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Abstract: Current neural networks architectures are many times harder to train because of the
increasing size and complexity of the used datasets. Our objective is to design more efficient training
algorithms utilizing causal relationships inferred from neural networks. The transfer entropy (TE)
was initially introduced as an information transfer measure used to quantify the statistical coherence
between events (time series). Later, it was related to causality, even if they are not the same. There are
only few papers reporting applications of causality or TE in neural networks. Our contribution is an
information-theoretical method for analyzing information transfer between the nodes of feedforward
neural networks. The information transfer is measured by the TE of feedback neural connections.
Intuitively, TE measures the relevance of a connection in the network and the feedback amplifies
this connection. We introduce a backpropagation type training algorithm that uses TE feedback
connections to improve its performance.

Keywords: transfer entropy; causality; neural network; backpropagation; gradient descent; deep
learning

1. Introduction and Related Work

We generally differentiate between statistical correlation and causality. Often, when correlation is
observed, causality is wrongly inferred and we are tempted to identify causality through correlation.
This is because of the inability to detect a time lag between a cause and effect, which is a prerequisite
for causality [1].

Following Shadish et al. [2], the three key criteria for inferring a cause and effect relationship are
(1) the cause preceded the effect, (2) the cause was related to the effect, and (3) we can find no plausible
alternative explanation for the effect other than the cause.

According to [3], there is an important distinction between the “intervention-based causality” and
“statistical causality”. The first concept, introduced by Pearl [4], combines statistical and non-statistical
data and allows one to answer questions, like “if we give a drug to a patient, i.e., intervene, will their
chances of survival increase?” Statistical causality does not answer such questions, because it does
not operate on the concept of intervention and only involves tools of data analysis. The causality in
a statistical sense is a type of dependence, where we infer direction as a result of the knowledge of
temporal structure and the notion that the cause has to precede the effect. We will focus here only on
statistical causality measured by the information transfer approach.

A relatively recent information transfer measure is the transfer entropy (TE). The TE was
introduced by Schreiber [5] not as a causality indicator, but as an information transfer measure
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used to quantify the statistical coherence between events (time series). For a comprehensive discussion
of the TE vs. causality paradigms we refer to the work in [6]. In our previous work, we introduced the
Transfer Information Energy (TIE) [7,8] as an alternative to the TE. Whereas the TE can be used as a
measure of the reduction in uncertainty about one event given another, the TIE measures the increase
in certainty about one event given another.

Causality and information transfer are not exactly the same. Causality is typically related to
whether interventions on a source have an effect on the target. Information transfer measures how
observations of the source can predict transitions of the target. Causal information flow describes the
causal structure of a system, whereas information transfer can then be used to describe the emergent
computation on that causal structure [6].

The directivity of information flow through a channel was defined by Massey [9] in the form of
directed information. The author shows that in the presence of feedback, this is a more useful quantity
than the traditional mutual information. From a similar perspective, the TE measures the information
flow from one process to another by quantifying the deviation from the generalized Markov property
as a Kullback–Leibler distance, thus both TE and the directed information can be used to estimate the
directional informational interaction between two random variables.

TE is a directional, dynamic measure of predictive information, rather than a measure of the
causal information flow from a source and to a destination. To be interpreted as information transfer,
the TE should only be applied to causal information sources for the given destination [6]. We will
use the information transfer measured by the TE to establish the presence of and quantify causal
relationships between the nodes (neurons) of neural networks.

In the current deep learning era, neural architectures are many times hard to train because of the
increasing size and complexity of the used datasets. Our main question is how causal relationships can
be inferred from neural networks. Using such relationships, can we define better training algorithms?
There are very few results reporting applications of causality or transfer information in neural networks.
We will refer to them in the following.

TE has been used for the quantification of effective connectivity between neurons [10–13]. To the
extent of our knowledge, the work in [14,15] represent the only attempts to use TE for improving the
learning capability of neural networks.

The reservoir adaptation method in [14] optimizes the TE at each individual unit, dependent
on properties of the information transfer between input and output of the system. It improves the
performance of online echo state learning and recursive least squares online learning.

Causal relationships within a neural network are defined by Féraud et al. in [16]. To explain
the classification obtained by a multilayer perceptron, Féraud et al. introduced the concept of
“causal importance” and defined a saliency measurement allowing the selection of relevant variables.
Combining the saliency and the causal importance allowed them an interpretation of the trained neural
network.

Herzog et al. [15] used feedforward TE between neurons to structure neural feedback connectivity.
These feedback connections are then used to improve the training algorithm in a convolutional neural
network (CNN) [17]. In deep learning, a CNN is a class of deep neural networks, most commonly
applied to image analysis. Intuitively, a CNN is a multilayered neural network that uses convolution
in place of general matrix multiplication in at least one of its layers. Herzog et al. averaged (by layer
and class of the training sample) the calculation of TE gathered from directly or indirectly connected
neurons, using thresholded activation values to obtain the required time series. The averaged TEs
are indirectly implied in the subsequent neuron’s activations as part of the training with feedback.
They are potentiated with a layer distance amplifier and the new value is summed to the input of the
activation function. As a result, only one TE derived value is used for each of the layers. Herzog et al.
made two interesting observations about why using TE for defining TE feedback in CNN networks:

• There is a decreasing feedforward convergence towards higher layers.
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• The TE is in general lower between nodes with larger layer distances than between neighbors.
This is caused by the fact that long-range TE is calculated by conditioning on the intermediate
layers. Thus, there is a higher probability to form long-range as compared to short-range feedback
connections.

Our contribution is a novel information-theoretical approach for analyzing information transfer
(measured by TE) between the nodes of neural networks. We use the information transfer to establish
the presence of relationships and the quantification of these between neurons. Intuitively, TE measures
the relevance of a connection in the network and the feedback amplifies this connection. We introduce
a backpropagation-type training algorithm which uses TE feedback connections to improve its
performance.

The paper has the following structure. In Section 2, we introduce the formal definition of the TE
and enumerate some of its applications. Section 3 describes how the feedback TE can be numerically
approximated during the training of a feedforward neural network. In Section 4, we present our
approach for integrating the TE as a feedback in the training algorithm of a neural classifier. The
closest related work is Herzog’s et al. paper [15], and we will explain the differences between the two
approaches. Section 5 presents several experiments performed on a toy example and on standard
benchmarks. Section 6 analyzes the results of the numerical experiments. Section 7 contains final
remarks. The Appendix A presents further details of our experiments.

2. Background: Transfer Information Entropy

We start by introducing the formal definition of TE. A detailed presentation can be found in
Bossomaier et al. [18]. The connection between TE and causality in time series analysis is discussed in
[19].

TE measures the directionality of a variable with respect to time based on the probability density
function. For two discrete stationary processes I and J, TE relates k previous samples of process I and
l previous samples of process J and is defined as follows [5,20],

TEJ→I =
n−1

∑
t=1

p(it+1, i(k)t , j(l)t ) log
p(it+1|i

(k)
t , j(l)t )

p(it+1|i
(k)
t )

, (1)

where it and jt are the discrete states at time t of I and J, respectively, and i(k)t and j(l)t are the k and

l dimensional delay vectors of time series I and J, respectively. The three symbols it+1, i(k)t , j(l)t for
computing probabilities are sequences of time series symbols.

TEJ→I measures the extend to which time series J influences time series I. The TE is asymmetric
under the exchange of it and jt, and provides information regarding the direction of interaction between
the two time series. With respect to mutual information, the TE can be interpreted as being equivalent
to the conditional mutual information [19].

The accurate estimation of entropy-based measures is generally difficult. There is no consensus
on an optimal way for estimating TE from a dataset [21]. Schreiber proposed the TE using correlation
integrals [5]. The most common TE estimation approach is histogram estimation with fixed partitioning.
This simple method is not scalable for more than three scalars. Moreover, it is sensitive to the size of
bins used. Other nonparametric entropy estimation methods have been also used for computing the
TE [21–23]: kernel density estimation methods, nearest-neighbor, Parzen, neural networks, etc.

The best known applications of TE are in financial time series analysis. TE was used to compute
the information flow between stock markets or to determine relationships between stocks, indexes, or
markets [24,25]. Other application areas are neuroscience, bioinformatics, artificial life, and climate
science [18].
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3. How to Compute the Feedback Transfer Entropy in a Neural Network

An interesting question is how to compute the TE in a neural network, as the TE was originally
defined for time series. We describe in the following how the TE can be defined and computed in a
feedforward neural network as a feedback measure.

A feedforward neural network is the simplest artificial neural network architecture. The
information moves in only one direction, forward, from the input nodes, through the hidden nodes (if
any) and to the output nodes. There are no cycles in the network. The most common training method
of such a network is to use the output result backwards, to adjust the weights of the connections
between nodes. In our case, we will adjust the weights also considering the TE feedback measure.

We denote by FF+FB the network with a TE feedback, whereas a network without feedback is
named FF (feedforward only). R is the number of epochs used in the training algorithm for both the
FF+FB and FF networks, whereas r is the index of a current epoch, r ∈ {1, . . . , R}.

The information transfer between two neurons can be computed if the outputs of the neurons
are logged along the training process. After p consecutive training steps in FF+FB, we obtain two
time series, of length p each, with the observations aligned in time by the index of the training step
and sample position. For the FF+FB network trained with the backpropagation algorithm, we denote
by or,n

i the output of neuron i in layer l − 1 when processing the nth training sample during epoch r.
Similarly, or,n

j is the output of neuron j in layer l. The layer index is not required here since we compute
the information transfer only between pairs of neurons from adjacent layers.

The time series are obtained by discretization of the continuous values or,n
i and or,n

j (we use
the sigmoid activation function). The continuous sub-intervals are mapped to discrete values using
binning: sr,n

i = 1 for or,n
i > g and sr,n

i = 0 for or,n
i ≤ g, where s stands for time series. We record the time

series only after the first 10 training patterns were processed. This value was obtained experimentally,
optimized for smaller training sets.

We estimate the TE for the two generated time series by approximating the probabilities with
relative frequencies. A higher number of discrete levels gives a better approximation of the TE, but
also requires longer time series. Obviously, a reduced number of discrete values is computationally
more efficient. We illustrate in Figure 1 the computational pipeline that (1) collects process values from
the data flow that goes through two connected neurons and (2) computes the TE between the two
discrete time series produced from the output of each neuron. In the following, we denote by te the
computed (approximated) TE value.

The TE is in general non-negative. However, at certain steps during training, some local TE values
can be negative due to noisy inputs resulted from neuron’s outputs, and also due to finite training
samples available [26].
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Figure 1. This illustrates how the two neurons with indices i and j from a network produce a series of
activations. The g threshold is the red line that splits these activations into two groups: the ones above
the threshold (blue) and the ones below the threshold (red). They correspond to the or,n

i and or,n
j time

series, which produce the time series of binary values sr,n
i and sr,n

j used to calculate the TE. The process
is applied to all pairs of connected neurons.

4. Integrate the TE in the Training of Neural Networks

In the following we explain how we integrate the feedback TE in the training algorithm of a
feedforward neural network. This is the key concept of our approach. As a first step, we focus on a one
hidden layer perceptron architecture trained with backpropagation gradient descent for classification
tasks. Our results can be extended for any number of layers.

Backpropagation [27] is an algorithm for supervised training of artificial neural networks using
gradient descent. It stands for “backward propagation of errors”. Using the gradient of an error
function with respect to the network’s weights, we calculate this gradient backwards through the
network’s layers, from the output layer back to the input layer. This process presents all the training
set items to the network’s input, while iteratively updating the weights and calculating the te values
that we use during the weights updates step as shown in the following sections.

The FF+FB training algorithm uses the discretized outputs of the neurons from adjacent layers
to construct the time series needed for the TE computation. Once obtained, we use it in the
backpropagation weight update process. The weights are updated incrementally (online), after
processing each input pattern.

The FF+FB requires two training stages. Both stages are using the standard backpropagation
algorithm with the modifications we describe below. In Stage I, we train the FF+FB network with all
training samples while re-evaluating and using TE after each sample. At the end of the Stage I training,
we store the te values for all the neuron pairs. In Stage II, we train the same network, using the te
values computed in Stage I. In summary:

(I) Train with the TE feedback. During this stage, we apply the calculated TE values after processing
each input pattern.

(II) Train with the TE feedback using the TE values calculated in Stage I, for R epochs.

The FF+FB network requires an additional hyperparameter g, the threshold used to bin the output
of the neurons when generating the time series that is also obtained using grid search. A unique value
of the threshold g is used for all neurons.

The value ter,n
j,i is calculated using neurons j and i located in layer l, respectively, l − 1, for the nth

sample at epoch r. Using this notation and lag one in the definition of TE (see eq (1)), we obtain the TE
measure of interneuron connections:
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ter,n
j,i = ∑

sr,n+1
i , sr,n

i , sr,n
j

p(sr,n+1
i , sr,n

i , sr,n
j ) log

p(sr,n+1
i , sr,n

i , sr,n
j ) p(sr,n

i )

p(sr,n+1
i , sr,n

i ) p(sr,n
i , sr,n

j )
(2)

where sr,n
i and sr,n

j are the time series obtained from the outputs of neurons i and j, located in layers

l − 1, l, using the nth sample at epoch r.
Once Stage I is completed, we hold only the most recent ter,n

j,i values for updating the weights
in Stage II. For given values of r and n, we simplify the notation by removing indices r and k and
introduce the layer index l. Instead of ter,n

j,i , we use tel
j,i, which aligns with the standard backpropagation

notations. We update the weights by a modified gradient descent:

∆wl
ij = −η

∂C
∂wl

ij
(1− tel

j,i) (3)

where C is the loss function. This is one of the changes we have made to the backpropagation
algorithm, the addition of 1− tel

j,i term in the calculation of the network’s weights updates. There
are many possible feedback loop modifications of the backpropagation algorithm, but ours has been
experimentally proven to yield positive results compared with the standard algorithm.

We include these modifications in the standard backpropagation gradient descent algorithm [27],
and obtain Algorithm 1, used to train the FF+FB. This represents the standard backpropagation
algorithm for a single hidden layer perceptron network; our additions are at lines 13, 14, 23–26.

As mentioned before, the closest related work is Herzog’s et al. paper [15]. The differences are as
follows.

• In contrast to our method, in [15] the computed TE values are used only in their last training step
as an input in the activation function; the activation function is g̃(xi) = g(xi + ∑j f j→i), where
f j→i is (wmin|β− α|) divided by the layer count (β and α are layer indices, β > α, and wmin is the
smallest weight value in their network determined in the first training step). The f j→i feedback is
only used if the averaged by class TE value is below a threshold Φ.

• In our approach, the distance between layers is not required since we consider only pairs of
neurons from neighboring layers.

• In [15], only larger te values are used in the training stage. We use all computed te values. This
adaptation helps us to obtain a longer series of events, which experimentally showed to improve
the training process.
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Algorithm 1: Backpropagation using transfer entropy

1 begin
2 - input :yyy true class labels vector, xxx input vector, N number of training samples, R number

of epochs, g the threshold rate
3 - input :TrainStage takes the following values: I, II
4 - initialize all WWW weights with random samples between 0 and 1, drawn from a 0 centered,

0.1 width, normal distribution
5 - initialize all biases bbb and activations AAA with 0.0
6 - initialize sl,r,n

i,j , i and j are the neuron indexes of the l − 1th, lth layer respectively, and k is the

sample’s index in the training set, r - current epoch
7 foreach epoch r = 0 to R do
8 - randomize training set
9 foreach sample k in training set do

10 foreach l layer do
11 - compute input layer outputs zl,k = xxx�WWW(in) + bl

12 - compute zl,n =wlσ(zl−1) + bl for hidden and output layers, where
σ(x) = 1

1+e−x

13 if Training Stage I and zl,n < g then sl,r,n
i,j = 0

14 else sl,r,n
i,j = 1

15 if l is hidden layer then

16 - compute output error vector δδδ(hidden) = δδδ(out)WWW(out)T �
∂σ(z(hidden))

∂z(hidden)
;

//
∂σ(z(hidden))

∂z(hidden)
= σ(z(hidden))� (1− σ(z(hidden))) the derivative of the activation

function

17

18 - compute derivation of the J(WWW) function
∂

∂w(hidden)
i,j

J(WWW) = σ(z(input)
j )δ

(out)
i ,

vectorized as: ∆(hidden) = ∆(hidden) + (AAA(in))Tδ(hidden)

19 else if l is output layer then

20 - compute output error vector δδδ(out) = zl,n(out) − y

21 - compute derivation of the J(WWW) function
∂

∂w(out)
i,j

J(WWW) = σ(z(hidden)
j )δ

(out)
i ,

vectorized as: ∆(out) = ∆(out) + (AAA(hidden))Tδ(out)

22 end
23 if Training Stage I and r = R and k = N then
24 - compute tel

i,j using sl,r,n
i,j according to (2)

25 if Training Stage I or Training Stage II then
26 WWW l := WWW l − η∆l(1− tetetel)

27 end
28 end
29 end
30 end
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5. Experimental Results

The main question is if the addition of the TE factor improves learning and creates any benefits.
To answer it, we compare the FF+FB and FF algorithms using a target accuracy.

The experimental set-up is the following. We define a fixed target validation accuracy that both
networks have to reach in an also fixed maximum number of epochs. The learning process ends
when either of the target validation accuracy or the maximum number of epochs is reached. The
hyperparameters used are the standard ones in any multilayer perceptron (MLP): learning rate η,
number of epochs R, and number of neurons in each layer. To make comparisons easier, we use the
same learning rate η for FF+FB and FF, determined by grid search. In addition, we use the target
accuracy (which is the early training stop limit). For the FF+FB we also use the binning threshold
hyperparameter g.

First, we train the FF+FB network on a toy example: the XOR (or “exclusive or”) problem. The
XOR problem is a classic benchmark in neural network research. It is the problem of using a neural
network to predict the outputs of XOR logic gates given two (or more) binary inputs. An XOR function
should return a true value if the inputs are not equal and a false value if they are equal. We use the
most simple XOR problem, with two inputs.

The accuracy measured is here the training accuracy—the one obtained on the training set.
Therefore, for now we focus only on the learning cycles, disregarding the overfitting/generalization
aspect. We train up to saturation, or to 100% training accuracy the FF+FB on the XOR dataset (Table 1),
observing the number of epochs required to reach this accuracy, in comparison to the FF network.

Table 1. The XOR dataset. A training epoch consists of 200 vectors, randomly selected from this dataset.

Input 1 Input 2 Output

0 0 0
0 1 1
1 0 1
1 1 0

The number of epochs for training the FF+FB network to reach the target accuracy is 7–10 times
less than for FF. We average 10 runs, taking g = 0.7 and η = 0.025 for both networks. The number of
epochs is capped to 300 epochs. With these constraints, η is optimized (by grid search) for the smallest
number of epochs of the two networks that reached 100% training accuracy in 10 runs. The network
for the XOR dataset has 2− 2− 1 (input–hidden–output) nodes, as depicted in Figure 2.
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Input #1

Input #2
Output

te2
1,1 te2

2,1

te2
1,2 te2

2,2

te3
1,1

te3
1,2

Figure 2. The FF+FB architecture for the XOR problem. The tel
j,i values are calculated between neurons

j and i. Neuron i is in layer l − 1, neuron j is in layer l. The colored arrows from the neurons show
how the outputs from the neurons are used to calculate the te values. The same color in a dotted line
arrow shows to which weight the te is applied (see Equation 3). The bias units are implemented but
not shown here since they do not use the te values in the algorithm.

For the XOR problem, the FF+FB network is more efficient for a relatively small η (between 0.022
and 0.045) and g = 0.7. However, these η values are not also optimal for the FF network. For a larger
learning constant (η ≈ 0.1), FF generally needs less epochs (i.e., converges faster). For FF+FB, a small η

(η < 0.45) paired with a small g (g < 0.25) or a large g (g > 0.7) threshold destabilizes FF+FB training.
Figure 3 and Table 2 depicts the evolution of XOR learning for each run.

Figure 3. Ten runs on XOR dataset. Each x axis finishes when the last of the FF+FB or FF reaches either
the maximum number of epochs or 100% training accuracy (log scale).
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Table 2. Comparison between the number of epochs required by FF+FB and FF to reach 100% training
accuracy on the XOR dataset in 10 runs. The networks did not successfully reach the target accuracy on
runs 1 for FF+FB and runs 2,5,7 for FF, showing the maximum number of epochs (300) the training was
limited to.

Run FF+FB Epochs at 100% acc. FF Network Epochs at 100% acc.

1 300 207
2 32 300
3 40 261
4 75 249
5 28 300
6 27 213
7 31 300
8 30 206
9 29 237

10 29 226
Average 62.2 349.9

Next, we train the two networks on ten standard datasets [28]: abalone, car, chess, glass, ionosphere,
iris, liver, redwine, seeds, and divorce. For these set of experiments, the accuracy is measured on
independent test sets, as usual. Each of the datasets had specific target accuracies and number of
epochs.

The question is which of the two networks reaches the target accuracy in less epochs. We obtain
on almost all datasets increased accuracies in a 10 run average, and for most of them, FF+FB reaches
the target accuracies in less epochs than the FF network.

We noticed that using an unoptimized hidden layer size negatively impacts FF network’s training.
The FF+FB is less sensitive to this aspect (up to certain thresholds), and can successfully converge to
the target accuracy; however, for some datasets, it requires more epochs.

Appendix A depicts the evolution of the learning process for all 10 datasets per each run. Our
proposed solution (the FF+FB model) is generally more stable and reaches the accuracy target in less
epochs than the FF network.

We also performed several control experiments to assess the significance of these results. We
verified if variations of our modified backpropagation, including detrimental and misuse of the te,
could produce different or similar results. In Section 6 we discuss some of these results. We explored
the following.

• Set a fixed te value for all feedbacks.
• Strengthen/weaken the tel

j,i values by layer index.
• Replace all weights with fixed values and use te as feedback.
• Scale the tel

j,i values to [0, 1].

6. Discussion

Compared to FF, the FF+FB training algorithm has an overhead needed to compute the te values
in Stage I. In Stage II, these values are only used and there is no additional overhead.

According to our experiments, adding the TE feedback parameter (Stage II in FF+FB) brings two
benefits: (a) it accelerates the training process—in general, less epochs are needed, and (b) we generally
achieve a better test set accuracy. For the plots shown in Appendix A, Table 3 summarizes the obtained
average accuracies and the differences between FF+FB and FF.
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Table 3. Comparison of various between FF+FB and FF for the target validation accuracies on specified
datasets (average of 10 runs). Whenever the networks did not successfully reach the targets, we used
the maximum number of epochs and the last recorded accuracy to calculate the averages.

Dataset Target
Accuracy

Avg. FF+FB
Accuracy

FF+FB Avg.
Epochs

Avg. FF
Accuracy

FF Avg.
Epochs

Accuracy
Difference

Max
Epochs

abalone 52% 53.01 6.2 52.16 37.5 0.84% 50
car 73% 72.21 163.5 73.14 184.2 −0.92% 300
chess 96% 96.20 19.0 95.41 38.3 0.79% 40
glass 52% 52.46 154.6 35.84 294.4 16.61% 300
ionosphere 92% 92.17 16.4 92.26 22.5 −0.09% 60
iris 92% 95.11 13.8 96.22 24.8 −1.11% 100
liver 70% 68.46 212.1 61.82 294.2 6.63% 300
redwine 52% 50.18 134.6 49.89 171.8 0.29% 200
seeds 85% 87.46 41.3 87.14 136.2 0.31% 200
divorce 98% 98.03 6.9 98.62 7.4 −0.58% 20

We observed that the optimal η values for the FF+FB and FF networks are different. The FF+FB
network usually needs a slightly smaller learning rate. As we empirically observed that a smaller
learning rate value is more beneficial for the FF+FB, we can conclude that FF+FB learns in smaller
steps. The direction of these steps is in general more targeted, given the smoothness of the accuracy
curve for most datasets (see Table 3 and Appendix A).

Small η and g values can make the FF+FB network get stuck in local minima. For an unoptimized
η, the FF+FB network uses the tel

j,i values to compensate for a poor η choice. A good choice of the g
threshold becomes more important in this case. Threshold g was determined for each dataset using
grid search, after η was selected. As we use the sigmoid activation function (with values less than 1), a
g = 0.9 value would mean that only significant activations will be used in the TE computation. The
learning rate η was selected for each dataset targeting the best results in 10 runs of the FF network and
the same η has been used for FF+FB.

Constructing the time series, per epoch, for each training sample independently, does not produce
good results: the obtained te values (scaled or not) were very small. Weighting the te values in this
scenario, was also not a good approach.

The te values are tuned during Stage I. Calculating te after all training samples were processed
proved to be a bad alternative.

Examining the te values raised new questions and we performed additional experiments to
alleviate any possible bias in the results. The investigation was motivated by the negative and large
te values (observed in most datasets) and their association with increased scores. Using these values
in Equation (3) is not consistent with Equation (2), as negative values would mean that the source
misinforms the target’s next state. By subtracting te from 1, we revert the negative te values. Since
the te values rarely exceed values like +/−6, this operation is also favorable for the positive extreme
values.

For the car and glass datasets, where learning was slow or capped to inappropriate margins,
we used the Weka package (version 3.9.3) with the MultiLayerPerceptron function, with identical or
different hyperparameters, as needed, and, where required, with a lot more iterations, to validate our
implementation’s behavior for an established maximum accuracy. Our implementations of FF+FB and
FF performed at least as good as the ones in Weka.

Computing tel
j,i for all neuron pairs is prohibitive even for shallow networks, especially for

training sets with more than 105 samples. However, these are related only to TE computation and
occur only during training Stage I. In practice, the trained weights of a neural network can be stored
(te values are embedded in these weights). Therefore, in real-world applications, any inference tasks
would not be affected by the increased training computational cost for FF+FB. Additionally, having the
te values obtained in training Stage I stored, they can be reused as needed in training Stage II without
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any computational overhead. Alternative TE estimation techniques may be considered for such cases
[8].

7. Conclusions

We introduced FF+FB, a neural training algorithm which uses information transfer to quantify
relationships between neurons and uses the TE feedback to enhance certain neural connections. Our
method generally uses less training epochs and achieves higher accuracy compared to the FF network.
In addition, it is more stable during training, as it can be observed from the plots in Appendix A, and
less sensitive to local minima.

Using the TE feedback can reduce the effort for optimizing hyperparameters like η and number
of hidden neurons in the hidden layer. According to our experiments, choosing an optimized value
for the threshold parameter g can decrease the importance of other hyperparameters (e.g., η and the
number of hidden nodes).

Our approach could facilitate the extraction of knowledge (and explanations) from the trained
networks using the causality paradigm. This is left as an open problem.
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Abbreviations

The following abbreviations are used in this manuscript:

te transfer entropy value
g the binning threshold
tel

j,i obtained te calculated using the time series produced by binning the outputs of neurons’ index
i from layer l − 1 and index j from layer l

ter,n
j,i obtained te using the time series from outputs of neurons’ index i from layer l − 1 and index j

from layer l, at epoch r and sample n
or,n

i output of neuron having index i—that is layer l − 1, at epoch r using sample n
or,n

j output of neuron having index j—that is layer l, at epoch r using sample n
sr,n

i binning the output of neuron index i—layer l − 1, at epoch r using sample n, with threshold g
sr,n

j binning the output of neuron index j—layer l, at epoch r using sample n, with threshold g
CNN Convolutional Neural Network
FF+FB Feedback Transfer Entropy—our proposed method
MLP Multi-layer perceptron
FF Non Feedback network, regular MLP architecture and algorithm
TE Transfer Entropy

Appendix A. Validation Accuracy Evolution during Stage II

We present here the results of 10 runs on 10 standard benchmarks by illustrating the evolution
of Stage II. We compare the dynamic behavior of FF+FB(in red) and FF(in blue) for a given target
accuracy, with respect to the number of epochs required to reach that target. For most datasets, FF+FB
improves its accuracy earlier and with a faster rate than FF.
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Figure A1. Ten runs of Abalone dataset. Each X axis finishes when the last of the FF+FB or FF reaches
either the maximum number of epochs or the maximum set validation accuracy (log scale).

Figure A2. Cont.
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Figure A2. Cont.
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Figure A2. Cont.
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Figure A2. We tried several η values for this benchmark. To improve stability of both models, we
selected a smaller value. It can be observed that FF+FB failed to converge on the 9th run and even to
properly learn on other runs.
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Figure A3. The divorce dataset constantly requires only a few epochs to reach the target accuracy.
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