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Abstract

Molecular docking is an important tool for the discovery of new biologically active molecules

given that the receptor structure is known. An excellent environment for the development of

new methods and improvement of the current methods is being provided by the rapid growth

in the number of proteins with known structure. The evaluation of the solvation energies out-

stands among the challenges for the modeling of the receptor-ligand interactions, especially

in the context of molecular docking where a fast, though accurate, evaluation is ought to be

achieved. Here we evaluated a variation of the desolvation energy model proposed by

Stouten (Stouten P.F.W. et al, Molecular Simulation, 1993, 10: 97–120), or SV model. The

SV model showed a linear correlation with experimentally determined solvation energies, as

available in the database FreeSolv. However, when used in retrospective docking simula-

tions using the benchmarks DUD, charged-matched DUD and DUD-Enhanced, the SV

model resulted in poorer enrichments when compared to a pure force field model with no

correction for solvation effects. The data provided here is consistent with other empirical sol-

vation models employed in the context of molecular docking and indicates that a good

model to account for solvent effects is still a goal to achieve. On the other hand, despite the

inability to improve the enrichment of retrospective simulations, the SV solvation model

showed an interesting ability to reduce the number of molecules with net charge -2 and -3 e

among the top-scored molecules in a prospective test.

Introduction

The increased number of solved protein structures provide a unique opportunity for the appli-

cation of the so-called ‘structure-based’ methods for the development of new chemical entities

able to regulate biological systems [1]. Additionally, since many structures have ligands bound

to macromolecules, about 73% according to a naïve search in the PDB website [2], there is a

favorable situation for the development of novel approaches and optimization of the current

models for protein-ligand interaction [3,4].

The thermodynamics of ligand binding is based on the equilibrium between a receptor R

and a ligand L, forming a complex RL: R + L$ RL. The most important thermodynamic
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quantity associated with the measurement of this interaction is the change in the free energy of

the system [5]. This quantity can be evaluated using computationally expensive methods such

as free energy perturbation (FEP) or thermodynamic integration (TI) [6]. On the other hand,

inexpensive methods are available nowadays to rapidly score molecular interactions. In this

scenario, the potential energies associated to binding of a ligand can be readily computed and

used as an indicator of the strength of binding.

One of the most employed models for scoring protein-ligand interactions in terms of

molecular modeling involves the use of an interaction potential energy as computed by force

fields such as CHARMM, AMBER, OPLS or GROMOS [7], among others. For a rigid receptor,

the interaction energy is typically reduced to a Lennard-Jones potential, modeling the van der

Waals interaction among ligand and receptor atoms, and a Coulomb potential, modeling the

polar atomic interactions. As previously observed, the quantitative description of the intermo-

lecular interaction energy by these two terms is rather poor, since there is no correction for the

solvent effects, the conformational entropy is not taken into account and the approximation of

a rigid receptor ignoring any induced fit effect may be too simple [8]. Although the conforma-

tion entropy is actually a difficult quantity to estimate in molecular modeling [9], the solvent

effect can be taken in account using higher levels of theory contributing to a better description

of the interaction energy [8].

Many of the current models used for modeling the solvent effect (solvation models) are

based on a penalty for polar interactions based on the solvent occluded volume after binding

[10,11]. Stouten [12] and Luty [13] described an effective empirical solvation model where a

distance-dependent Gaussian weight is applied to the solvent occluded volume resulting in an

atom ‘occupancy’ parameter. This atom occupancy is then multiplied by an atomic solvation

parameter, resulting in the solvation energy for that atom. Those authors also determined

the solvation parameters for the atom types typically observed in macromolecules [12]. This

method has some advantages for scoring molecular interactions, especially in the context

of ligand docking, including the rapid evaluation of the solvent effect in a volume-based

approach and the possibility of a pre-computation of the solvation terms in grids speeding-up

docking computation [13,14].

A continuum representation of the solvation effect as a dielectric medium can be best

described by the Poisson-Boltzmann (PB) model, where meaningful solvation energies can be

computed using a high level of theory. However, PB involves a numerical solution of differen-

tial equations, requiring an increased computing power [15]. A feasible alternative to PB is the

Generalized Born (GB) model, where the Born model for solvation of an ion is extended to

molecules of any shape. According to Still approximation [16], the polar contribution to the

solvation free energy can be given in GB by:

DGpol ¼ � 166 1 �
1

ε

� �
Pn

i¼1

Pn
j¼1

qiqj

fGB
ð1Þ

where qi and qj are partial charges, ε is the solvent dielectric constant and fGB is a function of rij
and the Born radius [16]. Compared to PB, GB shows an increased efficiency in terms of com-

putation speed and still preserves a linear relation with the former [17].

Despite their efficiency, the rigorous solvation models, such as PB or GB, are still too expen-

sive to be used in the current ligand docking models, where a fast, though accurate, energy

evaluation is ought to be achieved for screening a large number of compounds in purchasable

screening libraries [18]. Regarding the solvation effect, a compromise has to be established

between a rigorous evaluation using a higher theory level and a fast assessment using an empir-

ical model.

Solvation function for ligand docking
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Here we evaluated a variation of the Stouten solvation model, as proposed by Verkhivker

and coworkers [19] and compared the correlation of solvation energies in this empirical model

to experimental solvation energies. This proposed model was found to be in close agreement

with experimentally determined solvation energies. Furthermore, we evaluated the model in

the context of ligand docking with the software LiBELa [20] and, surprisingly, we found that

the introduction of the correction term for solvent effect does not significantly improve the

enrichment of binders against decoy molecules. However, when used in prospective screening

of small molecule binders, the model was found to correct the overvaluation of the electrostatic

term in the binding energy that typically favors highly charged molecules.

Results

The Stouten-Verkhivker model, or SV model, is based on two very simple assumptions. First,

the electrostatic contribution to the solvation energy can be described by a linear function of

the square of atomic charges of the molecule, in a classical approach. Thus, an atomic solvation

parameter S can be defined as

Si ¼ aq2

i þ b ð2Þ

where α and β are adjustable parameters and qi is the charge of atom i. Second, the degree of

desolvation of a ligand atom by receptor atoms depends on the fragmental volume of the

receptor atom and the distance between them, where a Gaussian weight is used for distances:

Xj ¼
4p

3

� �

a3 exp
½� r2

ij=ð2s2Þ�

s3
ð3Þ

where a is the atomic radius of the atom j, rij is the distance between atom i and atom j and σ is

a constant. So, similarly to the proposal of Verkhivker [19] and coworkers, the pairwise deso-

lvation energy upon ligand-receptor interaction is given by:

ESolv
ij ¼ SiXj þ SjXi ð4Þ

where the first term in the summation accounts for the desolvation of a ligand atom i upon

binding a receptor atom j and the second term accounts for the desolvation of receptor atom j.
By summing the contribution of each receptor atom to the desolvation of each ligand atom,

the ligand molecular solvation energy is computed. The same holds true for the receptor

desolvation.

The proposed model has at least three interesting properties in the context of ligand dock-

ing calculations: i) first, it is simple and depends on just a few parameters, already used in

typical docking calculation, i.e., atomic charge and atomic radius, and does not require the

parametrization of new force field parameters; ii) it is suitable for calculations in grids [13],

which is typical in ligand docking calculations [14], speeding up the actual computation of

optimal ligand poses; iii) although simple, the model still preserves a dependence with the

square of the atomic charge, similar to what is observed in the Born model for hydration of an

ion. So, given these properties of the SV model, we then decide to evaluate the model in the

context of ligand docking and check if enrichment is improved in typical benchmarks.

Solvation energies

In the context of ligand docking, any proposed solvation model should have a balance between

accuracy, i.e., the ability to compute desolvation energies correlated with experimental solva-

tion energies, and computational efficiency. In an attempt to test the ability of the proposed

Solvation function for ligand docking
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SV model to reproduce solvation energies, we used the dataset FreeSolv [21], which is a

curated database of solvation free energies for small molecules. Since the SV model is pairwise

model accounting for the desolvation energy due to the interaction between a ligand and a

receptor, we computed the solvation term (S in Eqs 2 and 4), assuming that it should be pro-

portional to the solvation energy of the ligand. For this comparison, the atomic charges of the

molecules available in the FreeSolv database were recomputed using three different charge

models, namely AM1, as available in the program ANTECHAMBER [22], MMF94 and Gastei-

ger-Marsili model, as available in the program OpenBabel [23].

The solvation energies as computed using a linear dependency with the square of the

atomic charge showed a good correlation with the experimentally determined solvation free

energies, as shown in Fig 1 and Table 1. From the three atomic charge models evaluated here,

the Gaisteger charge model resulted in the strongest correlation with r = 0.71 when α was set

to 0.3 kcal.mol-1.e-2). For MMFF94 and correlation coefficient r = 0.55 was observed (α = 0.3

kcal.mol-1.e-2) and, for the AM1 charge model, originally used in the FreeSolv database, an

r = 0.65 was observed under the same conditions.

Decreasing the coefficient α results in slightly decrease in the correlation with experimental

solvation energies, as shown in Table 1, and setting it above 0.3 kcal.mol-1.e-2 does not result in

improved correlation, suggesting that its optimal value is found around 0.3 kcal.mol-1.e-2.It is

remarkable that a simple and fast model can result in a linear response for solvation energies

when compared to experimental energies. The correlation between the computed energies is

good enough for a solvation model in the context of molecular docking.

Fig 1. Correlation between experimental and computed solvation energies. Experimentally determined solvation energies for 504 organic compounds

and available in the FreeSolv database (vertical axis) and solvation energies computed using the term S in our implementation of the SV model are

compared. (A) comparison using α = 0.1 kcal.mol-1.e-2 and (B) α = 0.3 kcal.mol-1.e-2.

https://doi.org/10.1371/journal.pone.0174336.g001

Table 1. Correlation coefficients computed between empirical SV solvation energies and experimental solvation free energies available in the

FreeSolv database. N = 504.

Charge Model α = 0.1 kcal.mol-1.e-2 α = 0.2 kcal.mol-1.e-2 α = 0.3 kcal.mol-1.e-2 α = 0.4 kcal.mol-1.e-2 α = 0.5 kcal.mol-1.e-2

AM1 0.61 0.64 0.65 0.65 0.65

MMFF94 0.52 0.55 0.55 0.56 0.56

Gasteiger 0.50 0.66 0.71 0.72 0.72

https://doi.org/10.1371/journal.pone.0174336.t001
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Scoring efficiency

The encouraging correlation between desolvation energies computed with SV model and exper-

imental data prompted us to test this model in retrospective docking simulations. Here, we used

our software, LiBELa [20], to dock ligands and decoys against 37 targets of the DUD dataset, 35

targets of the CM-DUD dataset and 12 targets of the DUDE dataset. The enrichments for each

target of these benchmarks are summarized in Table 2, Table 3 and Table 4, respectively.

First of all, the well-established and validated tool DOCK6 was used as a positive control in

the enrichment calculations. The DUD data set was submitted for docking calculations using

automatically prepared receptor files and a pure force field scoring function (grid score). The

entire calculation took about 336 minutes per target, averaging over the entire dataset, and the

enrichment was then calculated using bash and python scripts. As shown in Table 2, an aver-

age logAUC of 17.4 was achieved with an average AUC of 57.3% (median 18.5 and 61.3%,

respectively), which is in agreement with the enrichments reported by the DOCK6 developers

[24]. For four targets, ADA, COMT, GPB and TK, DOCK6 achieves notable enrichments,

especially considering the first decade of the semi-log graph, reaching logAUC values of 30.5,

57.7, 54.2 and 44.1 respectively (Fig 2). Interestingly, TK was previously shown to be a difficult

target to obtain a good enrichment against its own decoys [25] when tested using DOCK

3.5.54, indicating that the interaction model used by DOCK6 is indeed accurate.

The same ligands and decoys of the DUD dataset were also used for docking simulations in

LiBELa, using a pure AMBER force field scoring function, similar to the grid score imple-

mented in DOCK6 [20]. The docking calculations took about 175 minutes per target set on

average and resulted in an average logAUC of 18.2 with an average AUC of 69.8% (median

19.1 and 73.3%, respectively). The results obtained with the hybrid approach as implemented

in LiBELa were shown to be efficient using a pure force field scoring function and are in agree-

ment with the results previously reported for this interaction model [20].

Considering that the solvent has important effects in ligand binding, one would expect that

an appropriate treatment of these effects would lead to even better results in terms of enrich-

ment of actual ligands against decoys. We then used the SV solvation model in docking simu-

lations with the DUD dataset. For these calculations, the parameter α was varied between 0.05

and 0.4 kcal.mol-1.e-2 and the parameter β was kept fixed at -0.005 kcal.mol-1. Surprisingly, a

worse average enrichment was achieved using the SV model when compared to a pure force

field scoring function, as shown in Table 2, Fig 2 and S1 File. Averaging over 37 DUD targets,

the FF+SV model achieved a logAUC of 15.9 with an AUC of 66.9% (median 11.5 and 67.4%,

respectively), when the parameter α was set to 0.1 kcal.mol-1.e-2, i.e., the average enrichment

was 13% inferior to the results achieved using a pure FF model, while the median decreased by

40%. An increase in the value of α resulted in a decrease in the average enrichment observed

for this dataset, with an average logAUC of 14.1 (median in 13.8) and average AUC of 63.5

(median 62.2) for α = 0.3 kcal.mol-1.e-2 (Table 2). Different configurations of the solvation

model with values of α ranging from 0.05 to 0.4 kcal.mol-1.e-2 were also tested resulting in

decreased enrichments in all of these scenarios (S4 File).

As compared to the enrichment obtained in the pure FF model, considerable differences

were observed for COX2, AMPC, TK, TRYPSIN and CDK2, all targets with highly polar pock-

ets. In these cases, the pure FF model resulted in better enrichments than the FF+SV interac-

tion model. Curiously, COX1 was one example where the introduction of solvation effect in

the energy model improved the enrichment. Similar to COX2, COX1 has a partially buried

polar (charged) binding site that recognizes small and charged molecules. The difference in

the results observed for COX1 and COX2 may suggest that minor issues related to the ligands/

decoys choice, for example, could play a role here.

Solvation function for ligand docking
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The original DUD dataset was further shown to be imprecise in the distribution of charged

molecules among ligands and decoys [11], with an increased fraction of charged ligands as

compared to decoys. This inaccuracy could make ligands artificially more attractive to polar

binding sites. The developers then released a charged-matched DUD (CM-DUD), where this

inaccuracy was fixed. We also used the CM-DUD for docking simulations to assess whether

Table 2. Enrichment for DUD database showed as percentage of area under curve to linear and semi-logarithmic scales (AUC and logAUC).

Target Ligands Decoys DOCK 6 LiBELa LiBELa LiBELa

Grid Score Force Field Force Field + SV (α =

0.1)

Force Field + SV (α =

0.3)

logAUC AUC logAUC AUC logAUC AUC logAUC AUC

ACE 49 1797 2.4 42.8 1.2 51.3 0.8 48.2 3.1 51.1

ACHE 107 3892 12.5 69.1 2.9 56.0 2.7 55.9 -1.7 44.9

ADA 39 927 30.5 80.5 22.9 80.4 22.4 81.6 21.0 77.9

AMPC 21 786 17.6 69.9 29.7 70.6 9.0 46.5 3.4 31.7

AR 79 2854 -4.3 27.0 21.1 73.3 19.0 71.2 13.8 66.1

CDK2 72 2074 27.0 77.1 29.2 85.5 23.5 80.3 16.2 72.0

COMT 11 468 57.7 98.0 20.4 79.9 22.7 68.6 16.8 69.2

COX1 25 911 -2.9 44.3 5.7 52.8 8.5 57.0 22.5 62.2

COX2 426 13289 -3.3 29.8 24.7 76.4 7.3 62.2 -4.8 36.9

EGFR 475 15996 13.1 44.0 26.6 73.8 26.0 75.8 25.6 77.4

ER AGONIST 67 2570 16.9 53.1 12.3 68.6 10.7 67.4 6.1 56.9

ER ANTAG 39 1448 19.2 72.7 19.1 83.9 19.0 81.6 16.2 80.7

FGFR1 120 4550 42.2 77.0 40.9 85.9 39.0 84.8 37.0 81.2

FXA 146 5745 26.7 79.9 31.6 89.9 31.8 90.7 35.1 91.7

GPB 52 2140 54.2 90.2 3.1 56.4 4.0 57.2 -0.8 45.5

GR 78 2947 -6.5 9.2 10.6 59.6 11.6 59.3 12.4 58.8

HIVPR 62 2038 -6.1 21.9 5.9 51.1 -0.9 37.8 -4.9 30.3

HIVRT 43 1519 19.7 61.3 7.3 54.8 3.1 51.7 -1.4 46.1

HMGA 35 1480 -5.1 11.0 35.3 85.2 36.9 85.5 31.1 83.7

HSP90 37 979 -5.4 30.7 1.8 56.3 1.5 55.0 3.1 61.4

INHA 86 3266 2.3 48.4 4.8 47.3 5.7 51.5 6.1 54.2

MR 15 636 -5.1 18.3 34.2 74.5 36.7 79.0 33.2 78.1

NA 49 1874 36.9 87.1 31.8 89.7 30.6 90.1 39.3 94.2

P38 454 9141 15.2 51.1 19.3 70.5 17.1 67.0 17.5 68.4

PARP 35 1351 21.0 77.7 17.0 80.2 10.4 72.5 5.4 63.5

PDE5 88 1978 2.9 39.3 13.9 75.6 11.5 71.5 6.7 58.3

PDGFRB 170 5980 4.9 38.8 0.5 48.3 1.8 49.8 9.2 55.6

PNP 50 1036 18.5 60.9 6.1 51.5 4.1 50.1 2.4 47.0

PPARγ 105 3127 22.6 74.4 -1.6 49.7 -0.5 46.5 0.6 51.2

PR 27 1041 -5.2 22.9 3.2 51.4 4.0 52.7 4.4 50.9

RXRα 20 750 34.2 63.7 11.4 60.9 8.9 61.5 22.0 73.0

SAHH 33 1346 26.0 84.6 28.8 79.4 27.5 78.9 22.0 78.1

SRC 159 6319 27.7 62.4 33.2 82.6 33.1 80.4 31.5 80.0

THOMBIN 72 2456 34.9 81.5 46.9 95.6 38.3 91.4 34.8 89.1

TK 22 891 44.1 86.4 16.3 70.9 8.5 67.1 1.9 54.4

TRYPSIN 49 1664 34.8 73.8 26.8 84.8 21.4 71.8 13.8 57.0

VEGFR2 88 2906 20.8 60.0 29.8 79.0 29.0 74.4 21.0 69.4

Average 32.6 decoys/ligand 17.4 57.3 18.2 69.8 15.9 66.9 14.1 63.5

Median 18.5 61.3 19.1 73.3 11.5 67.4 13.8 62.2

https://doi.org/10.1371/journal.pone.0174336.t002
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the polar solvation model was artificially penalizing the actual ligands more than the decoys

due their increased tendency to be charged. The enrichments observed for individual targets

are shown in Table 3, Fig 3 and S2 File.

For the CM-DUD, an average logAUC of 6.4 with an AUC of 58.4% was observed for the

pure FF energy model implemented in LiBELa, much smaller than the average logAUC

observed for the original DUD but still comparable with the logAUC observed for DOCK6

Table 3. Enrichment for CM-DUD database showed as percentage of area under curve to linear and semi-logarithmic scales (AUC and logAUC).

Values of α are given in units of kcal.mol-1.e-2.

DOCK 6 LiBELa LiBELa LiBELa

Target Ligands Decoys Grid Score Force Field Force Field + SV (α =

0.1)

Force Field + SV (α =

0.3)

logAUC AUC logAUC AUC logAUC AUC logAUC AUC

ACE 49 1716 15.4 73.9 0.0 45.0 -1.0 43.5 -0.1 47.6

ACHE 108 3781 -0.8 50.2 0.3 50.7 -0.1 52.1 -2.0 43.7

ADA 37 1296 2.2 52.7 -2.3 47.7 -2.6 46.3 -2.2 49.6

AMPC 21 736 -1.9 48.7 2.0 55.3 0.0 51.2 -5.1 36.3

CDK2 57 1996 -5.9 39.2 0.6 55.7 0.4 50.5 -0.1 48.5

COMT 12 421 10.8 69.7 7.6 60.1 6.9 59.3 8.5 57.9

COX1 24 841 0.8 56.4 15.6 62.2 13.6 59.5 10.1 55.6

COX2 420 14666 -5.8 36.2 10.4 68.2 7.2 64.1 2.0 57.9

EGFR 573 20021 -0.4 36.2 4.5 55.9 5.3 56.2 4.6 55.2

ER_AGONIST 67 2346 23.5 76.2 29.0 82.9 28.7 82.6

ER_ANTAG 53 1856 5.3 50.1 -0.2 44.2 -1.6 45.1

FGFR1 172 5821 -1.0 46.3 2.1 52.9 3.0 53.4 3.3 52.3

FXA 148 5181 3.2 59.0 8.9 72.2 8.4 70.8 7.1 68.8

GPB 52 1821 6.4 67.2 -1.2 52.2 0.2 53.3 -1.9 51.5

GR 78 2731 -4.6 34.0 -0.2 45.0 1.4 46.2 1.6 46.5

HIVPR 62 2171 -0.9 50.0 -3.7 40.9 -0.9 46.6 -2.9 41.5

HIVRT 42 1389 -4.0 37.7 3.4 56.0 6.1 59.4 2.3 55.8

HMGA 35 1226 -1.7 42.4 8.1 60.0 3.4 59.0 2.8 61.8

HSP90 23 806 -8.6 21.2 2.8 55.0 0.7 53.3 3.9 53.3

INHA 87 3046 -1.2 50.8 1.3 53.1 2.5 53.6 -0.5 49.2

MR 15 526 -1.5 45.9 36.4 73.4 37.7 76.8 28.0 75.1

NA 49 1716 14.9 83.8 18.9 86.2 18.4 84.1 17.2 84.3

PARP 34 1191 -2.9 44.2 3.1 61.1 2.7 61.3 3.2 59.8

PDE5 61 2136 -5.2 34.5 1.0 56.6 -2.2 46.8 0.8 50.6

PDGFRB 191 1322 -1.0 51.2 0.0 54.4 -0.8 50.6

PNP 26 911 -4.1 36.2 4.1 58.3 4.0 58.4 3.3 57.8

PPARγ 86 3011 3.5 59.9 -3.3 42.4 -3.4 42.7 -3.3 42.6

PR 27 946 -7.7 29.9 2.6 47.2 3.2 45.9 1.8 44.2

RXRα 20 701 12.3 76.6 16.5 55.5 16.5 59.9 10.9 50.9

SAHH 40 1401 -3.3 41.4 9.4 66.5 8.3 65.6 7.9 64.3

SRC 201 7036 -3.2 42.6 1.5 49.4 1.4 48.5 0.6 46.0

THOMBIN 71 2486 1.3 54.8 13.8 73.6 11.4 74.6 14.1 77.0

TK 22 771 6.8 68.0 16.1 76.3 16.7 77.9 16.1 74.2

TRYPSIN 50 1751 23.0 83.0 14.2 75.3 6.0 60.4 7.6 64.2

VEGFR2 87 330 7.4 58.9 1.7 56.1 0.2 54.2 -1.9 48.3

Average 6.4 58.4 5.8 57.6 4.7 55.7

Median 3.1 55.9 3.0 54.4 2.3 52.3

https://doi.org/10.1371/journal.pone.0174336.t003
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Table 4. Enrichment for DUDE database showed as percentage of area under curve to linear and semi-logarithmic scales (AUC and logAUC).

Target Lig Dec DOCK 6 LiBELa LiBELa (α = 0.1) LiBELa (α = 0.3)

Grid Score Force Field Force Field+SV Force Field + SV

logAUC AUC logAUC AUC logAUC AUC logAUC AUC

CP2C9 183 7574 -3.9 30.1 -0.1 48.4 -1.5 46.0 -1.4 45.5

CXCR4 122 3414 -5.3 35.7 -1.7 43.8 -1.3 47.8 -3.1 44.7

GRIK1 152 6617 10.0 58.8 10.2 64.8 11.0 67.3 11.8 68.4

MK10 186 6714 -3.1 39.7 2.0 55.6 1.1 56.0 -0.3 52.6

XIAP 129 5213 9.9 58.5 5.9 61.4 8.0 66.8 6.5 65.6

MCR 193 5240 -11.0 13.7 4.8 55.3 5.3 56.2 4.6 55.2

THB 167 7641 5.18 45.3 10.5 67.2 11.4 67.1 9.2 64.6

HIVINT 211 6756 6.9 51.4 4.3 59.0 5.9 63.7 4.9 63.4

KITH 132 2866 -7.7 30.4 6.5 63.5 9.6 70.4 9.3 71.7

PUR2 201 2725 30.8 81.5 28.0 85.9 32.5 88.6 31.1 87.0

LKHA4 244 9477 17.1 67.3 6.7 61.1 6.8 61.3 4.2 58.3

PPARD 288 13232 10.7 63.0 3.7 57.9 5.9 61.1 7.1 62.4

DYR 566 17384 16.1 51.6 13.6 61.8 13.1 63.9 7.8 58.2

Average 5.8 48.2 7.3 60.4 8.3 62.8 7.0 61.3

Median 6.9 51.4 5.9 61.1 6.8 63.7 6.5 62.4

https://doi.org/10.1371/journal.pone.0174336.t004

Fig 2. ROC curves for representative DUD targets. The brown line shows the enrichment expected to for a

random distribution of ligands and decoys. The enrichments obtained with FF (black line), SV (α = 0.1 kcal.

mol-1.e-2, red), SV (α = 0.3 kcal.mol-1.e-2, blue) and DOCK6 (yellow) are shown. The complete set of ROC

curves for DUD targets is available in S1 File.

https://doi.org/10.1371/journal.pone.0174336.g002
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grid score (2.7 with an average AUC of 52.0%), as shown in Table 3 and Fig 3. The introduc-

tion of the solvation model into the scoring function resulted again in a decrease in the average

logAUC to 5.8, for α = 0.1 kcal.mol-1.e-2 and 4.7 for α = 0.3 kcal.mol-1.e-2.

These results underline important issues in terms of scoring functions for docking. First,

the volume-based SV-model does not result in significant improvement in the enrichments of

most targets when compared to a pure force field scoring function, despite its good correlation

with experimental solvation energies. In original DUD or CM-DUD, a decrease of around 20–

25% in the average enrichment is observed upon the introduction of the solvation effect as

modeled by the SV model with α set to 0.3 kcal.mol-1.e-2. Second, the Coulomb model for elec-

trostatic interactions is probably a weak model for quantifying macromolecular interactions.

We come to this conclusion by comparing the performance of LiBELa and DOCK6 with the

results previously reported for DOCK3.7, where a high enrichment was achieved for the

CM-DUD dataset. That tool uses DELPHI [26], which relies on the numeric solution of the

Poisson-Boltzmann for the evaluation of polar interactions [11]. Considering that the charge-

pairing of ligands and decoys are the most important change between DUD and CM-DUD, it

is plausible to think that the stronger electrostatic model was an important reason for the

increased enrichment observed for DOCK3.7.

Finally, we decided to assess whether sampling effects could be playing a role in the average

results observed for DUD and CM-DUD. Despite the good decoy-to-ligand ration (around 33

decoys per ligand), these data sets have just a few ligands in some cases. We then decided to

use twelve targets of the DUD-Enhanced (DUDE) dataset, created from an increased number

Fig 3. ROC curves for representative CM-DUD targets. The brown line shows the enrichment expected to

for a random distribution of ligands and decoys. The enrichments obtained with FF (black line), SV (α = 0.1

kcal.mol-1.e-2, red) and SV(α = 0.3 kcal.mol-1.e-2, blue) are shown. The complete set of ROC curves for

CM-DUD targets is S2 File.

https://doi.org/10.1371/journal.pone.0174336.g003
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of actives molecules and keeping the decoy-to-ligand ratio around 33. For DUDE, interesting

results were observed: for the pure FF model, an average logAUC of 7.3 was observed with and

AUC of 60.4% (median 5.9 and 61.1%), as shown in Table 4, Fig 4 and S3 File. The introduc-

tion of the SV correction term to account for solvent effects resulted in a slight increase in the

enrichment, resulting in an average logAUC of 8.3 and an AUC of 62.8% when α was set to 0.1

kcal.mol-1.e-2 (Fig 4). Setting the parameter α above this threshold resulted in a systematic

decrease in the average logAUC, revealing an optimal value between 0.1 and 0.2 kcal.mol-1.e-2.

Two interesting features can readily be observed in this result. First, there is an overall

improvement of enrichment, i.e., there are small improvements for 10 out of the 13 target tar-

gets when α was set to 0.1 kcal.mol-1.e-2. This can be observed by the increase in the median

logAUC together with the increase of the average logAUC. This observation suggests that the

SV model result in consistent improvement in this larger dataset. Second, the targets with the

higher improvement, PUR2, KITH, PPARD and GRIK1 have in common buried or partially

buried active sites and polar interactions with the ligand though charged residues. For active

sites with these features, a correction for the solvent effects is expected to play a significant

role, resulting in improvement of the enrichment.

Are the errors introduced in the scoring function due to sampling issues or confined to the

scoring of molecular interactions? This is not a trivial question to address. In order to tackle

this issue, we run docking simulations (self-docking) for 1,031 ligands of the SB2012 dataset

using three different energy models, namely a pure FF model and FF+SV with α parameter set

to 0.1 and 0.3 kcal.mol-1.e-2. The results are summarized in the Table 5. These results show

that the introduction of a correction term to take into account the solvent effects does not

Fig 4. ROC curves for representative DUDE targets. The brown line shows the enrichment expected to for

a random distribution of ligands and decoys. The enrichments obtained with FF (black line), SV (α = 0.1 kcal.

mol-1.e-2, red), SV(α = 0.3 kcal.mol-1.e-2, blue) and DOCK6 (yellow) are shown. The complete set of ROC

curves for DUDE targets is available in S3 File.

https://doi.org/10.1371/journal.pone.0174336.g004

Solvation function for ligand docking

PLOS ONE | https://doi.org/10.1371/journal.pone.0174336 March 21, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0174336.g004
https://doi.org/10.1371/journal.pone.0174336


result in significant increase of the root mean square deviation or of the rate of success at

lower values of the parameter α, i.e., up to 0.2 kcal.mol-1.e-2. Increasing this parameter gradu-

ally increases the deviation, although keeping very low RMSD values as compared to DOCK6,

as one would expect for a hybrid docking such as the used in LiBELa. Taken together the

results shown in Table 5 indicate that sampling issues are not expected to play a relevant role

in the decreased enrichment observed.

Discussion

Here we evaluated a variation of the widespread Stouten solvation model in the context of

ligand docking. Despite the good correlation of the solvation energies computed by the SV

model and experimentally determined solvation energies, the SV model resulted in decreased

enrichments when used in retrospective docking simulation of gold standard benchmarks

such as DUD and CM-DUD. This apparent paradox raises important questions. First, is the

model inconsistent? And is the solvation treatment useful in the context of molecular docking?

The first question is somewhat tricky. How can a solvation model be correlated to experi-

mental data and still lead to worse results? Looking at other empirical solvation models already

proposed, we found similar results. For example, Mysinger and Shoichet observed that 20 out

of the 40 DUD targets had better enrichments when no desolvation penalties were computed

than when their solvent-excluded volume model (SEV) model was applied [11]. The average

logAUC for no desolvation and for the SEV model were 14.3 and 15.0 with average AUC val-

ues of 68.8 and 68.7%, respectively, indicating again that the introduction of an empirical sol-

vation function into their docking scoring function resulted in minimal improvement of the

enrichment results, if any. Worth of note, TK and TRYPSIN were two targets with better

enrichments using no desolvation, similarly to what was observed in this work with the SV

model. The results shown for our SV model and for SEV suggest that empirical models for sol-

vation treatment are still in their infancy and may represent an open road for future develop-

ments, necessary for the achievement of a more precise model for molecular interactions in

the context of ligand docking.

Additionally, Coleman and coworkers revised the results obtained in the SAMPL4 challenge

for solvation energies computed for 47 compounds using AMSOL, according to the default

ZINC processing pipeline [27] and used by DOCK3.7. They found that the solvation energies as

computed with this protocol were the worst predictions submitted to the challenge [28]. This

conclusion highlights the current need for better fast empirical models applicable in the docking

context and also provides an explanation for the lack of actual improvement upon the introduc-

tion of the solvation penalty in retrospective tests with DOCK. It should be mentioned that, in

this context, our SV model showed a good correlation with experimental data, even when sim-

ple and empirical atomic charges were used for parametrization of the molecules.

One important source of errors in our model may be related to the evaluation of the electro-

static term in the binding energy. As already pointed out, the effect of long range interactions

Table 5. Statistics of pose reproduction of the SB2012 dataset using DOCK6 and LiBELA using a pure FF energy model and FF+SV energy model.

DOCK6 LiBELA FF LiBELA FF+SV α = 0.1 kcal.mol-1.e-2 LiBELA FF+SV α = 0.3 kcal.mol-1.e-2

Average RMSD (Å) 5.91 0.86 0.90 1.34

Median RMSD (Å) 5.29 0.50 0.48 0.49

RMSD < 1.0 Å 17% 86% 86% 82%

RMSD < 2.5 Å 32% 95% 95% 90%

RMSD < 3.0 Å 40% 96% 95% 90%

https://doi.org/10.1371/journal.pone.0174336.t005
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is best taken into account by continuum electrostatic models, where the dielectric constant

and ionic strength can very through space [29]. The approach used to evaluate the polar inter-

actions used in LiBELa is certainly limited by assuming a homogeneous and isotropic media.

This is in part compensated by assuming a distance-dependent dielectric ‘constant’, i.e., ε = rij,

but certainly results in accumulation of errors. The same analysis holds true for the solvation

energies, which are primarily based on a penalty for polar interactions with a short- to medium

range limit given by the Gaussian envelope function used. The consequences of these limita-

tions can be observed in the performance of the SV model when compared to continuum

methods such as GB and PB for a set of complexes of the SB2012 dataset. Continuum models

such as GB and PB are very effective in reproducing the overall profile of solvation energies.

Calculations done to the molecules of the FreeSolv database show a linear correlation of exper-

imental solvation with energies computed with these continuum models (Fig 5A). The same

Fig 5. Correlation between experimental solvation data and solvation energies from multiple models. (A) Correlation between experimental solvation

data for the FreeSolv dataset (N = 643) and solvation energies computed with GB (black squares) and PB (red squares). The Pearson correlation coefficient

is r = 0.86, Spearman, s = 0.87 and Kendall coefficient is k = 0.70 for GB and r = 0.88, s = 0.98 and k = 0.72 for PB. (B) Correlation between experimental

solvation energies for the FreeSolv dataset and SV computed solvation energies. r = 0.67, s = 0.75 and k = 0.57. (C) Correlation between desolvation

energies for 999 receptor-ligand complexes of the SB2012 dataset computed with PB (horizontal axis) and SV (vertical axis). r = 0.23, s = 0.40 and k = 0.29.

(D) Correlation between desolvation energies for complexes of the SB2012 with neutral ligands (N = 506). r = 0.21, s = 0.57 and k = 0.43.

https://doi.org/10.1371/journal.pone.0174336.g005

Solvation function for ligand docking

PLOS ONE | https://doi.org/10.1371/journal.pone.0174336 March 21, 2017 12 / 19

https://doi.org/10.1371/journal.pone.0174336.g005
https://doi.org/10.1371/journal.pone.0174336


comparison between experimental solvation energies and SV computed energies (Figs 1 and

5B) still shows that SV can predict the overall solvation profile for the organic molecules in the

database but with lower correlation than continuum models, as expected. We also evaluated

the calculations in a scenario of desolvation due to binding with the complexes of SB2012 data-

set, where experimental desolvation energies are no available, but the empirical SV model can

be compared to continuum models. When 999 molecules are compared for their solvation

energies (Fig 5C), some correlation can be observed, although for some molecules, a random

dispersion is observed. Interestingly, when the dataset is filtered to preserve neutral molecules

only (Fig 5D, N = 506) the correlation between solvation energies computed with PB and SV

increases substantially, revealing the weakness of the model to handle highly charged mole-

cules. We therefore foresee opened opportunities for the improvement of solvation models by

the adoption of more robust overall treatment of the electrostatics for molecular interactions.

Many results have been reported in the literature comparing the efficiency of a simpler

interaction model with more robust models such as MM-GBSA or MM-PBSA. For example,

Zhang and coworkers recently showed a massive parallel pipeline for virtual screening based

on ligand docking with Vina and pose rescoring using the MM-GBSA as implemented in

Amber [30]. Using the higher theory level for rescoring, a better enrichment of the DUDE

benchmark was reached when compared to the results of docking alone. The authors reported

an average AUC of 66.4% (median 68.3%) when using the Vina energy model and 71.1%

(median 70.3%) after the rescoring. This 7% in increase of the average area under the curve of

ROC plots was obtained at the price of 5 hours of massive parallel computation on 15,000

CPUs, spent only on rescoring. These results suggest that the improvement of the current

interaction models used for ligand docking are not just necessary but may also be sufficient to

make pointless the rescoring of docking poses using end-point methods.

Graves and coworkers also evaluated the MM-GBSA model for rescoring docking poses

generated by DOCK3.5 [8]. From 33 tested ligands, MM-GBSA recovered 23 actual binders

that were considered false negatives in docking. On the other hand, 10 true negatives accord-

ing to the docking model were introduced as false positives after rescoring. This example

shows that even a more robust solvation model such as GB can result in important errors dur-

ing the ranking of a ligand-receptor complex, suggesting the modeling of such interactions can

be challenging even for the higher theory levels.

The results briefly reviewed above reveal that even when corrected for solvation energies

using robust solvation models, the inaccuracies in the interaction model seem to equate the

inaccuracies in the solvation model resulting in results that are marginally better but very

expensive in terms of computational time.

The Stouten model could be a choice for a fast solvation model used in molecular interac-

tion modeling. When originally proposed, this fast method was shown effective to reproduce

correct conformations of BPTI, comparable with conformations observed in explicit solvent

simulations [12]. Variations of this model are already used for molecular docking in the pro-

gram AutoDock, for example [10]. Evaluating the performance of the variation of the Stouten

model proposed by Verkhivker and coworkers, we found that the introduction of the solvent

effect into the scoring function does not improve the enrichment of known ligands against

decoys on DUD or CM-DUD and results in modest improvement in DUDE targets.

The question still remains: is the solvation correction useful in the context of molecular

docking? It definitely is! We tested the performance of our SV model in a scenario closer to a

real application, in a virtual screening campaign using the nuclear receptor PPARγ as the tar-

get. This receptor has a buried and bulky active site with three ‘arms’ [31]. One of these arms,

is very polar and the other two arms are mainly hydrophobic. The natural ligands of this recep-

tor are fatty acids and several synthetic ligands have already been described in the literature.
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Worth of note, the thiazolidinediones (TZDs), such as pioglitazone and rosiglitazone, are high

affinity ligands of the receptor PPARγ. After screening the dataset ChEMBL Drugstore [32], as

available in ZINC [27], we analyzed the net charge of the top one-hundred molecules, ranked

by binding energy using a pure FF model and also using FF+SV interaction model. As shown

in Fig 6, the introduction of the solvation correction term, reduced the excess electrostatic

energy term, reducing the fraction of molecules with charge -2 and -3 among the top scored

molecules. Since the receptor is expected to typically bind neutral or -1 charged molecules, the

solvent correction is shown to be useful to penalize the polar interactions and avoid the over-

valuation of the electrostatic term in the binding energy.

In conclusion, we found that after the adjustment of the parameter alpha, the SV solvation

model shows a good correlation with experimental solvation energies. However, the introduc-

tion of this model into a docking scoring function does not improve the enrichment of actual

binders against decoys. In contrary, the enrichment was reduced about 20%. These results, in

line with recent findings for empirical solvation functions, highlight the need for better inter-

action models that could be useful in the context of molecular docking. In addition, the intro-

duction of the correction term clearly showed an ability to correctly penalize molecules with

net charges -2 and -3 e making them less attractive in the context of virtual screening [33].

Experimental

The Stouten-Verkhivker solvation model

The original Stouten model for solvation free energy is based on the atomic exposal to solvent,

i.e., the occupancy of protein atoms around a ligand atom, with a Gaussian envelope function.

This occupancy term is then multiplied by an atomic solvation term that depends on the atom

Fig 6. Distribution of net charge for the top scored molecules in VS. Distribution of net charge for the top

scored molecules found in a virtual screening campaign using PPARγ as the target. For the SV model, the

parameter αwas set to 0.2 kcal.mol-1.e-2.

https://doi.org/10.1371/journal.pone.0174336.g006
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type [12]:

DGsolv
i ¼

P
jVolð jÞ � exp

� r2ij
2s2

� �" #

� SolParðiÞ½ � ð5Þ

Verkhivker and coworkers gave a new view of the intrinsic solvation parameter by propos-

ing that, phenomenologically, each atom has an ‘affinity’ by the solvent that can be given by a

function of the square of the atomic charge [19]. Although this proposal was used in a different

context, with a softcore potential, a final empirical solvation model can be defined as:

Esolv
ij ¼ Sifj þ Sjfi

� �
exp

� r2ij
2s2

h i

s3 ð6Þ

where f is the solvent volume displaced by an atom and S is a function of the square of the

atomic charge, Si ¼ aq2
i þ b. This model, hereinafter Stouten-Verkhivker, or SV model, was

evaluated in this work with α=0.2 kcal.mol-1.e-2, β=-0.005 kcal.mol-1 and σ=3.5 Å, unless other-

wise stated.

Assessment of the SV model as an additional term in docking

scoring function

The test set SB2012 [24] was used to assess the performance of the docking scoring function.

This dataset is composed by 1,043 receptor-ligand complexes provided with crystallographic

ligands already placed in their receptors binding site, so that the binding energy can be calcu-

lated taking the conformational search out of equation. Receptor and ligands were used as pro-

vided, i.e., without any additional preparation. For this evaluation, the program DOCK6.7 [24]

was employed for the sake of comparison, using the Grid Score. The same receptor-ligand

complexes were scored in our algorithm, LiBELa [20], where a pure Amber Force Field energy

evaluation is combined with the SV solvation model as described above:

ELiBELa ¼
Preceptor

i

Pligand
j

qiqj

εrij
þ

Aij

r12
ij

�
Bij

r6
ij

þ SiXj þ SjXi ð7Þ

The energy evaluation in pre-computed grids was also employed in LiBELa for both energy

models. From the 1,043 receptor-ligand complexes, 1,031 were actually docked using LiBELa

and 953 were docked using DOCK6.

Assessment of the SV model in enrichment tests

The SV solvation model was also evaluated in a typical virtual screening scenario, where a

large number of compounds are computationally scrutinized looking for actual binders. This

assessment consisted of docking simulations of known ligands and decoys against 37 targets of

the directory of useful decoys (DUD) [25]. The Adjusted logAUC (logAUC) was used as a met-

ric for enrichment together with the area under the curve (AUC). Here, the term enrichment
describes the ability of the algorithm to populate the top of list of docked molecules sorted

by docking energies with known binders against decoys. The Adjusted logAUC measures the

area under the curve of a semi-log representation of the false positive against true positive rates

and subtracts the area expected for a random disposition of ligands and decoys in the ranked

results. By using this log scale, the logAUC gives the same weight to the enrichment in the

very beginning of the dataset (0.1% to 1% of decoys) to the mid-early enrichment (1–10% of

decoys) and to the late enrichment (10–100% of decoys) [11]. Since the distribution of charged
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and neutral molecules among the decoys in the original DUD dataset was found to be different

from the distribution in the ligands, a new version of the DUD was proposed by its developers,

the charge-matched DUD or CM-DUD [11]. Soon after, the same developers also proposed

the DUD-enhanced, or DUDE [34]. The CM-DUD and a subset of DUDE were also used for

the assessment of the SV solvation model in retrospective studies.

The protocol for receptor and ligand preparation was the same for these three benchmarks.

The receptors were prepared with UCSF Chimera [35], where missing hydrogen atoms were

added, and atom types and charges were attributed according to Amber FF9SB force field [36].

Ligands and decoys were used as provided in SYBYL mol2 files, according to the default ligand

preparation of the database [27,37]. In cases where molecules were not distributed in SYBYL

mol2 files (e.g., CM-DUD), the 3D structures were generated by BABEL [23] using MMFF94

charge model. When applicable, the program pymdpbsa, part of the AMBER package, was

used for estimating solvation energies using GB and/or PB models.

Docking

Docking of ligands and decoys were performed against their own target using LiBELa [20].

LiBELa (Ligand Binding Energy Landscape) is a hybrid algorithm based on the superposition of

a search ligand on a reference ligand already placed in the receptor binding site. This superposi-

tion is achieved by matching the molecular volume and charge distribution as the target func-

tion using the MOLSHACS algorithm [38]. Afterwards, the pose of this initially placed ligand is

optimized once again in the Cartesian space (as a rigid body) using the binding energy as the

objective function. The ligand flexibility is treated by an on-the-fly generation of an ensemble of

conformers through a stochastic search of rotatable bonds with the genetic algorithm imple-

mented in the OpenBabel API [23]. Each conformer is overlaid on the reference ligand and the

best conformer is then optimized inside the active site as a rigid body in order to generate a

final and low-energy binding pose. The augmented Lagrangian [39–41] algorithm was used for

optimization of the molecular overlay followed by the optimization of the binding pose using

the dividing rectangles algorithm [42]. Both methods were used as implemented in the NLOPT

library [43] with a 10-6 relative tolerance and a timeout of 30 seconds. The ligands were allowed

to translate 12 Å in each direction during the Cartesian search and to perform a full rotation

around Euler’s angles. Twenty conformers were generated for each ligand and the best two con-

formers, as judged by the initial binding energy, were used in the second Cartesian search. The

best scored conformer was used for ranking purposes. A cubic grid box with 30 x 30 x 30 Å was

used for pre-computation of the potential energies and docking simulations [13]. The grid

points were equally spaced by 0.3 Å in all directions. For electrostatic potential energies, the

dielectric ‘constant’ was set to the interatomic distance, as previously proposed [29].

Docking simulations using the same benchmarks were also performed with DOCK6.7 using

Grid Score with parameters similar to those used in LiBELa, whenever possible. The cluster of

spheres generated by SPHGEN within a 10 Å radius from the crystallographic (reference) ligand

were selected as shape descriptors. Interaction grids were then computed in a box encompassing

the selected spheres with a 5 Å buffer. The grid was computed using a 0.3 Å spacing using

Amber FF99 atomic parameters. For docking, a maximal number of 500 orientations was used

allowing a chemical matching between receptor and ligand atoms. Ligand flexibility was treated

with the anchor-and-grow method with a further minimization of poses in a 100 simplex cycles.

Supporting information

S1 File. ROC curves for all DUD targets. The brown line shows the enrichment expected to

for a random distribution of ligands and decoys. The enrichments obtained with FF (black
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line), SV (α = 0.1 kcal.mol-1.e-2, red), SV (α = 0.3 kcal.mol-1.e-2, blue) and DOCK6 (yellow) are

shown.
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S2 File. ROC curves for all CM-DUD targets. The brown line shows the enrichment expected

to for a random distribution of ligands and decoys. The enrichments obtained with FF (black

line), SV (α = 0.1 kcal.mol-1.e-2, red), SV (α = 0.3 kcal.mol-1.e-2, blue) and DOCK6 (yellow) are

shown.
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S3 File. ROC curves for all DUDE targets. The brown line shows the enrichment expected to

for a random distribution of ligands and decoys. The enrichments obtained with FF (black

line), SV (α = 0.1 kcal.mol-1.e-2, red), SV(α = 0.3 kcal.mol-1.e-2, blue) and DOCK6 (yellow) are

shown.
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