.88 ± 2.12**	232.20 ± 12.61**	697.20 ± 21.45**	1149.0 ± 30.59**
LGWWJX	3.49 ± 1.13**	9.37 ± 1.21**	45.81 ± 2.25**	13.87 ± 2.55**	188.90 ± 3.45**	512.60 ± 21.37**	834.01 ± 26.37**
PC	$2.82 \pm 0.30^{**}$	$5.63 \pm 0.43^{**}$	$30.13 \pm 0.59^{**}$	$13.13 \pm 0.91^{**}$	$159.04 \pm 2.60^{**}$	407.10 ± 19.58**	1113.20 ± 37.41**

Data are represented as means \pm SD. n = 8. ^{##}Compared with control group, p < 0.01. *Compared with model group, p < 0.05. **Compared with model group, p < 0.01.

Kechuanning capsule) group (PC). According to a previous study (Yan, 2016), rats in the M, GJ, LGWWJX, and PC groups were sensitized by intraperitoneal injections of 10% OVA (100 mg OVA, 100 mg aluminum hydroxide) in 0.5 mL of saline on the 1st and 7th days. The C group was injected with an equal volume of saline. On days 15-30, the M, GJ, LGWWJX, and PC groups were challenged with 1% OVA for 30 min, then subjected to a swimming test in ice water $(14 \pm 2^{\circ}C)$ for 30 min. The GJ group received the Gan Jiang decoction (4.86 g/kg) by gavage, and the LGWWJX group received the LGWWJX decoction (21.6 g/kg) by gavage for 30 from the day of challenge (0.5 h after challenge). The PC group was administered Guilong Kechuanning capsule (2.43 g/kg) by gavage. The C and M groups were given distilled water. The doses of LGWWJX decoction and Guilong Kechuanning capsule were converted according to the body surface area ratio between humans and the animals in the study. The doses were sixfold than the corresponding clinical prescription dose for a 60 kg human, which is an effective moderate dose based on preliminary experiments. The dose of dry ginger was consistent with that of the amount of dried ginger in LGWWJX decoction.

Model Assessment Indicators

General morphological observation, histopathology analysis of the lungs, inflammatory cell count in bronchoalveolar lavage fluid (BALF), IgE, IL-4, IFN- γ in serum, and visceral index were chosen as model assessment indicators.

Histopathology Analysis

After obtaining BALF, the upper right middle lung lobe was removed and fixed in 10% neutral buffered formalin. The specimens were dehydrated and embedded in paraffin. Fivemicrometer sections of fixed embedded tissues were cut using a Leica model RM2135 rotary microtome (Leica, Nussloch, Germany) and stained with hematoxylin and eosin. Histological analyses were performed by two independent experimenters blinded to the treatment groups.

Cell Count in BALF and IgE, IL-4, and IFN- γ Detection in Serum

Rats underwent bronchoalveolar lavage with three 1-mL aliquots of ice-cold PBS via an endotracheal cannula. BALF recovery was greater than 70%. BALF was centrifuged at 1,500 rpm for

10 min at 4°C. The supernatant was discarded and the pellet was kept for further analysis. The number of total cells was counted using a hemocytometer, and cytologic classification in the bronchial alveolar lavage fluid (BALF) was determined using Wright Giemsa staining. Enzyme-linked immunosorbent assay (ELISA) (San Diego, CA, United States) was used to determine the expression levels of IgE, IL-4, and IFN- γ in serum according to the manufacturer's instructions. The absorbance was measured at 450 nm using a microplate reader (RT-6000, Leidu, United States).

Visceral Index

The hearts, livers, spleens, lungs, and kidneys of the rats were weighed. The visceral index was determined by calculating the ratios of weights of each organ to the corresponding body weights of the animals.

Serum and Urine Samples Collection

The day before sacrifice, C, M, GJ, and LGWWJX rats were housed in metabolic cages (1 per cage) to collect urine for 24 h. The animals were free to drink water but were fasted. All urine samples were collected and immediately centrifuged at 3,000 rpm for 10 min at 4°C and the supernatant was stored at -80° C. The rats were then anesthetized by intraperitoneal injection of pentobarbital (50 mg narcoren/kg body weight) and fentanyl (0.05 mg/kg body weight) to obtain blood from the abdominal aorta. Blood samples were incubated for 3 h at room temperature, centrifuged at 3,000 rpm for 10 min, and the supernatants were collected and stored at -80° C.

Sample Preparation

Serum Sample Preparation

Serum metabolites were analyzed following chemical derivatization according to a previously published procedure with minor modifications (Papadimitropoulos et al., 2018). One hundred microliters of thawed serum sample was added to 1.5 mL microcentrifuge tubes, followed by addition of 350 μ L of methanol. The samples were vortexed for 10 s, then centrifuged at 12,000 rpm for 10 min at 4°C. A 350 μ L aliquot of the supernatant was transferred into a 2 ml GC/MS glass vial and dried under nitrogen at room temperature. The residue was derivatized using a two-step procedure. First, 80 μ L of methoxyamine hydrochloride (20 mg/mL in pyridine) was

added to each vial, mixed gently, shaken, and incubated for 2 h at 37°C. Then, 100 μ L of BSTFA (1% TMCS, v/v) was added, and the tubes were shaken and incubated for 1 h at 70°C. The derivatized samples were cooled to room temperature prior to GC–MS analysis.

Urine Samples Preparation

Urine samples also required chemical derivatization. One hundred microliters of thawed urine was transferred to 1.5 mL eppendorf tubes and 10 μ L of urease (80 mg/ml) was added. The samples were then mixed gently, shaken, and incubated for 1 h at 37°C. Next, 350 μ L of methanol:chloroform (3:1, v/v) was added and the samples were vortexed for 10 s. The remaining steps were the same as those described in the serum sample derivatization preparation.

Quality Control Samples Preparation

To monitor repeatability and reliability of the method, quality control samples (QCs) were prepared by mixing equal aliquots from each serum or urine sample. QC samples were then analyzed using the same method as the prepared urine. The QC samples were injected at regular intervals (every eight samples) throughout the analytical run to provide a set of data from which repeatability and reliability could be assessed.

GC-MS Analysis

Gas chromatography-mass spectrometry analysis was performed using a Bruker 45X gas chromatograph system coupled with a SCION single quadrupole mass spectrometer (Bruker, United States).

Derivatized samples (1 μ L each) were injected onto the gas chromatograph system with a split inlet equipped with a DB-5MS capillary column (30.0 μ m × 250 μ m inner diameter, 0.25 μ m film thickness) under the following conditions: initial oven temperature was set at 50°C for 2 min, and increased to 100°C at a rate of 8°C/min, then increased to 120, 180, 200, 250 (alternate between 4 and 8°C/min), and ultimately to 280°C for 3 min. Helium was used as the carrier gas at a flow rate of 1.0 mL/min in constant flow mode and the injector split ratio was set to 20:1. The temperatures of the injector, and ion source and MS were set to 279 and 219°C, respectively. The energy was -70 eV in electron ionization mode. MS data were acquired in full-scan mode across mass-to-charge ratios (m/z) of 50–500.

Data Processing and Statistical Analysis

All the GC-MS raw files from serum and urine samples were converted to Net. CDF format using proteowizard software. Peak identification, peak alignment, and peak filtration were performed using XCMS¹ online to obtain a data matrix composed of m/z values, retention times, ion fragments, and peak areas. Peak areas were normalized using Excel, then imported into SIMCA-P 13.0 (Umetrics AB, Umeå, Sweden), in which multivariate statistical analysis was performed. Before analysis, data were mean centered and unit variance scaled. Principal component analysis (PCA) was used to display the overall differences. Partial least-squared discrimination analysis (PLS-DA) and orthogonal projection to latent structure-discriminate analysis (OPLS-DA) were used to verify the model and explore different biomarkers between groups by incorporating known classifications. Then, the variable importance for project values (VIP) exceeding 1 were selected first and these metabolites were subsequently analyzed by paired t-test analysis using SPSS 23.0 (International Business Machines, Corp., Armonk, NY, United States), and p < 0.05 was considered to be a significant difference. VIP > 1 and p < 0.05 were criteria for screening differential metabolites. Metabolite identification was performed by executing similarity searches in the NIST11.L mass spectral library (National Institute of Standards and Technology, Gaithersburg, MD, United States) and metabolites with a NIST match factor of \geq 700 were investigated. One-way analysis of variance (ANOVA) (SPSS23, International Business Machines, Corp., Armonk, NY, United States) was used to evaluate pharmacodynamics effects among the four groups. All experimental data are presented as mean \pm standard deviation.

¹https://xcmsonline.scripps.edu

TABLE 2 | Visceral index results.

	Heart index	Liver index	Spleen index	Lung index	Kidney index
С	0.31 ± 0.04	2.82 ± 0.32	0.23 ± 0.06	0.91 ± 0.25	0.59 ± 0.05
Μ	$0.38 \pm 0.05^{\#\#}$	3.11 ± 0.24	0.30 ± 0.08	$0.96 \pm 0.13^{\#\#}$	0.63 ± 0.06
GJ	$0.35 \pm 0.07^{**}$	2.99 ± 0.35	0.24 ± 0.06	$0.92 \pm 0.24^{**}$	0.63 ± 0.09
LGWWJX	$0.33 \pm 0.05^{**}$	2.85 ± 1.12	0.22 ± 0.07	$0.83 \pm 0.22^{**}$	0.63 ± 0.07
PC	$0.31 \pm 0.05^{**}$	$2.80\pm0.33^*$	0.24 ± 0.07	$0.90 \pm 0.26^{**}$	0.61 ± 0.06

(C) Control group, (M) model group, (GJ) 4.86 g/kg Gan Jiang decoction group, (LGWWJX) 21.6 g/kg Linggan Wuwei Jiangxin decoction group, (PC) 2.43 g/kg positive control group. Data are represented as means \pm SD. n = 8. ^{##}Compared with control group, p < 0.01. *Compared with model group, p < 0.05. **Compared with model group, p < 0.01.

FIGURE 2 | Representative GC–MS TIC chromatograms of control (C), model (M), Gan Jiang (GJ) decoction, and LGWWJX decoction groups in rat serum (A) and urine (B).

RESULTS

Assessment of Cold Asthma Rats General Morphological Observation

Rats in group C moved freely, had shiny hair, and exhibited smooth breathing. Rats in the M group exhibited slow movement, nose scratching, sneezing, and wheezing, and had swollen claws, white lips, and dark hair.

Histopathology Analysis

Pathological changes in lung tissue were assessed by hematoxylin and eosin (HE) staining of the paraffin

embedded sections (**Figure 1**). Lungs of M group animals exhibited airway wall thickening, airway luminal narrowing, inflammatory cell infiltration around mucosa of bronchioles, and epithelial cell shedding (**Figure 1B**), which indicated that the model had been successfully established. These changes were markedly ameliorated by GJ and LGWWJX treatments, and LGWWJX exerted a greater effect.

Cell Count in BALF and IgE, IL-4, and IFN- γ Detection in Serum

As shown in **Table 1**, total cells in BALF and the percentage of eosinophils, mononuclear and neutrophils in the M group were dramatically increased compared to that in the C group. These results are summarized in **Table 1** and **Supplementary Figure S2**. IgE, IL-4 were markedly increased, but IFN- γ was significantly decreased, in the M group. These results are summarized in **Supplementary Figure S3**. These results demonstrated that GJ and LGWWJX treatment could ameliorate inflammation associated with asthma.

Visceral Index

As shown in **Table 2**, heart and lung indices were increased in the M group compared with the C group. No other group comparisons resulted in significant differences. Treatment with GJ and LGWWJX decoctions and PC returned heart and lung indices to normal levels.

GC–MS Analysis

QC Samples Analysis

Use of QC samples confirmed system suitability and analytical stability over the course of analytical data collection. QC data can be used as quantitative indicators of random errors or fluctuations during the analytical run. GC-MS total ion current (TIC) chromatograms of QC samples were captured (**Supplementary Figure S4**), and the chromatographic peaks in the QC samples nearly all agreed, indicating good stability of the instrument and method.

GC-MS Analysis

TIC chromatograms of serum and urine from the C, M, GJ, and LGWWJX groups are shown in **Figures 2A,B**. However, no clear differences were observed.

FIGURE 3 | Score plots from the PCA model of the control group (green) vs. the model group (black) for (A) serum and (B) urine. Two hundred permutations of the PLS-DA model for serum (C) and urine (D). R² (green triangle); Q² (blue square). Score plots form the OPLS-DA model of the control group (C, green) vs. the model group (M, black) for serum (E) and urine (F). S-Plots from the OPLS-DA model for serum (G) and urine (F).

Multivariate Statistical Analysis of Metabolites

To evaluate metabolic profiles, PCA was performed between the C group and the M group for the serum and urine samples with the following results: $R^2 = 0.794$ and $Q^2 = 0.635$ for serum, and $R^2 = 0.713$ and $Q^2 = 0.576$ in urine, which indicated that the models were of good quality and provided accurate predictions. The score plots of PCA (**Figures 3A,B**) showed obvious differences between the C group and the M group, which indicated that the metabolic profiles of cold asthma rats were altered. Then, PLS-DA analysis was performed, and permutation test (permutation number: 200) results were as follows: $R^2 = 0.442$

and $Q^2 = -0.208$ in serum, and $R^2 = 0.563$ and $Q^2 = -0.0145$ in urine, which demonstrated robustness and good predictive ability of the model (**Figures 3C,D**). To screen differential metabolites and maximize discriminatory ability of serum and urine metabolites between the groups, orthogonal partial leastsquares discriminant analysis (OPLS-DA) was performed. As shown in the score plot (**Figures 3E,F**), the serum and urine samples in the M group were significantly different from those in the C group. The S-plots (**Figures 3G,H**) showed differential metabolites between the two groups, and variable importance in the projection (VIP) was obtained based on OPLS-DA with a threshold of 1.0.

In addition, we also investigated the differences in metabolic profiles between the M group and the GJ group, and the M group and the LGWWJX group using OPLS-DA analysis. Score 3D plots (**Figures 4A,B**) from OPLS-DA were used to maximize discrimination of metabolite differences among the four groups. **Figure 4** shows that the metabolomic profiles of the GJ and LGWWJX treatment groups had a tendency to return to a profile more similar to the control group, and the metabolomic profile of the LGWWJX group was closest to that of the C group. These results suggested that GJ and LGWWJX both exerted effects on metabolism in cold asthma rats, and LGWWJX exerted more powerful effects than GJ on cold asthma.

Potential Biomarkers

Biomarkers play an important role in the diagnosis and determination of prognosis of diseases. Based on the criteria VIP > 1, p < 0.05 and NIST match factor > 700, we identified 15 biomarkers in serum and 22 biomarkers in urine that were differentially present in the M group compared with the C group (Table 3). These potential biomarkers were mainly associated with carbohydrates, fatty acids, organic acids, and their products. In the M group, the majority of carbohydrates were significantly downregulated, while levels of D-(-)tagatose were increased and differences in glucopyranose in serum and urine were inconsistent (elevated in serum, reduced in urine), compared to the C group. Most fatty acid products were notedly upregulated in the M group, except for octadecanoic acid (serum), pentanedioic acid, and benzeneacetic acid (urine). Levels of propanoic acid, 3, 4-dihydroxybutanoic acid, and citric acid were also increased in the M group, while phosphate (3:1), glycerol, glycine, D-pinitol, and myoinositol were decreased in the M group compared to the C group. Intervention with GJ and LGWWJX decoctions reversed the observed changes for most of the differential metabolites, but they did not normalize glycerol (serum), hexanedioic acid, β -D-glucuronide, or D-(+)cellobiose (urine). All metabolites that were regulated by GJ were also regulated by the LGWWJX decoction. However, not all metabolites regulated by LGWWJX were regulated by GJ (Figures 5, 6 and Table 3). LGWWJX decoction normalized differential levels of glucopyranose (serum), benzoic acid, D-glucose, D-galactose, and D-lactose (urine), but GJ did not normalize these metabolites. In addition, LGWWJX decoction regulated serum D-glucose (serum and urine) and hexadecanoic acid, and urine phosphate (3:1), butanedioic acid, β -D-glucopyranose, citric acid, glucaric acid, myoinositol, and maltose.

Metabolic Pathway Analysis

To explore the possible pathways affected by cold asthma, differential endogenous metabolites in **Table 3** were imported into MetaboAnalyst4.0². The impact value threshold of pathway topology analysis was set to 0.1, and the impact value of pathways above this threshold were considered potential target pathways. As shown in **Figure 7**, cold asthma was associated with seven key metabolic pathways, including starch and sucrose metabolism, galactose metabolism, the tricarboxylic acid cycle (TCA), glyoxylate and dicarboxylate, glycerol phospholipid metabolism, glycine, serine and threonine metabolism, and inositol phosphate metabolism.

Correlation Between Metabolites and Various Efficacy Indicators

A correlation map of rat serum and urine metabolites and efficacy indicators of cold asthma was generated based on Pearson's correlation coefficients. The correlation heat-map (Figure 8) shows that the metabolites of Sm1, Sm5, Sm8 (serum; propanoic acid; heptadecane) were strongly positively related to the level of IL-4, eosinophils, and neutrophils (r = 0.645, 0.599, 0.493; 0.554, 0.582, 0.422; 0.558, 0.647, 0.563, respectively). In addition, Sm8 was also negatively associated with IFN- γ (r = -0.733). However, the metabolites Sm2, Sm3, Sm4, Sm9, Sm10, Sm11, Sm15 (serum glycerol, glycine, phosphate, D-galactose, glucose, glucopyranose, and lactose) were positively associated with IFNy. The metabolites Um2, Um4, and Um9 (urine benzoic acid, 3,4-dihvdroxybutanoic acid, and hexanedioic acid) were positive associated with IgE (0.722, 0.605, 0.571). The metabolites Um13, Um14, Um16, Um20, Um21, and Um22 (urine D-glucose, Dgalactose, glucaric acid, D-lactose, maltose, and D-(+)cellobiose) were negatively associated with IL-4, eosinophils, and neutrophils (-0.542, -0.584, -0.412; -0.669, -0.774, -0.671; -0.659,-0.707, -0.638; -0.642, -0.745, -0.607; -0.700, -0.741,

²http://www.metaboanalyst.ca/MetaboAnalyst/

Sint Easts Prepareirand Sist 53 (3) (17, 147, 191, 129) (129) (129) (129) (120) (1		RT/min	Endogenous metabolites	Z/W	VIP	d	Match		Regulat	on
Smith Smath Progenoid and one Smath								М-О	M-GJ	M-LGWWJX
Sind 6440 Operation 53, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10	Sm1	5.333	Propanoic acid	28, 45, 73, 88, 117, 147, 191, 219	1.23	0.000	953	~	\rightarrow	\rightarrow
Sind 6.880 Opening 6, 7, 3, 40, 147, 174, 168, 246 1, 72 0.003 776 1 Sind 1, 978 Henoleneneri 5, 7, 165, 280, 230, 334, 570 1, 16 0.003 776 1 Sind 2, 208 O-Hinolino 5, 7, 165, 230, 334, 550, 334, 550 1, 16 0.003 726 1 1 Sind 2, 268 O-Hinolino 7, 3, 10, 156, 230, 334, 51 3, 10 0.003 726 1 1 1 0.003 776 1 1 1 1 0.003 776 1 1 1 1 1 0.003 776 1 1 1 1 1 0.003 776 1	Sm2	8.449	Glycerol	73, 103, 133, 147, 177, 205, 218	1.01	0.012	881	\rightarrow	/	/
Not 11.115 Prosphenic(1) $57, 73, 23, 21, 250, 283, 263, 214 11.45 0.015 7.76 1 Snrif 22.06 OPMINIC 77, 73, 63, 917, 50, 233, 43, 100, 200 734 1 1 0.000 724 1 1 Snrif 22.06 OPMINIC 73, 103, 123, 137, 100, 201, 217, 203, 231, 343, 100, 200 863 73, 103, 126, 177, 100, 202, 217, 229, 201, 319 1 $	Sm3	9.889	Glycine	45, 73, 86, 133, 147, 174, 188, 248, 276	1.72	0.023	824	\rightarrow	~	~
No. 19.78 Hepatocian $57, 71, 65, 361, 77, 65, 236 116 0.000 722 1 Snrif 22.48 DePrindia 57, 47, 169, 237, 301, 346 161 0.000 567 1 1 Snrif 22.48 DePrindia 75, 47, 169, 237, 330, 346 166 0.000 568 1 $	Sm4	11.115	Phosphate(3:1)	45, 73, 133, 211, 253, 283, 299, 314	1.43	0.015	776	\rightarrow	\leftarrow	\rightarrow
Smit 22.08 Orbinal 73, 147, 150, 217, 307, 463 151 0.003 667 1 Smit 22.48 Orbinal 73, 103, 147, 160, 275, 271, 307, 466 154 0.000 553 1 1 Smit 22.48 Orbinalise 64, 73, 103, 147, 160, 275, 271, 231, 231, 319 154 1 1 0.000 522 1	Sm5	19.798	Heptadecane	57, 71, 85, 99, 127, 155, 238	1.16	0.000	792	~	\rightarrow	\rightarrow
Strift 22.48 OH-Tribagenes 15, 47, 31, 01, 32, 117, 100, 22, 30, 35, 31, 111, 100, 200 119 0.000 674 1 Srift 22.684 D-Marrindi 55, 97, 31, 02, 37, 30, 34, 34, 100, 26, 37, 230, 231, 319 113 0.000 826 1	Sm6	22.088	D-Pinitol	73, 147, 159, 247, 260, 318, 433	1.61	0.033	867	\rightarrow	~	~
Sing 2.654 Ownerind 73. (03, 1/3, 047, 00, 206, 217, 229, 291, 319, 346 118 0.000 655 1 1 Sini1 2.3683 De-Glaicose 73, (03, 1/3, 1/47, 100, 128, 1/47, 100, 206, 217, 229, 291, 319 128 0.000 853 1 1 Sini1 2.3633 De-Glaicose 73, (03, 1/3, 1/47, 1/3), 146, 169, 0.01 801 1 1 0.000 853 1 1 Sini1 2.3163 Develocencic acid 73, (03, 1/29, 1/47, 1/21, 146, 168, 0.01, 243, 266, 313, 328 11/4 0.000 893 1	Sm7	22.49	D-(-)-Tagatose	15, 45, 73, 103, 133, 147, 189, 217, 307, 466	1.96	0.000	874	~	~	~
Sing 2363 Declaractea 45, 63, 73, 103, 128, 147, 160, 205, 217, 229, 231, 149 126 0000 222 1 Sini1 2,363 Gulcopyanosa 73, 103, 128, 147, 102, 205, 213, 211 144 0.001 282 1 Sini1 2,738 Myonostol 73, 103, 128, 147, 102, 205, 243, 263, 114 0.001 823 1	Sm8	22.634	D-Mannitol	73, 103, 147, 205, 217, 319, 345	1.18	0.000	858	\rightarrow	~	~
Smith 2.3.08 D-Glacese 73. (03, 173, 147, 191, 204, 217, 281 140 0.0015 822 1 141 0.0015 822 1 1 Smith 2.5.131 Monosinio 736 Hearadecenoic acid 73, (03, 129, 147, (13), 204, 237, 283, 243, 233, 343 11.1 0.0015 822 1 1 0.0015 822 1 1 1 0.0015 822 1 1 1 0.0015 822 1 1 1 0.0015 822 1	Sm9	22.853	D-Galactose	45, 59, 73, 103, 129, 147, 160, 205, 217, 229, 291, 319	1.26	0.000	922	\rightarrow	~	~
Smith 24.383 Glucopyranese 73.103, 124, 147, 217, 305, 434, 432 114 0.004 834 1 Smith 28.131 Manosolic and Smith 28.117, 132, 145, 150, 201, 243, 280, 311, 32 114 0.000 839 1 <td< td=""><td>Sm10</td><td>23.069</td><td>D-Glucose</td><td>73, 103, 147, 205, 268, 319</td><td>1.40</td><td>0.015</td><td>922</td><td>\rightarrow</td><td>~</td><td>~</td></td<>	Sm10	23.069	D-Glucose	73, 103, 147, 205, 268, 319	1.40	0.015	922	\rightarrow	~	~
Smr12 S5.131 Myonosolol 73 103, 177, 123, 147, 201, 243, 289, 314, 200 114 0.000 881 1 Smr13 27.786 Heedeenotic acid 28, 47, 36, 117, 132, 145, 158, 201, 243, 256, 314, 30 107 0.000 865 1 7 Smr15 38.921 Lactose 73, 86, 103, 147, 204, 45, 158, 201, 243, 276, 313 1125 0.000 865 1 7 7 Um1 10.388 Phosphate(Sr11) 73, 117, 137, 147, 178, 144 116 0.0014 896 1 7 7 Um1 12.122 27.151 Barencia cacid 73, 147, 712, 244 101 0.0014 896 1 7 7 Um5 159.06 D+4/Morbo-ufancic acid 73, 147, 712, 40 7 101 1001 896 1 7 1 Um5 159.06 D+4/Morbo-ufancic acid 73, 147, 712, 40 7 101 1001 896 1 7 1 Um6 159.06 D+4/Morbo-ufancicid 73, 147, 123, 40 1113	Sm11	24.363	Glucopyranose	73, 103, 129, 147, 191, 204, 217, 231	1.16	0.004	834	\rightarrow	/	~
Smith 27.786 Heardecennols and Mild 28.18, 37.183, 117, 122, 145, 159, 201, 243, 2869, 311, 328 107 0.003 889 1 Smith 32.181 Octabesentio and Smith 32.61, 31, 723, 145, 201, 243, 2869, 341, 356 1,13 0.003 889 1 1 Smith 32.811 Octabesentio and Cotabesentio and T7, 105, 117, 224, 229, 319 1,15 0.003 885 1 1 1 Umm 13.12, 272, 151 Barancio and T7, 105, 117, 247, 128, 145, 201, 247, 369, 314 1,116 0.001 985 1 1 1 Umm 13.120 Umm 13.120, 271, 289, 239, 314 1,116 0.001 985 1 1 1 Umm 13.020 Umm 13.41, 100 0.014 8893, 246, 500, 389 980 1 <td< td=""><td>Sm12</td><td>25.131</td><td>Myoinositol</td><td>73, 103, 129, 147, 217, 305, 343, 432</td><td>1.14</td><td>0.000</td><td>891</td><td>\rightarrow</td><td>~</td><td>~</td></td<>	Sm12	25.131	Myoinositol	73, 103, 129, 147, 217, 305, 343, 432	1.14	0.000	891	\rightarrow	~	~
Sm14 22.181 Octadecancic acid 43, 55, 73, 117, 132, 145, 201, 243, 280, 341, 566 1.13 0.003 867 1 7 Um1 13.832 Honephen(5:1) 73, 58, 103, 147, 201, 243, 271, 319 1.25 0.000 887 1 7 Um1 13.832 Honephen(5:1) 73, 158, 132, 117, 147, 739, 199 1.25 0.000 885 1 7 7 Um3 12.3227,151 Barrono acid 73, 105, 117, 147, 739, 193 233, 244, 307 1.16 0.000 885 1 7 Um5 13830 Um5 31, 17, 147, 739, 193 233, 244, 307 111 116 0.000 885 1 7 Um5 13830 Um17 23.85, 173, 243, 307, 335 243, 307, 335 1136 0.000 885 1 7 Um5 20367, 20.500, 21.292 U-7-Hruchose 73, 103, 147, 200, 232, 243 07 101 0.000 887 1 7 Um17 21.406 Paraneoloc acid 73, 103, 177, 232, 233, 247, 363 1010	Sm13	27.786	Hexadecanoic acid	29, 43, 73, 83, 117, 132, 145, 159, 201, 243, 269, 313, 328	1.07	600.0	899	~	\rightarrow	\rightarrow
Smifs 38.821 Ladose 7,3 60,13,147,204,243,271,319 1,25 0,000 865 1 7 Umr 10.338 Prospinate(3:1) 73,115,132,271,161 Berracio acid 73,115,132,217 116,133,211,283,296,314 11,01 0.001 985 1 7 Umr 12.122,271,161 Berracio acid 73,115,132,247 0.011 988 1 7 Umr 14.120 3,4-Dinydroxp-utanoic acid 73,117,147,201,247 11,16 0.001 983 1 7 Umr 1950 U-Hyhanbiolic acid 73,117,147,201,233 73,127,243 11,16 0.001 983 1 7 Umr 21960 U-Hyhanbiolic acid 73,117,147,201,233 17,133,147,201,231 10,01 0.001 986 1 7 7 Umr 21360 D-Hyhanbiolic acid 73,103,147,201,231 10,01 0.001 986 1 7 7 Umr 21362 D-Hyhanbiolic acid 73,103,147,201,231 10,10 <	Sm14	32.181	Octadecanoic acid	43, 55, 73, 117, 132, 145, 201, 243, 269, 341, 356	1.13	0.003	887	\rightarrow	\leftarrow	~
Umi 10.383 Phosphate(5:1) 73, 115, 132, 211, 283, 296, 314 101 0.014 388 1 // Umi 12.132 27.151 Bencio acid 73, 105, 117, 147, 79, 194 11.15 0.021 293 7 //	Sm15	38.921	Lactose	73, 89, 103, 147, 204, 243, 271, 319	1.25	0.000	895	\rightarrow	\leftarrow	~
Um 12.122.27.151 Benzoic acid 77, 105, 117, 147, 173, 194 115 0.021 923 7 7 Um4 12.122.27.151 Benzoic acid 73, 105, 117, 147, 159, 233, 244, 300 116 0.000 935 7 7 Um6 19.630 -Lhrenoic acid 73, 171, 182, 532, 243, 307, 395 101 117 0.036 920 14 7 Um6 19.630 -L-Hrenoic acid 73, 103, 147, 205, 293, 243, 307, 395 103 103 124 7 1 7 Um6 19.630 -L-Hrenoic acid 73, 103, 147, 205, 233, 247, 383 106 1003 867 1 7 Um1 21.460 Renormedic acid 73, 103, 147, 206, 233, 247, 383 106 1003 867 1 7 1 Um11 21.814 Benzenecida 73, 103, 147, 206, 232, 247, 383 106 107 1003 870 1 7 Um11 21.814 Benzenecida 73, 103, 147, 103, 252, 281 10.00 986 1 7	Um1	10.938	Phosphate(3:1)	73, 115, 133, 211, 283, 299, 314	1.01	0.014	938	\rightarrow	/	~
Ums 12.882 Buanedior acid 73, 129, 147, 172, 247 1.16 0.000 855 7 1 Ums 14,120 3, 4-Diydroxyb-utanoic acid 73, 147, 172, 252, 249, 900 11.33 0.021 914 7 7 Um6 16.966 -L'Thronic acid 73, 147, 172, 255, 229, 409 10.8 0.003 915 1.4 7 7 Um6 19.650 -C+Thronic acid 73, 101, 172, 252, 280, 203, 253 1.08 0.003 957 4 7 Um8 21.160 Pertaneciolic acid 73, 112, 147, 186198, 229, 260, 288 1.08 0.003 867 4 7 Um10 21.40 Rbonic acid 73, 102, 129, 147, 201, 231 73, 102, 129, 147, 164, 172, 233, 247, 363 1.201 0.003 867 4 7 7 Um11 21.814 Benzamecicic acid 73, 102, 129, 147, 201, 231 1.09 0.003 867 4 7 7 Um11 21.814 Benzamecicic acid 73, 147, 217, 226, 233, 247, 263 1.28 0.003<	Um2	12.122 27.151	Benzoic acid	77, 105, 117, 147, 179, 194	1.15	0.021	923	~	/	\rightarrow
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Um3	12.932	Butanedioic acid	73, 129, 147, 172, 247	1.16	0.000	935	\leftarrow	\rightarrow	\rightarrow
Um5 16.396 L-Threonic acid 73, 117, 147, 205, 282, 409 101 0.036 920 1 7 Um6 19.550 D-(+)Arabidi 73, 103, 147, 205, 243, 307, 395 108 0.009 913 1 7 Um6 19.550 D-(+)Arabidi 73, 103, 147, 201, 231, 307, 395 1.08 0.009 913 1 7 7 Um8 21.160 Pentanecicic acid 73, 103, 147, 131, 383, 147, 201, 232, 232, 247, 363 1.06 0.009 867 4 7 7 Um10 21.140 Ranonic acid 73, 103, 147, 161, 203, 233, 247, 363 1.01 0.003 774 4 7 7 Um11 21344 Barconic acid 73, 103, 147, 161, 203, 233, 243 73, 103, 147, 160, 205, 217, 239, 344 1.01 0.003 74 7 7 Um11 21382 D-Glucose 73, 103, 147, 160, 205, 217, 239, 344 1.01 0.003 203 4 7 7 Um13 22.862 D-Glucose 73, 103, 147, 160, 205, 217, 239, 344 <td< td=""><td>Um4</td><td>14.120</td><td>3, 4-Dihydroxyb-utanoic acid</td><td>73, 147, 189, 233, 246, 300</td><td>1.13</td><td>0.021</td><td>914</td><td>\leftarrow</td><td>\leftarrow</td><td>~</td></td<>	Um4	14.120	3, 4-Dihydroxyb-utanoic acid	73, 147, 189, 233, 246, 300	1.13	0.021	914	\leftarrow	\leftarrow	~
Um6 19.630 D-(+)Arabital 73, 103, 147, 205, 217, 243, 307, 395 1.08 0.009 913 1 7 Um7 20.367, 205.09, 21292 ((-))-Fructose 73, 103, 147, 205, 231 1.02 0.040 867 1 7 Um8 21.160 Pentamedicic acid 73, 103, 147, 205, 233, 247, 363 1.02 0.040 867 1 7 Um10 21.406 Hexamedicic acid 73, 103, 147, 205, 233, 247, 363 1.21 0.000 850 4 7 7 Um11 21.406 Hexamedicic acid 73, 103, 147, 205, 233, 247, 363 1.21 0.000 850 4 7 7 Um11 21.406 Rhonic acid 73, 103, 147, 205, 231, 247 294, 291, 319 1.01 0.000 933 7 7 7 Um11 21.814 Benzamedicic acid 73, 147, 160, 265, 217, 229, 291, 319 1.01 0.000 933 1 7 7 Um112 22.826 Glucarise 73, 147, 160, 265, 217, 229, 291, 319 1.161	Um5	16.996	L-Threonic acid	73, 117, 147, 205, 292, 409	1.01	0.036	920	\rightarrow	\leftarrow	~
Um7 20.367, 20.509, 21.322 L(-)-Fructose 73, 89, 117, 133, 147, 201, 231 1, 02 0.040 867 L F Um8 21.160 Pentaneclicic acid 73, 112, 147, 186198, 229, 260, 288 1, 06 0.009 860 L 7 Um9 21.322 Hexaneclicic acid 73, 109, 129, 147, 203, 233, 247, 363 1, 21 0.009 850 L 7 7 Um10 21.406 Ribonic acid 73, 109, 129, 147, 161, 262, 281 1, 21 0.009 850 L 7 7 Um11 21.814 Benzenescetic acid 73, 103, 147, 161, 262, 281 73, 435 1, 128 0.000 850 L 7 7 Um11 21.814 Benzenescetic acid 73, 477, 160, 265, 277, 292, 281 1, 108 0.015 878 L 7 7 Um12 22.823 De-Glucopyranose 73, 477, 160, 205, 277, 292, 291, 319 1, 107 0.000 820 L 7 7 Um13 22.823 De-Glucopyranose 73, 477, 163, 273, 285	Um6	19.630	D-(+)Arabitol	73, 103, 147, 205, 217, 243, 307, 395	1.08	600.0	913	\rightarrow	\leftarrow	~
Um8 21.160 Pentaneclicic acid 73, 112, 147, 186198, 222, 260, 288 1.06 0.009 850 4 71 Um9 21.292 Hexaneclicic acid 73, 109, 129, 147, 203, 233, 247, 363 1.21 0.009 774 7 7 Um10 21.406 Ribonic acid 73, 103, 147, 217, 292, 307 1.09 0.002 909 4 7 Um11 21.814 Benzeneacetic acid 73, 103, 147, 150, 252, 281 1.08 0.015 878 4 7 7 Um11 21.814 Benzeneacetic acid 73, 103, 147, 150, 252, 281 1.08 0.015 878 4 7 7 Um12 22.882 D-Glucose 73, 147, 160, 205, 217, 229, 291, 319 1.142 0.000 928 4 7 7 7 Um14 22.882 D-Glucose 73, 147, 160, 205, 217, 229, 291, 319 1.142 0.000 928 4 7 7 4 Um16 23.9405 Um16 23, 147, 160, 205, 217, 229, 291, 319 1.142 <t< td=""><td>Um7</td><td>20.367, 20.509, 21.292</td><td>L(—)-Fructose</td><td>73, 89, 117, 133, 147, 201, 231</td><td>1.02</td><td>0.040</td><td>867</td><td>\rightarrow</td><td>\leftarrow</td><td>~</td></t<>	Um7	20.367, 20.509, 21.292	L(—)-Fructose	73, 89, 117, 133, 147, 201, 231	1.02	0.040	867	\rightarrow	\leftarrow	~
Ums 21.292 Hexaneclicic acid 73, 103, 123, 147, 217, 282, 307 121 0.009 774 ↑ 1 Um10 21.406 Ribonic acid 73, 103, 147, 217, 282, 307 1.09 0.002 909 ↓ ↑ Um11 21.814 Benzeneacetic acid 73, 103, 147, 161, 262, 281 1.09 0.002 909 ↓ ↑ Um11 21.814 Benzeneacetic acid 73, 103, 147, 161, 262, 281 1.08 0.015 878 ↓ ↑ ↑ Um12 22.380 β-D-Glucosynanose 73, 147, 160, 205, 217, 291, 319 1.01 0.002 923 ↓ ↑ ↑ Um14 22.362 D-Glucose 73, 147, 160, 205, 217, 229, 291, 319 1.161 0.002 923 ↓ ↑ ↓	Um8	21.160	Pentanedioic acid	73, 112, 147, 186198, 229, 260, 288	1.06	0.00	850	\rightarrow	\leftarrow	~
Umrl0 21.406 Rlbonic acid 73, 103, 147, 217, 282, 307 1.08 0.002 909 4 7 Umrl1 21.814 Benzeneacctic acid 73, 103, 147, 164, 179, 252, 281 1.08 0.015 878 4 7 Umrl2 22.380 p-D-Glucopyranose 73, 147, 160, 205, 217, 291, 345, 435 1.42 0.000 928 7 7 Umrl3 22.853 D-Glucopyranose 73, 147, 160, 205, 217, 229, 291, 319 1.01 0.002 923 4 7 Umrl4 22.862 D-Glucose 73, 147, 160, 205, 217, 229, 291, 319 1.11 0.000 930 4 7 Umrl6 23.368 D-Glucose 73, 147, 205, 243, 274, 361, 319 1.01 0.000 910 7 4 Umrl7 25.138 Myo-inositol 73, 103, 147, 205, 243, 274, 361, 371 1.01 0.010 708 4 7 Umrl8 25.523 L-Ascorbic acid 73, 103, 147, 205, 243, 361, 373 1.001 0.010 708 4 7	0m9	21.292	Hexanedioic acid	73, 109, 129, 147, 203, 233, 247, 363	1.21	0.009	774	~	/	/
Um11 21.814 Benzeneacetic acid 73, 89, 105, 147, 164, 179, 252, 281 1.08 0.015 878 4 7 Um12 22.380 β-D-Glucosynanose 73, 147, 191, 204, 291, 345, 435 1.42 0.000 928 7 7 Um13 22.853 D-Glucose 73, 147, 160, 205, 217, 229, 291, 319 1.01 0.002 923 4 7 Um14 22.862 D-Glacose 73, 147, 160, 205, 217, 229, 291, 319 1.18 0.000 928 7 7 Um15 22.358 Glucaric acid 73, 147, 160, 205, 217, 229, 291, 319 1.18 0.000 930 4 7 Um15 23.3420 Citric acid 73, 147, 160, 205, 217, 229, 333, 455 1.01 0.002 923 4 7 Um16 23.3420 Glucaric acid 73, 103, 147, 205, 353, 455 1.01 0.001 708 4 7 Um17 25.138 Myo-inositol 73, 103, 147, 205, 243, 351, 351 1.01 0.012 879 4 7 Um18	Um10	21.406	Ribonic acid	73, 103, 147, 217, 292, 307	1.09	0.002	606	\rightarrow	\leftarrow	~
Um12 22:380 β-D-Glucopyranose 73, 147, 191, 204, 291, 345, 435 1.42 0.000 928 ↑ ↑ Um13 22:853 D-Glucose 73, 103, 147, 160, 205, 217, 239, 319 1.01 0.002 923 ↓ / Um14 22:862 D-Glucose 73, 147, 160, 205, 217, 229, 291, 319 1.11 0.000 930 ↓ / / Um15 23:420 Citric acid 73, 147, 183, 211, 231, 273, 285, 365, 465 1.01 0.000 930 ↓ /	Um11	21.814	Benzeneacetic acid	73, 89, 105, 147, 164, 179, 252, 281	1.08	0.015	878	\rightarrow	\leftarrow	~
Um13 22.853 D-Glucose 73, 103, 147, 160, 205, 217, 319 1.01 0.002 923 4 / Um14 22.862 D-Galactose 73, 147, 160, 205, 217, 229, 291, 319 1.18 0.000 930 4 / / Um15 23.420 Citric acid 73, 147, 183, 211, 231, 273, 285, 363, 465 1.01 0.006 910 7 / / Um16 23.958 Glucaric acid 73, 103, 147, 292, 333, 423 1.01 0.010 708 4 / <t< td=""><td>Um12</td><td>22.380</td><td>β-D-Glucopyranose</td><td>73, 147, 191, 204, 291, 345, 435</td><td>1.42</td><td>0.000</td><td>928</td><td>~</td><td>\leftarrow</td><td>~</td></t<>	Um12	22.380	β-D-Glucopyranose	73, 147, 191, 204, 291, 345, 435	1.42	0.000	928	~	\leftarrow	~
Um14 22:862 D-Galactose 73, 147, 160, 205, 217, 229, 291, 319 1.18 0.000 930 ↓ / Um15 23:420 Citric acid 73, 147, 183, 211, 231, 273, 285, 363, 465 1.01 0.006 910 ↑ ↓ Um16 23:958 Glucaric acid 73, 103, 147, 292, 333, 423 1.001 0.010 708 ↓ ↑ Um17 25.138 Myo-inositol 73, 103, 147, 292, 333, 423 1.001 0.010 708 ↓ ↑ Um18 25.523 L-Ascorbic acid 73, 103, 147, 205, 243, 274, 361, 391 1.001 0.012 879 ↓ ↑ Um19 38.591 β-Glucuronide 73, 103, 147, 206, 243, 274, 361, 391 1.07 0.000 923 ↓ ↑ Um20 38.821 b-Clucuronide 73, 103, 147, 180, 257, 375 1.147 0.000 928 ↓ ↑ Um21 38.821 p-Lactose 73, 104, 204, 217, 361, 373, 392 1.147 0.000 928 ↓ ↑ ↑ Um21 39.434 p-Lactose 73, 104, 127, 204, 217, 361, 373, 393 1.17	Um13	22.853	D-Glucose	73, 103, 147, 160, 205, 217, 319	1.01	0.002	923	\rightarrow	/	~
Umt5 23.420 Citric acid 73, 147, 183, 211, 231, 273, 285, 363, 465 1.01 0.006 910 ↑ ↓ Umt6 23.368 Glucaric acid 73, 103, 147, 292, 333, 423 1.00 0.010 708 ↓ ↑ Umt17 25.138 Myo-inositol 73, 103, 147, 295, 305, 367, 432 1.001 0.012 879 ↓ ↑ Umt18 25.523 L-Ascorbic acid 73, 133, 147, 205, 243, 274, 361, 391 1.001 0.012 879 ↓ ↑ Umt19 38.591 β-Glucuronide 73, 103, 147, 180, 257, 375 1.17 0.000 923 ↓ ↑ ↓ Um20 38.821 p-Lactose 73, 103, 147, 180, 257, 375 1.147 0.000 928 ↓ ↑ Um21 39.434 Maltose 73, 103, 147, 191, 204, 217, 319, 361, 373, 392 1.147 0.000 928 ↓ ↑ Um21 39.434 Maltose 73, 103, 147, 191, 204, 217, 243, 361, 373, 393 1.17 0.000 928 ↓ ↑ ↑ Um22 40.406 p-(+)Celiobiose 73, 103, 177, 191, 204, 217, 24	Um14	22.862	D-Galactose	73, 147, 160, 205, 217, 229, 291, 319	1.18	0.000	930	\rightarrow	/	~
Um16 23:958 Glucaric acid 73, 103, 147, 292, 333, 423 1.00 0.010 708 ↓ ↑ Um17 25.138 Myo-inositol 73, 103, 147, 265, 305, 367, 432 1.001 0.010 708 ↓ ↑ Um18 25.523 L-Ascorbic acid 73, 133, 147, 205, 243, 274, 361, 391 1.001 0.012 879 ↓ ↑ Um19 38.591 β-Glucuronide 73, 103, 147, 180, 257, 375 1.07 0.000 923 ↓ ↑ Um20 38.821 p-Lactose 73, 103, 129, 147, 204, 217, 319, 361, 392 1.147 0.000 928 ↓ ↑ Um21 39.434 Maltose 73, 103, 129, 147, 204, 217, 319, 361, 373, 392 1.147 0.000 928 ↓ ↑ Um21 39.434 maltose 73, 103, 147, 191, 204, 217, 243, 361, 373, 393 1.17 0.000 928 ↓ ↑	Um15	23.420	Citric acid	73, 147, 183, 211, 231, 273, 285, 363, 465	1.01	0.006	910	\leftarrow	\rightarrow	\rightarrow
Umt7 25.138 Myo-inositol 73, 103, 147, 265, 367, 432 1.001 0.012 879 4 7 Umt8 25.523 L-Ascorbic acid 73, 133, 147, 205, 243, 274, 361, 391 1.08 0.012 879 4 7 Umt9 38.591 b-Clucuronide 73, 103, 147, 180, 257, 375 1.07 0.000 923 4 7 7 Umt9 38.591 b-Clucuronide 73, 103, 147, 180, 257, 375 1.17 0.000 923 4 7 7 1 7 <td>Um16</td> <td>23.958</td> <td>Glucaric acid</td> <td>73, 103, 147, 292, 333, 423</td> <td>1.00</td> <td>0.010</td> <td>708</td> <td>\rightarrow</td> <td>\leftarrow</td> <td>~</td>	Um16	23.958	Glucaric acid	73, 103, 147, 292, 333, 423	1.00	0.010	708	\rightarrow	\leftarrow	~
Umt8 25.523 L-Ascorbic acid 73, 133, 147, 205, 243, 274, 361, 391 1.08 0.042 800 4 7 Umt9 38.591 p-Glucuronide 73, 103, 147, 180, 257, 375 1.07 0.000 923 4 7 7 Umt20 38.821 p-Lactose 73, 103, 129, 147, 204, 217, 319, 361, 392 1.147 0.000 928 4 7 1 Umt21 39.434 Maltose 73, 147, 204, 217, 319, 361, 392 1.147 0.000 928 4 7 7 Umt21 39.434 Maltose 73, 147, 204, 217, 313, 352 1.119 0.000 928 4 7 7 Umt22 40.406 D-(+)Cellobiose 73, 103, 127, 204, 217, 243, 361, 373, 393 1.17 0.000 928 4 7 7	Um17	25.138	Myo-inositol	73, 103, 147, 265, 305, 367, 432	1.001	0.012	879	\rightarrow	\leftarrow	~
Um19 38.591 β-Glucuronide 73, 103, 147, 180, 257, 375 1.07 0.000 923 ↓ / Um20 38.821 p-Lactose 73, 103, 129, 147, 204, 217, 319, 361, 392 1.147 0.000 928 ↓ / Um21 39.434 Mattose 73, 147, 204, 217, 361, 373, 392 1.147 0.000 928 ↓ / Um22 40.406 p-(+)Cellobiose 73, 147, 191, 204, 217, 243, 361, 373, 393 1.17 0.000 928 ↓ /	Um18	25.523	L-Ascorbic acid	73, 133, 147, 205, 243, 274, 361, 391	1.08	0.042	800	\rightarrow	~	~
Um20 38.821 D-Lactose 73, 103, 129, 147, 204, 217, 319, 361, 392 1.147 0.000 928 4 / Um21 39.434 Maltose 73, 147, 204, 217, 361, 373, 392 1.19 0.000 824 4 1<	Um19	38.591	ß-Glucuronide	73, 103, 147, 180, 257, 375	1.07	0.000	923	\rightarrow	/	/
Um21 39.434 Maltose 73, 147, 204, 217, 361, 373, 392 1.19 0.000 824 \text{triangle}/timese \text{triangle}/timac \text{triangle}/timese <	Um20	38.821	D-Lactose	73, 103, 129, 147, 204, 217, 319, 361, 392	1.147	0.000	928	\rightarrow	/	~
Um22 40.406 D-(+)Cellobiose 73, 103, 147, 191, 204, 217, 243, 361, 373, 393 1.17 0.000 928 U	Um21	39.434	Maltose	73, 147, 204, 217, 361, 373, 392	1.19	0.000	824	\rightarrow	~	~
	Um22	40.406	D-(+)Cellobiose	73, 103, 147, 191, 204, 217, 243, 361, 373, 393	1.17	0.000	928	\rightarrow	/	/

8

-0.583; -0.743, -0.729, -0.568), and positively associated with IFN- γ (0.526; 0.538; 0.428; 0.460; 0.584; 0.522).

DISCUSSION

This study evaluated the protective effects of GJ and LGWWJX on cold asthma induced by OVA challenge and swimming in icewater in rats at the metabolomics level. Seven metabolic pathways were affected in cold asthma. Based on the identified potential biomarkers and associated metabolic pathways, the observed changes were associated with energy metabolism and oxidative stress in cold asthma rats. GJ and LGWWJX reversed the majority of metabolite changes that resulted from cold asthma. LGWWJX exerted more powerful beneficial effects than GJ on cold asthma.

Energy Metabolism

In this study, a prominent metabolic feature observed in cold asthmatic rats was a change in energy metabolism. Three major sugar metabolic pathways are involved in energy metabolism: starch and sucrose metabolism, galactose metabolism, and the TCA cycle. Carbohydrates, proteins, and fats are the main sources of energy in mammals. Previous studies showed that energy metabolism markers were reduced in urine and serum in models of experimental asthma (Ho et al., 2013; Hui et al., 2017). Carbohydrates are generally catabolized in cells via the concerted action of glycolysis and the TCA cycle under aerobic condition (Saude et al., 2009). Carbohydrates are converted to propanoic acid by pentose phosphate under anoxic conditions. In our study, elevated propanoic acid (a product of glycolysis), citric acid (a product of the TCA cycle), and butanedioic acid (succinic acid, product of the TCA cycle) demonstrated alternations in energy metabolism. These products typically accumulate during abnormal lung respiration, especially under hypoxic or inflamed conditions (Wolak et al., 2009). Increased propanoic acid levels have been reported in the serum of adults with asthma, in the urine of children with asthma, and in BALF from patients with cystic fibrosis (Jung et al., 2013; Alvarez et al., 2017; Quan-Jun et al., 2017). Citric acid is a metabolic product carbohydrate breakdown via the TCA cycle that provides additional energy in

(M) D-Glucose; (N) D-Galactose; (O) Citric acid; (P) Glucaric acid; (Q) Myoinositol; (R) L-Ascorbic acid; (S) β -Glucuronide; (T) D-Lactose; (U) Maltose; (V) D-(+)Cellobiose. C, control group; M, model group; GJ, Gan Jiang decoction group; LGWWJX, LGWWJX decoction group. #p < 0.05, ##p < 0.01, compared with the control group. *p < 0.05, **p < 0.01, compared with the model group.

the form of adenosine triphosphate (ATP). Increased citric acid has been reported in the plasma of adults with cystic fibrosis during pulmonary crises and in the urine of asthmatic rats, which demonstrated consistent impairment of energy metabolism in these respiratory diseases (Peng et al., 2014). Elevated levels of butanedioic acid (succinic acid) were observed in the serum of patients with moderate asthma, and in the urine of children with asthma (Jung et al., 2013; Peng et al., 2014; Chang et al., 2015). In addition, we found that levels of 3,4-dihydroxybutanoic acid were also elevated in the M group, which could indicate energy metabolism disorders related to the increased ketone bodies (β -oxidation products of free fatty acids), which can provide energy to organs such as the brain when carbohydrate stores are depleted (Wu et al., 2018). In addition, significant correlations have been observed between energy metabolism metabolites and inflammatory cells in asthma, supporting a relationship between energy metabolism and inflammation. In this study, carbohydrate-related metabolites such as D-galactose, D-glucose,

glucopyranose, D-mannitol, lactose, and other metabolites were decreased in the model group rats compared with the control group rats. These sugar and sugar alcohols might have been broken down into propanoic acid, citric acid, and butanedioic acid to provide additional energy, consistent with results from a previous study (Hui et al., 2017). Changes in energy metabolism were the main characteristics in this study, which may have been related to increased respiratory burden, and increased use of energy to recruit inflammatory cells and support increased energy demands to maintain body temperature in cold asthma rats. GJ and LGWWJX decoctions normalized the majority of metabolites altered in the cold asthma model, and LGWWJX exerted more powerful effects than GJ on energy metabolism. This difference might have been due to the change of property of warming and the complex chemical composition under the compatibility of GJ in LGWWJX. Cui et al. (2018) showed that the active components in dried ginger for treatment of cold-related lung fluid retention in rats with COPD have different tissue distribution.

Oxidative Stress

Oxidative stress is closely associated with asthma (Sedgwick et al., 1990; Vachier et al., 1992; Dworski, 2000). Inflammatory cells such as eosinophils and neutrophils release reactive oxygen species (ROS) in asthmatic patients (Fitzpatrick et al., 2014). Reduction in antioxidant capacity and overproduction of ROS results in redox imbalance. ROS contribute to the pathogenesis of asthma through pulmonary function impairment, mast cell degranulation, airway remodeling, and mucus secretion by epithelium, which results in aggravation of local inflammation the lung (Zhang et al., 2018). In this study, three pathways may have been involved in cold asthma-related oxidative stress: lipid peroxidation, glycine, serine, and threonine metabolism, and inositol phosphate metabolism.

Lipid Peroxidation

Lipid peroxidation is a consequence of oxidative stress characterized by degradation of polyunsaturated fatty acids into volatile organic acids (VOCs), such as benzoic acid, glutaric acid, and heptaric acid, alkanes, and aldehydes, which are exlahed via the lungs (Cap, 2004; Fehrenbach et al., 2014; Zhang et al., 2018). Loureiro et al. (2016) examined the relationship between oxidative stress, eosinophilic inflammation, and disease severity in asthmatic patients through a metabolomics study of alkanes and aldehvdes. This study demonstrated that increased alkanes and aldehydes positively correlated with asthma severity and eosinophils. Increased benzoic acid, hexanedioic acid, (urine), heptadecane, and hexadecenoic acid (serum), and decreased octadecanoic acid (serum), pentanedioic acid, and benzeneacetic acid (urine) in the M group in our study indicated abnormal lipid peroxidation, which may have been related to oxidative stress in cold asthma. Increased levels alkanes and aldehydes were also reported to be related to severity of asthma (Loureiro et al., 2014). In addition, a significant correlation was observed between heptadecane, benzoic acid, and hexanedioic acid, and inflammatory cells in asthma, which suggested that oxidative stress may play a role in the pathogenesis of cold asthma. GJ and LGWWJX reversed these changes, and the effect of LGWWJX decoction was more pronounced than that of GJ.

The Glycine, Serine, and Threonine Metabolism Pathway

Glycine, serine, and threonine are closely related amino acids that share common biochemical pathways. Glycine can be converted to serine, then choline and cholamine, which participate in the biosynthesis of purines and pyrimidines. Wang et al. (2014) studied the cytoprotective effects of glycine and indicated that glycine inhibits oxidative stress through enhancing intracellular glutathione concentrations in IPEC-1 cells. Legendre et al. (2009) found that glycine can reduce inflammatory mediators and ROS. Grotz et al. (2001) showed that glycine can significantly reduce lung injury by inhibiting inflammatory cell aggregation and attenuating lipid peroxidation. In our study, glycine levels were decreased in the serum of cold asthma rats and the glycine, serine, and threonine metabolic pathway was disrupted. In addition, glycine, phosphate (3:1), glycerol, and myoinositol are raw materials for synthesis of phospholipids, which are important components of cell membranes. Reduced levels of these metabolites reflected decreased phospholipid synthesis. We speculated that reduced glycine in cold asthma rats may have been related to oxidative stress and inflammatory cell infiltration, but the specific mechanisms have not been characterized.

Inositol Phosphate Metabolism

Altered levels of myoinositol are related to inositol phosphate metabolism. Phosphatidylinositol 3-kinases (PI3K), a key

element in inositol phosphate metabolism, generates lipid second messengers that control an array of intracellular signaling pathways which play important roles in inflammation. A previous study showed that oxidative stress is associated with the PI3K signaling pathway. Ng et al. (2014) showed that artesunate can suppress cigarette smoke-induced airway inflammation and oxidative damage in mice, likely via inhibition of the PI3K signaling pathway. Rossios et al. (2012) showed that formoterol reversed oxidative stress-induced corticosteroid insensitivity and decreased $\beta 2$ adrenoceptor-dependent cAMP production via inhibition of PI3K signaling, which suggested a relationship between oxidative stress and the PI3K pathway. Other factors related to inositol phosphate metabolism are also strongly associated with asthma. Mizuta et al. (2015) showed that long-chain free fatty acid binding to fatty acid receptors increased inositol phosphate synthesis in human airway smooth muscle cells (hASM). Brown et al. (2016) showed that flavonols significantly inhibited purified phosphodiesterase-4 (PDE4) and PLCB enzymes, attenuated acetylcholine-induced increases in inositol phosphates and CPI-17 phosphorylation in hASM cells and relaxed airway smooth muscle. These studies indicated the crucial role of inositol phosphate metabolism in asthma. In our study, decreased

myoinositol and pathway analysis suggested disruption of inositol phosphate metabolism was a characteristic of cold asthma, and GJ and LGWWJX both normalized myoinositol levels. However, the specific mechanisms of these effects have not been characterized.

Other Metabolites

In addition to metabolites that contribute to energy metabolism and oxidative stress, other metabolites were associated with cold asthma. L-Ascorbic acid (vitamin C) is an important low molecular weight antioxidant that maintains antioxidative defenses at the air-lung interface (Nirina et al., 2015). Previous studies have shown that lower levels of essential antioxidants in circulation were associated with increased risk of disease (Manju et al., 2002; Saygili et al., 2002; Aydin et al., 2006). Absorption of ascorbic acid in the small intestine occurs primarily through Na⁺dependent active transport (Rahman et al., 2017). In this study, reduced L-ascorbic acid suggested alterations in the antioxidant defense system, which can result in oxidative stress. Previous reports showed that vitamin C can reduce histamine, which results in mast cell degranulation allergic reactions, but the mechanisms that result in these allergic effects have not been characterized (Hagel et al., 2013; Romero et al., 2015). Vollbracht et al. (2018) observed ascorbate deficiency in patients with allergic diseases and treatment with intravenous high-dose vitamin C reduced allergy-related symptoms. In addition, in our study, the level of D-pinitol was also decreased. D-pinitol exerts insulin-like effects via facilitation of transport of creatine and other nutrients into muscle cells (Davis et al., 2000). D-Pinitol also exhibits anti-inflammatory activity and can contribute to prevention of cardiovascular diseases (Singh et al., 2001; Kim et al., 2005). Lee et al. (2007) showed that D-pinitol reduces allergic airway inflammation and hyperresponsiveness due to alteration of Th1/Th2 polarization via suppression of GATA-3 and increased T-bet expression. In our study, GJ and LGWWJX decoctions normalized L-ascorbic acid and D-pinitol in M group rats, but the mechanisms were not clear.

Cold Asthma

Cold weather affects the respiratory epithelium and induces bronchial hyperresponsiveness (Liener et al., 2003; Cruz and Togias, 2008). Cold weather further aggravates respiratory symptoms in asthma (Hyrkäs-Palmu et al., 2018). Cold asthma is a syndrome diagnosed in CM clinics. CM doctors postulate that cold will injure the spleen, and chronic spleen injury will increase sputum drinking, which accumulates in the lung, resulting in asthma. As such, CM doctors advocate for "warming the stomach to dispel cold, warming the lung to resolve fluid" to treat cold asthma. GJ has warm and spicy properties and it is often used in combination with other herbs to treat cold asthma in clinics. LGWWJX, which contains GJ, is the main prescription for treating cold asthma. In this prescription, GJ is the main component and it can warm the lung and spleen. Asari Radix Et Rhizoma helps GJ to warm the lung, Poria helps GJ tonify the spleen and dissipate excessive fluid, Schisandrae Chinensis Fructus astringes the lung to stop cough, and Glycyrrhizare Radix Et Rhizoma moderates the properties of the herbs.

It is generally accepted that the effects of CM prescriptions are closely related to their chemical compositions. As such, modern research has also focused on chemical characterization of Chinese remedies. Gingerols, major medicinal ingredients in dried ginger, exert antipyretic, analgesic, anti-inflammatory, and antioxidant effects (Bak et al., 2012; Townsend et al., 2014; Liang et al., 2018). A previous study reported that drying temperature of ginger results in conversion of gingerols to shogaols, resulting in increased antioxidant and antimicrobial activities (Ghasemzadeh et al., 2018). In our previous study, we found that other herbs in LGWWJX decoction combined with dried ginger affected the concentrations of 6-gingerol, 8-gingerol, 6-shogao, and 10gingerol (Ran et al., 2018). However, it is difficult to characterize the interactions between GJ and other herbs in LGWWJX decoction, and to determine which components have the greatest effects on cold asthma. However, the advantages of metabolomics were apparent in this study.

CONCLUSION

In this study, serum and urine metabolites identified by GC-MS and general pharmacodynamic evaluation (morphological observation, histopathology, inflammatory factors, and visceral indices) were used to compare the effects of GJ and LGWWJX decoctions on cold asthma. Significant metabolic abnormalities were observed for 37 metabolites (15 in serum, 22 in urine) in rats with cold asthma. These altered metabolites might be potential biomarkers or therapeutic targets during development of cold asthma. Furthermore, pathway analysis demonstrated that pathways associated with energy metabolism and oxidative stress were disrupted in rats with cold asthma. GJ and LGWWJX regulated metabolites associated with various pathways. We demonstrated that the CM prescription LGWWJX exerted stronger effects than the single herb, GJ, at the metabolite level. However, the specific mechanisms of compatibility of these Chinese Medicines requires further study.

AUTHOR CONTRIBUTIONS

YQH, XW, and YH conceived and designed the experiments. SR, FS, and YS performed the experiments. SR and YQH drafted this manuscript and analyzed the data. YH and XW provided final approval of the version to be published. All of the authors discussed the complete dataset to establish an integral and coherent analysis.

FUNDING

This work was supported by Anhui Province Natural Science Foundation (1708085MH196) and the National Natural Science Foundation of China (No. 81102811).

ACKNOWLEDGMENTS

We thank the editor for careful review.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar. 2019.00284/full#supplementary-material

FIGURE S1 | UPLC-Q-TOF/MS Total ion Chromatogram of LGWWJX Decoction.

FIGURE S2 | BALF inflammatory cells and differential counting in each group.

FIGURE S3 | Serum inflammatory cells of rats in each group.

 $\ensuremath{\textbf{FIGURE}}$ S4 | GC-MS TIC chromatograms of QC samples in rats serum (A) and urine (B).

TABLE S1 | Characterization of chemical composition in LGWWJX decoction

 by UPLC-Q-TOF/MS.

REFERENCES

- Alvarez, J. A., Chong, E. Y., Walker, D. I., Chandler, J. D., Michalski, E. S., Grossmann, R. E., et al. (2017). Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: a pilot randomized study of highdose vitamin D3 administration. *Metabolism* 70, 31–41. doi: 10.1016/j.metabol. 2017.02.006
- Aydin, A., Arsova-Sarafinovska, Z., Sayal, A., Eken, A., Erdem, O., Erten, K., et al. (2006). Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia. *Clin. Biochem.* 39, 176–179. doi: 10. 1016/j.clinbiochem.2005.11.018
- Bak, M. J., Ok, S., Jun, M., and Jeong, W. S. (2012). 6-shogaol-rich extract from ginger up-regulates the antioxidant defense systems in cells and mice. *Molecules* 17, 8037–8055. doi: 10.3390/molecules17078037
- Brown, A., Danielsson, J., Townsend, E. A., Zhang, Y., Perez-Zoghbi, J. F., Emala, C. W. Sr., et al. (2016). Attenuation of airway smooth muscle contractility via flavonol-mediated inhibition of phospholipase-C. Am. J. Physiol. Lung. Cell. Mol. Physiol. 310:758. doi: 10.1152/ajplung.00215.2015
- Cap, P. (2004). Gas chromatography/mass spectrometry analysis of exhaled leukotrienes in asthmatic patients. *Thorax* 59, 465–470. doi: 10.1136/thx.2003. 011866
- Chang, C., Guo, Z. G., He, B., and Yao, W. Z. (2015). Metabolic alterations in the sera of Chinese patients with mild persistent asthma: a GC-MS-based metabolomics analysis. *Acta Pharmacol. Sin.* 36, 1356–1366. doi: 10.1038/aps. 2015.102
- Cruz, A. A., and Togias, A. (2008). Upper airways reactions to cold air. *Curr. Allergy Asthma Rep.* 8, 111–117. doi: 10.1007/s11882-008-0020-z
- Cui, Y., Wang, Z., Li, L.-L., Li, R.-J., Feng, J., Ma, K., et al. (2018). Effective components of dried ginger in warming lung to reduce watery phlegm and *In vivo* tissue distribution based on the "syndrome-efficacy-biological sample analysis" method. *World J. Tradit. Chin. Med.* 4, 105.
- Davis, A., Christiansen, M., Horowitz, J. F., Klein, S., Hellerstein, M. K., and Ostlund, R. E. (2000). Effect of pinitol treatment on insulin action in subjects with insulin resistance. *Diabetes Care* 23, 1000–1005. doi: 10.2337/diacare.23.7. 1000
- Dworski, R. (2000). Oxidant stress in asthma. Thorax 55, 51–53. doi: 10.1136/ thorax.55.suppl_2.s51
- Fehrenbach, H., Smolinska, A., Klaassen, E. M. M., Dallinga, J. W., Van De Kant, K. D. G., Jobsis, Q., et al. (2014). profiling of volatile organic compounds in exhaled breath as a strategy to find early predictive signatures of asthma in children. *PLoS One* 9:e95668. doi: 10.1371/journal.pone.0095668
- Fitzpatrick, A. M., Park, Y., Brown, L. A., and Jones, D. P. (2014). Children with severe asthma have unique oxidative stress-associated metabolomic profiles. *J. Allergy Clin. Immunol.* 133:258.e1-8. doi: 10.1016/j.jaci.2013.10.012
- Ghasemzadeh, A., Jaafar, H. Z. E., Baghdadi, A., and Tayebi-Meigooni, A. (2018). Formation of 6-, 8- and 10-shogaol in ginger through application of different drying methods: altered antioxidant and antimicrobial activity. *Molecules* 23:1646.
- Grotz, M. R. W., Pape, H. C., van Griensven, M., Stalp, M., Rohde, F., Bock, D., et al. (2001). Glycine reduces the inflammatory response and organ damage in a twohit sepsis model in rats. *Shock* 12, 116–121. doi: 10.1097/00024382-200116020-00006
- Hagel, A. F., Layritz, C. M., Hagel, W. H., Hagel, H. J., Hagel, E., Dauth, W., et al. (2013). Intravenous infusion of ascorbic acid decreases serum histamine concentrations in patients with allergic and non-allergic diseases. *Naunyn Schmiedebergs Arch. Pharmacol.* 386, 789–793. doi: 10.1007/s00210-013-0880-1
- Han, Y., Li, Y., Wang, Y., Gao, J., Xia, L., and Hong, Y. (2016). Comparison of fresh, dried and stir-frying gingers in decoction with blood stasis syndrome in rats based on a GC-TOF/MS metabolomics approach. *J. Pharm. Biomed. Anal.* 129, 339–349. doi: 10.1016/j.jpba.2016.07.021
- Ho, W. E., Xu, Y. J., Xu, F., Cheng, C., Peh, H. Y., Tannenbaum, S. R., et al. (2013).
 Metabolomics reveals altered metabolic pathways in experimental asthma. *Am. J. Respir. Cell. Mol. Biol.* 48, 204–211. doi: 10.1165/rcmb.2012-0246oc
- Hui, S., Ghergurovich, J. M., Morscher, R. J., Jang, C., Teng, X., Lu, W., et al. (2017). Glucose feeds the TCA cycle via circulating lactate. *Nature* 551, 115–118. doi: 10.1038/nature24057
- Hyrkäs-Palmu, H., Ikäheimo, T. M., Laatikainen, T., Jousilahti, P., Jaakkola, M. S., and Jaakkola, J. J. K. (2018). Cold weather increases respiratory symptoms and

functional disability especially among patients with asthma and allergic rhinitis. *Sci. Rep.* 8, 101–131. doi: 10.1038/s41598-018-28466-y

- Jung, J., Kim, S. H., Lee, H. S., Choi, G. S., Jung, Y. S., Ryu, D. H., et al. (2013). Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. *Clin. Exp. Allergy*. 43, 425–433. doi: 10.1111/cea.12089
- Khan, A. M., Shahzad, M., Raza Asim, M. B., Imran, M., and Shabbir, A. (2015). Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response. *Pharm. Biol.* 53, 359–367. doi: 10.3109/13880209.2014. 920396
- Kim, J. I., Kim, J. C., Kang, M. J., Lee, M. S., Kim, J. J., and Cha, I. J. (2005). Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus: a randomized controlled study. *Eur J Clin. Nutr.* 59, 456–458. doi: 10.1038/sj.ejcn.1602081
- Lee, J. S., Lee, C. M., Jeong, Y. I., Jung, I. D., Kim, B. H., Seong, E. Y., et al. (2007). D-pinitol regulates Th1/Th2 balance via suppressing Th2 immune response in ovalbumin-induced asthma. *FEBS Lett.* 581, 57–64. doi: 10.1016/j.febslet.2006. 11.077
- Legendre, P., Förstera, B., Jüttner, R., and Meie, J. C. (2009). Glycine receptors caught between genome and proteome-functional implications of rna editing and splicing. *Front. Mol. Neurosci.* 2, 1–8. doi: 10.3389/neuro.02.0 23.2009
- Liang, N., Sang, Y., Liu, W., Yu, W., and Wang, X. (2018). Anti-inflammatory effects of gingerol on lipopolysaccharide-stimulated RAW 264.7 cells by inhibiting NF-kB signaling pathway. *Inflammation* 41, 835–845. doi: 10.1007/ s10753-018-0737-3
- Liener, K., Leiacker, R., Lidemann, J., Rettinger, G., and Keck, T. (2003). Nasal mucosal temperature after exposure to cold, dry air and hot, humid air. *Acta Oto-Laryngologica* 123, 851–856.
- Loureiro, C. C., Duarte, I. F., Gomes, J., Carrola, J., Barros, A. S., Gil, A. M., et al. (2014). Urinary metabolomic changes as a predictive biomarker of asthma exacerbation. *J. Allergy Clin. Immunol.* 133, e261–e265. doi: 10.1016/j.jaci.2013. 11.004
- Loureiro, C. C., Oliveira, A. S., Santos, M., Rudnitskaya, A., Todo-Bom, A., Bousquet, J., et al. (2016). Urinary metabolomic profiling of asthmatics can be related to clinical characteristics. *Allergy* 71, 1362–1365. doi: 10.1111/all.12935
- Manju, V., Balasubramanian, V., and Nalini, N. (2002). Oxidative stress and tumor markers incervical cancer patients. J. Biochem. Mol. Biol. Biophys. 6, 387–390. doi: 10.1080/1025814021000036115
- Mizuta, K., Zhang, Y., Mizuta, F., Hoshijima, H., Shiga, T., Masaki, E., et al. (2015). Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. *Am. J. Physiol. Lung Cell. Mol. Physiol.* 309:982. doi: 10.1152/ajplung.00041.2015
- Ng, D. S., Liao, W., Tan, W. S., Chan, T. K., Loh, X. Y., and Wong, W. S. (2014). Anti-malarial drug artesunate protects against cigarette smoke-induced lung injury in mice. *Phytomedicine* 21, 1638–1644. doi: 10.1016/j.phymed.2014.07.018
- Nirina, L., Greg, R., Elif, M. B., Ester, R. E., Jamshid, P., Anders, B., et al. (2015). Identification of vitamin C transporters. *BMJ Open* 5:e006979. doi: 10.1136/ bmjopen-2014-006979
- Papadimitropoulos, M. P., Vasilopoulou, C. G., Maga-Nteve, C., and Klapa, M. I. (2018). Untargeted GC-MS metabolomics. *Methods Mol. Biol.* 1738, 133–147. doi: 10.1007/978-1-4939-7643-0_9
- Peng, J., St. Laurent, C. D., Befus, A. D., Zhou, R., and Li, L. (2014). Metabolomic profiling of bronchoalveolar lavage fluids by isotope labeling liquid chromatography mass spectrometry: a promising approach to studying experimental asthma. *Metabolomics* 10, 1305–1317. doi: 10.1007/s11306-014-0667-5
- Qi, Y., Li, S., Pi, Z., Song, F., Lin, N., Liu, S., et al. (2014). Metabonomic study of Wu-tou decoction in adjuvant-induced arthritis rat using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 95, 11–19. doi: 10.1016/j.jchromb.2014.01.044
- Quan-Jun, Y., Jian-Ping, Z., Jian-Hua, Z., Yong-Long, H., Bo, X., Jing-Xian, Z., et al. (2017). Distinct metabolic profile of inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. *Basic Clin. Pharmacol. Toxicol.* 120, 303–311. doi: 10.1111/bcpt.12686
- Rahman, F., Bordignon, B., Culerrier, R., Peiretti, F., Spicuglia, S., Djabali, M., et al. (2017). Ascorbic acid drives the differentiation of mesoderm-derived

embryonic stem cells. Involvement of p38 MAPK/CREB and SVCT2 transporter. *Mol. Nutr. Food Res.* 61:1600506. doi: 10.1002/mnfr.201600506

- Ran, S., Sun, F., Song, Y., Wang, X. L., Hong, Y., Han, Y. (2018). Effects of drug compatibility in Linggan Wuwei Jiangxin Decoction on the contents of Gingerols components in Zingiberis Rhizoma. J. Liaoning Univ. TCM 20, 62–64.
- Romero, S. A., Ely, M. R., Sieck, D. C., Luttrell, M. J., Buck, T. M., Kono, J. M., et al. (2015). Effect of antioxidants on histamine receptor activation and sustained postexercise vasodilatation in humans. *Exp. Physiol.* 100, 435–449. doi: 10.1111/ bcpt.12686
- Rossios, C., To, Y., Osoata, G., Ito, M., Barnes, P. J., and Ito, K. (2012). Corticosteroid insensitivity is reversed by formoterol via phosphoinositide-3kinase inhibition. *Br. J. Pharmacol.* 167, 775–786. doi: 10.1111/j.1476-5381. 2012.01864.x
- Saude, E. J., Obiefuna, I. P., Somorjai, R. L., Ajamian, F., Skappak, C., Ahmad, T., et al. (2009). Metabolomic biomarkers in a model of asthma exacerbation: urine nuclear magnetic resonance. *Am. J. Respir. Crit. Care Med.* 179, 25–34. doi: 10.1164/rccm.200711-1716oc
- Saygili, E. I., Akcay, T., Konukoglu, D., and Papilla, C. (2002). Oxidative stress and tumor markers in cervical cancer patients. J. Biochem. Mol. Biol. Biophys. 6, 387–390. doi: 10.1080/1025814021000036115
- Sedgwick, J. B., Geiger, K. M., and Busse, W. W. (1990). Superoxide generation by hypodense eosinophils from patients with asthma. Am. Rev. Respir. Dis. 142, 120–125. doi: 10.1164/ajrccm/142.1.120
- Shi, Y. W., Wang, C. P., Wang, X., Zhang, Y. L., Liu, L., Wang, R. W., et al. (2012). Uricosuric and nephroprotective properties of Ramulus Mori ethanol extract in hyperuricemic mice. *J. Ethnopharmacol.* 143, 896–904. doi: 10.1016/j.jep.2012. 08.023
- Singh, R. K., Pandey, B. L., Tripathi, M., and Pandey, V. B. (2001). Antiinflammatory effect of (+)-pinitol. *Fitoterapia* 72, 168–170. doi: 10.1016/s0367-326x(00)00267-7
- Townsend, E. A., Zhang, Y., Xu, C., Wakita, R., and Emala, C. W. (2014). Active components of ginger potentiate beta-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins. *Am. J. Respir. Cell. Mol. Biol.* 50, 115–124. doi: 10.1165/rcmb.2013-01330c
- Vachier, I., Damon, M., Le Doucen, C., De Paulet, A. C., Chanez, P., Michel, F. B., et al. (1992). Increased oxygen species generation in blood monocytes of asthmatic patients. *Am. Rev. Respir. Dis.* 146, 1461–1466. doi: 10.1164/ajrccm/ 146.5_pt_1.1161
- Vinaixa, V., Schymanski, E. L., Neumann, S., Navarro, M., Salek, R. M., and Yanes, O. (2016). Mass spectral databases for LC/MS- and GC/MS-based

metabolomics: state of the field and future prospects. *TrAC Trends Anal. Chem.* 78, 23–25. doi: 10.1016/j.trac.2015.09.005

- Vollbracht, C., Raithel, M., Krick, B., Kraft, K., and Hagel, A. F. (2018). Intravenous vitamin C in the treatment of allergies: an interim subgroup analysis of a long-term observational study. J. Int. Med. Res. 46, 3640–3655. doi: 10.1177/ 0300060518777044
- Wang, M., Lamers, R. J., Korthout, H. A., Van Nesselrooij, J. H., Witkamp, R. F., Van Der Heijden, R., et al. (2005). Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. *Phytother. Res.* 19, 173–182. doi: 10.1002/ ptr.1624
- Wang, W., Wu, Z., Lin, G., Hu, S., Wang, B., Dai, Z., et al. (2014). Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells. *J. Nutr.* 144, 1540–1548. doi: 10.3945/jn.114. 194001
- Wolak, J. E., Esther, C. R. Jr., and O'connell, T. M. (2009). Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. *Biomarkers* 14, 55–60. doi: 10.1080/13547500802688194
- Wu, L., Zhang, X., and Zhao, L. (2018). Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer's disease risk reduction and early intervention. J. Neurosci. 38, 6665–6681. doi: 10.1523/jneurosci.2262-17.2018
- Yan, L. (2016). Effect of Linggan Wuwei Jiangxin Decoction on the Expression of the Molecules Related to cAMP-PKA Athway on Asthma. Lanzhou: GanSu University of Chinese Medicine. doi: 10.1523/JNEUROSCI.2262-17.2018
- Zhang, N., Deng, C., Zhang, X., Zhang, J., and Bai, C. (2018). Inhalation of hydrogen gas attenuates airway inflammation and oxidative stress in allergic asthmatic mice. *Asthma Res. Pract.* 4:3. doi: 10.1186/s40733-018-0040-y

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Ran, Sun, Song, Wang, Hong and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.