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Abstract

Optimizing the gene transformation factors can be considered as the first and foremost step

in successful genetic engineering and genome editing studies. However, it is usually difficult

to achieve an optimized gene transformation protocol due to the cost and time-consuming as

well as the complexity of this process. Therefore, it is necessary to use a novel computational

approach such as machine learning models for analyzing gene transformation data. In the

current study, three individual machine learning models including Multi-Layer Perceptron

(MLP), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Radial Basis Function (RBF)

were developed for forecasting Agrobacterium-mediated gene transformation in chrysanthe-

mum based on eleven input variables including Agrobacterium strain, optical density (OD),

co-culture period (CCP), and different antibiotics including kanamycin (K), vancomycin (VA),

cefotaxime (CF), hygromycin (H), carbenicillin (CA), geneticin (G), ticarcillin (TI), and paro-

momycin (P). Consequently, best-obtained results were used in the fusion process by bag-

ging method. Results showed that ensemble model with the highest R2 (0.83) had superb

performance in comparison with all other individual models (MLP:063, RBF:0.69, and

ANFIS: 0.74) in the validation set. Also, ensemble model was linked to Fruit fly optimization

algorithm (FOA) for optimizing gene transformation, and the results showed that the maxi-

mum gene transformation efficiency (37.54%) can be achieved from EHA105 strain with 0.9

OD600, for 3.8 days CCP, 46.43 mg/l P, 9.54 mg/l K, 18.62 mg/l H, and 4.79 mg/l G as selec-

tion antibiotics and 109.74 μg/ml VA, 287.63 μg/ml CF, 334.07 μg/ml CA and 87.36 μg/ml TI

as antibiotics in the selection medium. Moreover, sensitivity analysis demonstrated that input

variables have a different degree of importance in gene transformation system in the order of

Agrobacterium strain >CCP > K >CF > VA > P >OD >CA >H > TI >G. Generally, the devel-

oped hybrid model in this study (ensemble model-FOA) can be employed as an accurate and

reliable approach in future genetic engineering and genome editing studies.
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Introduction

Horticulture plants including fruits, vegetables, grapes, and ornamental plants are raw material

and used by people for food, either as edible products or for culinary ingredients, for medicinal

use or ornamental and aesthetic purposes. They are a genetically very diverse group and play a

major role in modern society and the economy [1–4]. Chrysanthemum

(Dendranthema × grandiflorum) can be categorized as the second most economically impor-

tant ornamental species due to its color and morphological diversity [5]. Moreover, chrysan-

themum has been used as a model plant for color modification [6]. Conventional propagation

and breeding approaches are not able to meet the increasing demands of the market for this

valuable ornamental plant. Therefore, novel biotechnological methods such as genetic manip-

ulation and gene editing such as CRISPR/Cas9 can be employed in order to satisfy the

demands of consumers. Optimizing the gene transformation protocol can be considered as the

first and foremost step in successful genetic engineering and gene editing studies [6, 7]. Many

factors such as in vitro regeneration parameters (temperature, type and age of explant, quality

and intensity of light, type and concentration of plant growth regulators, medium composi-

tions), bacterial optical cell density, antibiotic and chemical stimulants concentrations, and

inoculation duration (immersion time), play an important role in the efficiency of gene trans-

formation [5]. Establishing an optimized protocol for genetic Agrobacterium-mediated trans-

formation can be considered as a highly complex system, and it is critical to comprehend the

effect of different factors prompting the T-DNA delivery into various explants [5, 8]. Subse-

quently, further analyses are essential to check T-DNA integration and stability and to achieve

the efficiency parameter of gene transformation [9]. However, it is usually difficult to achieve

an optimized gene transformation protocol due to the cost and time-consuming as well as the

complexity of this process. Therefore, gene transformation can be considered as a multi-vari-

able and non-linear biological process. Hence, conventional linear computational methods

such as simple regression are not appropriate for analyzing biological systems such as gene

transformation. Machine learning algorithms as a non-linear approach can be considered as a

suitable computational methodology for predicting and optimizing different complex biologi-

cal systems. Several studies have proved the usefulness of ANN for modeling and predicting in

vitro culture processes such as in vitro secondary metabolite production, shoot proliferation

and somatic embryogenesis [10–16]. Nowadays, the necessity of increased precision and accu-

racy of machine learning algorithms has encouraged researchers to develop applicable meth-

ods such as ensemble approaches. The key idea of ensemble is fusing or combining data

derived from fused information in order to provide more precise estimations in comparing

with using individual model [17]. Many researchers in several fields of study have used ensem-

ble models [18–20]. At more complex features such as gene transformation, ensemble methods

could be used to integrate the advantages and strengths of individual models. Several studies

have demonstrated that ensemble models can be more reliable and accurate to model complex

systems [17–20]. Therefore, ensemble model can be considered as a reliable tool to help the

handling of complex systems and to data mining. Data mining can be defined as the process of

discovering and understanding previously unknown relationships and dependencies in data-

sets. In fact, data mining can be applied to generate and model rules able to enhance knowl-

edge or further insight from experimental data [21].

However, difficulty in achieving an optimized solution can be considered as one of the

demerit points of most machine learning algorithms [22–29]. To overcome this bottleneck,

Zhang et al. [30] employed the genetic algorithm (GA) as one of the common optimization

algorithms for optimizing relative humidity, light duration, agar concentration, and culture

temperature in order to maximize indirect shoot organogenesis in Cucumis melo. In another
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study, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was employed to optimize

different types and concentrations of disinfectants as well as immersion time for maximizing

explant viability and minimizing in vitro contamination in chrysanthemum [10]. However,

most studies have found the optimized solution by trials and error [14, 31–36]. Fruit fly opti-

mization algorithm (FOA) suggested by Pan [37] is a new evolutionary optimization and com-

putation approach. This novel optimization algorithm has the merits of being simple to

comprehend and to be written into linguistic terms which is not too complex compared with

other optimization algorithms [38]. Therefore, this study has attempted to apply the FOA to

find the optimal levels of different factors involved in gene transformation.

In the current study, data mining by using ensemble strategy was employed to assess the

effect and importance of different factors in Agrobacterium-mediated genetic transformation.

Data dispersed into several single chrysanthemum databases was assembled in order to

model them and obtain further insight into the effect of different factors involved in chrysan-

themum gene transformation. Furthermore, FOA was linked to the ensemble model to find

the optimal level of factors involved in chrysanthemum gene transformation. According to the

best of our knowledge, this study is the first report of the application of ensemble model in the

field of genetic engineering.

Results

Evaluating and comparing different individual (MLP, RBF, and ANFIS)

models and ensemble method

Three individual models including MLP, RBF, and ANFIS were applied for forecasting gene

transformation efficiency in chrysanthemum based on eleven inputs including Agrobacterium
strain, optical density (OD), co-culture period (CCP), and different antibiotics including kana-

mycin (K), vancomycin (VA), cefotaxime (CF), hygromycin (H), carbenicillin (CA), geneticin

(G), ticarcillin (TI), and paromomycin (P). In order to improve forecasting results, the best

estimations obtained by three individual models were fused through the bagging method.

The efficiency of the individual and ensemble models was determined based on the assess-

ment of forecasted and observed data. All the R2 of testing, training, and validation datasets

were over 63%, 69%, and 73% for MLP, RBF, and ANFIS models, respectively (Table 1).

According to Table 1, the ensemble model had the better predictive ability on forecasting gene

transformation efficiency (R2 > 0.86, 079, and 0.83 for training, testing and validation sets,

respectively) compared with individual models. The good fit of the ensemble model can be

traced by the correlation between observed and forecasted data for gene transformation effi-

ciency (Fig 1). Also, RMSE and MBE, same as R2, in ensemble model were better than individ-

ual models (Table 1). Based on the performance criteria that was mentioned in Table 1,

Table 1. Performance criteria of individual and ensemble models for gene transformation efficiency of chrysanthemum in training, testing, and validation

processes.

Model R2 RMSE MBE

Training Testing Validation Training Testing Validation Training Testing Validation

MLP 0.71 0.68 0.63 1.24 2.63 2.87 0.43 0.66 -0.84

RBF 0.73 0.71 0.69 1.21 1.76 1.96 -0.37 0.69 1.07

ANFIS 0.77 0.73 0.74 0.91 1.05 1.01 0.32 -0.54 -0.96

Ensemble 0.86 0.79 0.83 0.93 0.83 0.88 0.26 0.19 0.21

R2: coefficient of determination; MBE: Mean Bias Error; RMSE: Root Mean Square Error; MLP: Multi-Layer Perceptron; ANFIS: Adaptive Neuro-Fuzzy Inference

System; RBF: Radial Basis Function.

https://doi.org/10.1371/journal.pone.0239901.t001
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ensemble model was able to efficiently explain the performances of Agrobacterium-mediated

gene transformation to different studied factors.

Optimizing gene transformation through FOA

The aim of the current study not only was to forecast the gene transformation but also was to

find an optimized level of Agrobacterium strain, OD, CCP, and different antibiotics including

K, VA, CF, H, CA, G, TI, and P for the maximum Agrobacterium-mediated gene transforma-

tion efficiency in chrysanthemum. FOA was linked to ensemble model for achieving the opti-

mal level of factors involved in gene transformation. The result of the optimization process

was summarized in Table 2. According to Table 2, the maximum gene transformation effi-

ciency (37.54%) can be achieved from EHA105 strain with 0.9 OD600, for 3.8 days CCP, 46.43

mg/l P, 9.54 mg/l K, 18.62 mg/l H, and 4.79 mg/l G as selection antibiotics and 109.74 μg/ml

VA, 287.63 μg/ml CF, 334.07 μg/ml CA and 87.36 μg/ml TI as antibiotics in the selection

medium.

Sensitivity analysis of the models

Databases were also used to determine the overall VSR for identifying the comparative rank of

inputs. The results of sensitivity analysis were presented in Table 3. Based on sensitivity analy-

sis, Agrobacterium-mediated gene transformation was more sensitive to Agrobacterium strain,

followed by CCP, K, CF, VA, P, OD, CA, H, TI, and G.

Discussion

The Agrobacterium-mediated gene transformation of the chrysanthemum was widely studied

by discovering the susceptibility of different chrysanthemum cultivars to Agrobacterium tume-
faciens [5, 9]. However, several studies have reported some obstacles to establish and develop

chrysanthemum gene transformation system such as chimeric plant regeneration consisting of

Fig 1. Scatter plot of model predicted vs. observed data of chrysanthemum gene transformation efficiency by

ensemble model. (A) Training set, (B) Testing set, and (C) Validation set.

https://doi.org/10.1371/journal.pone.0239901.g001

Table 2. The results of optimization process via FOA for gene transformation efficiency of chrysanthemum.

Input Gene transformation efficiency (%)

Agrobacterium Strain OD CCP Antibiotics for selecting

transgenic tissue (mg/l)

Antibiotics (μg/ml)

K H P G VA CF CA TI

EHA105 0.9 (660) 3.8 9.54 18.62 46.43 4.79 109.74 287.63 334.07 87.36 37.54

OD: Optical density; CCP: co-culture period; K: kanamycin; VA: vancomycin; CF: cefotaxime; H: hygromycin; CA: carbenicillin; G: geneticin; TI: ticarcillin; P:

paromomycin.

https://doi.org/10.1371/journal.pone.0239901.t002
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both non-transgenic and transgenic tissues [39, 40], low efficiency of gene transformation

[41–43], and transgene inactivation [44]. Due to these difficulties and also the complex nature

of the gene transformation system, there is a dire need to employ new computational methods

to optimize this system. AI models can be considered as a reliable strategy to develop and opti-

mize gene transformation protocols. Although there are no reports to use AI models in genetic

engineering and genome editing, several studies have previously proved the reliability and

accuracy of AI methodology to predict and optimize different in vitro culture processes such

as in vitro sterilization [45, 46], callogenesis [34, 47, 48], cell growth and protoplast culture [49,

50], somatic embryogenesis [34, 51, 52], shoot regeneration [12, 53–55], androgenesis [33],

hairy root culture [56, 57], and rhizogenesis [58]. In the current study, MLP, RBF, ANFIS, and

ensemble models, for the first time, were used to develop a suitable model for chrysanthemum

gene transformation and compare their prediction accuracy. According to our results, ensem-

ble model had more accuracy than individual models for modeling and predicting the system.

Although there is no report regarding the application of AI models in gene transformation

studies, in line with our results, comparative studies in other fields revealed the better perfor-

mance of ensemble models in comparison to individual models [17–20]. On the other hand,

one of the weaknesses of using AI models is that it is hard to obtain an optimized solution

[10]. To tackle this problem, several studies [10, 11, 13, 45, 54] used GA and NSGA-II to opti-

mize in vitro culture conditions. In the current study, FOA was linked to ensemble model for

the optimization process. Based on our results, a hybrid ensemble model and FOA can be con-

sidered as an efficient computational methodology for predicting and optimizing Agrobacter-
ium-mediated gene transformation.

Agrobacterium strains play a pivotal role in gene transformation [8]. Several studies showed

that successfulness in chrysanthemum gene transformation directly depends on selecting a

suitable strain [5, 9]. Ledger et al. [59] first tried to produce transgenic chrysanthemum

through LBA4404, however, low transformation efficiency (1.7%) was observed. Just two years

later, Renou et al. [42] reported that higher transformation frequency between 5% and 40%

can be achieved by using EHA101. Further studies [60, 61] employed LBA4404 and EHA101

to compare the performance of these two strains on the chrysanthemum gene transformation.

These studies [60, 61] showed that EHA101 caused to 8.8% gene transformation frequency

whereas LBA4404 resulted in 5.2%. Afterward, the efficiency of EHA101 and EHA105 was

studied and showed that EHA105 had better performance than EHA101 for chrysanthemum

gene transformation [9]. In line with previous studies, our results elucidated that EHA105 is

the best strain to obtain the maximum gene transformation frequency.

The selection marker is another factor that plays an important role in gene transformation

systems [8]. Due to the fact that in the first study of chrysanthemum gene transformation [62],

the neomycin phosphotransferase II (nptII) gene was applied as a selection marker, kanamycin

has been the main selection antibiotic of transgenic chrysanthemums. However, a high level of

kanamycin in the selection medium represses organogenesis due to the sensitivity of

Table 3. The results of sensitivity analysis on the developed ensemble model to rank the importance of factors involved in Agrobacterium-mediated gene transfor-

mation of chrysanthemums using GUS gene.

Item Agrobacterium Strain OD CCP K H P G VA CF CA TI

VSR 1.86 1.06 1.73 1.54 0.91 1.025 0.87 1.23 1.47 0.94 0.88

Rank 1 7 2 3 9 6 11 5 4 8 10

OD: Optical density; CCP: co-culture period; K: kanamycin; VA: vancomycin; CF: cefotaxime; H: hygromycin; CA: carbenicillin; G: geneticin; TI: ticarcillin; P:

paromomycin; VSR: variable sensitivity ratio.

https://doi.org/10.1371/journal.pone.0239901.t003
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chrysanthemum to kanamycin [9]. Other antibiotics, such as geneticin, paromomycin, and

hygromycin, have been successfully employed for the detection of transgenic cells of chrysan-

themums [42, 61, 63]. Our results showed that the combination of 46.43 mg/l paromomycin,

9.54 mg/l kanamycin, 18.62 mg/l hygromycin, and 4.79 mg/l geneticin is the best antibiotics

combination for the selection of transgenic tissues. In accordance with our results, Aida et al.
[63] reported that paromomycin has less toxic to cells than other antibiotics such as kanamy-

cin, and it can reduce the chance of non-transgenic chrysanthemums escapes. Also, our results

showed that cefotaxime can be considered as the best antibiotic for the selection medium. Pre-

vious studies [42, 61, 63] have proved the usefulness of cefotaxime in the selection medium.

One of the most important factors in Agrobacterium-mediated gene transformation systems

is the density of the Agrobacterium strain [5, 9]. Therefore, Optimizing the optimal bacterial

inoculation density is very critical because, with higher OD levels, explants are completely col-

onized by Agrobacterium and, subsequently, bacteria elimination becomes more difficult [8].

Similar to the previous studies [60, 64, 65], our results indicated that transformation efficiency

can be improved when an optical density (OD600) of 0.9 would be used. The co-cultivation

period is expected to be another important factor in gene transformation and transgenic plant

regeneration [8]. According to previous studies [9, 66, 67], the regeneration of chrysanthe-

mum explants following cocultivation with A. tumefaciens was significantly decreased even

when explants were cultured on optimized media. This negative impact was observed when a

c-cultivation period of 8d was employed. According to our results, 3.8 days of co-cultivation is

the best period for the gene transformation in the chrysanthemum. Similar results have been

reported by Teixeira da Silva and Fukai [67] and Shinoyama et al. [9].

Conclusion

Recently, different individual AI models have been widely applied for modeling and predicting

in vitro culture processes. In the current study, ensemble model for the first time was applied

to model and predict gene transformation efficiency and to compare its accuracy with individ-

ual models. Our results showed that the ensemble model has better accuracy than MLP, RBF,

and ANFIS for modeling and predicting complex systems such as Agrobacterium-mediated

gene transformation. Also, FOA was able to accurately optimize the chrysanthemum’s gene

transformation. The results of the current study demonstrate that the developed hybrid model

(Ensemble-FOA) can open a reliable and accurate window to a comprehensive study of the

plant’s biological processes.

Materials and methods

Case study and data collection

Several experimental databases were selected from previous studies where detailed descrip-

tions of materials and methods are available [9, 39–44, 59–100]. Data supporting the effect of

Agrobacterium strain, optical density (OD), co-culture period (CCP), and different antibiotics

including kanamycin (K), vancomycin (VA), cefotaxime (CF), hygromycin (H), carbenicillin

(CA), geneticin (G), ticarcillin (TI), and paromomycin (P) on gene transformation efficiency

of chrysanthemum using GUS gene were summarized in Table 4.

Modeling procedures

Three individual machine learning algorithms including Multi-Layer Perceptron (MLP),

Adaptive Neuro-Fuzzy Inference System (ANFIS), and Radial Basis Function (RBF) were pro-

posed as estimator tools for modeling and optimizing chrysanthemum gene transformation
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datasets. The input variables were Agrobacterium strain, OD, CCP, and different antibiotics

including K, VA, CF, H, CA, G, TI, and P. Also, the efficiency of gene transformation was cho-

sen as outputs. Databases were randomly divided into three datasets: training set (70% data-

base), testing set (20% database), and validation set (10% database). The MLP as one of the

well-know ANNs was employed according to Hesami et al. [45] procedure. Also RBF and

ANFIS were employed according to Hesami et al. [10] and Hesami et al. [13] procedures.

Ensemble model

Ensemble is known as the process of combining and mixing data from various sources such as

single outputs of several machine learning algorithms that the overall equation can be as fol-

lows;

byi ¼ f ðxiÞ þ εi i ¼ 1; 2; 3; . . .; n ð1Þ

Where byi stands for target variable, x is a vector of independent estimators, ε stands for cor-

responding estimation error, and n is a number of observation data.

In order to develop ensemble models, Eq (1) can be introduced to the following form where

several individual models are employed;

½byi� ¼

byi1
byi2
:

:

:

byim

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

¼

f1 ðxiÞ

f2 ðxiÞ

:

:

:

fm ðxiÞ

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

þ

εi1
εi2
:

:

:

εim

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

i ¼ 1; 2; . . .; n ð2Þ

Where m stands for the number of individual model and [byi] stands as matrix of estima-

tions provided by each model.

Subsequently, the matrix of [byi] will be considered as input data infusion models.

Many methods have been recommended for fusing individual models, which reported that

the most powerful and uncomplicated among different approaches is the bagging method for

data fusing. Therefore, the best-resulted outputs achieved by three individual models were

fused through the bagging method (Fig 2).

Finally, the coefficient of determination (R2), Mean Bias Error (MBE), and Root Mean

Square Error (RMSE) were employed to determine the predictive ability of the developed

model.

Fruit fly optimization algorithm (FOA)

The FOA is a novel approach for selecting optimization based on the food-finding activities of

the fruit fly (Fig 3). The fruit fly is a type of insect, which lives in the tropical and temperate

regions and eats corrupt fruit. In the current study, the FOA was applied to find optimal levels

of inputs for achieving the maximum gene transformation efficiency. The details of the FOA

are presented as follows:

Step 1: Initialization parameters. First, the maximum repeat number (maxgen), the ini-

tial fruit fly swarm location (X_axis,Y_axis), the population size (sizepop), and the random

flight distance range (FR) should be considered. In this investigation, maxgen = 100, (X_axis,

Y_axis) ⸦ [0,1], sizepop = 10, and FR ⸦ [–10,10] were considered.
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Table 4. Studies on Agrobacterium-mediated gene transformation of chrysanthemums using GUS gene.

Input Gene transformation efficiency

(%)

Reference

Agrobacterium strain(s) OD CCP Antibiotics for selecting

transgenic tissue (mg/l)

Antibiotics (μg/ml)

K H P G VA CF CA TI

LBA4404 1.5 (550) 8 - - - - 400 250 - - 4.3–13.4 Jong et al. [68]

LBA4404 0.8 (550) 4 25 - - - 100–

300

- - - 0–4.6 Lemieux et al. [62]

LBA4404, A2002 0.1 (660) 2 25 - - - - - - 500 0–0.8 Ledger et al. [59]

LBA4404, A281, Ach5,

C58

0.5 (660) 6 50 - - - 400 250 - - 0–0.75 van Wordragen et al. [69]

EHA101 0.1 (660) 3 35 - - - - 250 - - 0.06 Aida et al. [70]

LBA4404, A281, Ach5 0.5 (660) 2 50 - - - 400 250 - - 0–10 Van Wordragen et al. [71]

LBA4404 0.6 (660) 2 - - - - 400 250 - - 1.4–4.6 de Jong et al. [66]

LBA4404 0.1 (660) 4 - - - - - - 500 - 0–0.4 Courtney-Gutterson et al.
[72]

EHA101, Ach5, C58,

Bo542

0.7 (660) 1 25 5 - - 400 500 - - 1.04–12.14 Renou et al. [42]

LBA4404, C58 0.5 (660) 2 15–25 - - - - 500 - - 0–6.3 Lowe et al. [73]

A281 0.5 (660) 3 50–

100

- - - 200 125 - - 0–2.5 van Wordragen et al. [74]

LBA4404 0.1 (660) 3–5 100 - - - - - 500 - 0–0.4 Courtney-Gutterson et al.
[75]

B6S3 0.1 (660) 1 100 - - - - 200 - 500 17–47 Pavingerová et al. [39]

LBA4404,AGL0 0.4–0.8

(550)

2 10–25 - - - 400 250 - - 0.3–4.3 de Jong et al. [41]

EHA105,Ach5,A281,

Chry5

2.2 (660) 3–5 50 - - - - - 500 - 4–7 Urban et al. [43]

B6S3 0.1 (660) 1 100 - - - - 200 - 500 3.8–4.7 Benetka and Pavingerová

[40]

AGL0 0.5 (540) 2 10 - - - 500 250 - - 0–39.45 de Jong et al. [76]

C58,A281 0.1 (660) 2 25 - - - - 500 - - 0–11.3 Dolgov et al. [77]

AGL0 0.7–1 (540) 2 10 - - - 400 250 - - 5.6–15.6 Fukai et al. [64]

LBA4404 0.5 (540) 2 50 - - - - 100 - - 6.9–8.3 Oka et al. [78]

A281,GV3101,C58,CBE21 0.6–0.9

(600)

3 10–50 10–

15

- - - 500 - - 0–3 Dolgov et al. [79]

LBA4404 0.1 (660) 4 20 - - - - - - 500 3.4 Boase et al. [80]

LBA4404,EHA105

+ 2xMOG

0.1 (660) 4 25 - - - - - - 500 0–14.2 Boase et al. [81]

LBA4404 0.5 (600) 4 25 - - - - 500 - - 3.4–8.5 Fu et al. [82]

LBA4404 0.5 (600) 2 20 - - - - 250 - - 6.9 Kim et al. [83]

LBA4404 0.5 (600) 2 50 - - - - 250 - - 7.6 Kim et al. [84]

EHA105 2.2 (600) 5 - - 50 - - - 500 - 0.5–4.1 John et al. [85]

EHA101 0.2 (600) 3 15 15 - 15 - 250 - - 3.4 Shinoyama et al. [86]

LBA4404 0.5 (660) 3 15 15 - 15 - 250 - - 0–2.5 Takatsu et al. [87]

LBA4404 0.1 (660) 3 20 - - - - 250 - - 1.3–3.1 Young et al. [88]

LBA4404 0.5 (600) 2 25 - - - - 250 - - 6.4% Shao et al. [89]

C58,MP90 0.5 (600) 2 50 - - - - 250 - - 1.12–1.91 Takatsu et al. [44]

EHA101 0.2 (600) 3 - - - 20–

30

- 250 - - 3.4 Shinoyama et al. [60]

EHA101 0.5 (600) 3 - 10–

40

- - - - 500 - 0–2.5 Shirasawa et al. [90]

EHA101 1.8 (660) 2 100 - - - 125 500 - - 0–2.3 Tosca et al. [91]

(Continued)
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Step 2: Evolution starting. The generation = 0, and the random flight path and the route

for food finding of a single fruit fly were considered.

Step 3: Preliminary computations. The flight distance (Disti) of food finding of the fruit

fly i were adjusted. Subsequently, the smell concentration decision value Si were determined.

Table 4. (Continued)

Input Gene transformation efficiency

(%)

Reference

Agrobacterium strain(s) OD CCP Antibiotics for selecting

transgenic tissue (mg/l)

Antibiotics (μg/ml)

K H P G VA CF CA TI

AGL0 0.7–1 (540) 2 25 - - - - 125 - 100 0–6.8 Annadana et al. [65]

EHA105 2 (600) 2 50 - - - - - 500 - 3.4–11.4 Zhi-Liang et al. [92]

LBA4404,AGL0 0.2 (600) 3 12.5 - - - - 250 - - 0.5–4.7 Ishida et al. [93]

LBA4404 0.5 (600) 3 50 - - - - 500 - - 1.2–9.4 Jeong et al. [94]

EHA101,LBA4404,AGL0 0.1 (600) 4 50 - - - - - - 200 3.4–5.9 Kudo et al. [95]

LBA4404 0.1 (600) 2 - - - 20 - 250 - - 0–23.9 Shinoyama et al. [61]

LBA4404,AGL0 0.6 (550) 3–4 30 - - - - 500 - - 0–25 Teixeira da Silva and Fukai

[67]

LBA4404,AGL0 0.1 (600) 12.5 - - - - 250 - - 27–38 Toguri et al. [96]

AGL0 0.7–1 (540) 4 10 - - - 400 250 - - 31–39 Petty et al. [97]

AGL0 0.8 (550) 6 25 - - - 500 250 - - 4.7–13.4 Outchkourov et al. [98]

EHA105, AGL0 0.1 (660) 8 - - 50 - - 250 - - 0.5–6.5 Aida et al. [63]

EHA105 0.1 (660) 5 - - 50 - - 250 - - 0.5–6.8 Aida et al. [99]

EHA105 0.1 (660) 4 - - 50 - - 250 - - 0–0.6 Aida et al. [100]

EHA105 0.1 (660) 3 50 - - 20 - 250 - - 37 Shinoyama et al. [9]

OD: Optical density; CCP: co-culture period; K: kanamycin; VA: vancomycin; CF: cefotaxime; H: hygromycin; CA: carbenicillin; G: geneticin; TI: ticarcillin; P:

paromomycin.

https://doi.org/10.1371/journal.pone.0239901.t004

Fig 2. The schematic view of the proposed ensemble model.

https://doi.org/10.1371/journal.pone.0239901.g002
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Si were entered into the GRNN model. Then, the fitness function value (also called the smell

concentration Smelli) was assessed. The fitness function value was used as the root-mean-

square error (RMSE) which calculates the deviation between the actual value and the forecast-

ing value.

Step 4: Offspring generation. The offspring generation is produced according to the fol-

lowing Equations:

Xi ¼ X� axisþ Random Value ð3Þ

Yi ¼ Y� axisþ Random Value ð4Þ

Disti ¼ ðXi
2 þ Yi

2Þ
1=2

ð5Þ

Si ¼ 1=Disti ð6Þ

Smelli ¼ Function ðSiÞ ð7Þ

½bestSmell bestIndex� ¼ max ðSmelliÞ ð8Þ

Smellbest ¼ bestSmell ð9Þ

X� axis ¼ XðbestIndexÞ ð10Þ

Y� axis ¼ YðbestIndexÞ ð11Þ

Fig 3. The schematic view of the fruit fly optimization algorithm (FOA).

https://doi.org/10.1371/journal.pone.0239901.g003
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Then the offspring was linked to the ensemble model and the fitness function value again

was determined. Also, generation = generation + 1 was considered.

Step 5: Circulation stops. When the generation attains the maximum repeat number, the

stop criterion would be satisfied, and the optimized parameter value of the ensemble model

can be reached. Otherwise, the optimization process should go back to Step 2.

Sensitivity analysis

Sensitivity analysis was conducted to identify the importance degree of input variables on the

efficiency of gene transformation. The sensitivity of these parameters was measured by the cri-

teria including variable sensitivity error (VSE) value displaying the performance (RMSE) of

the ensemble model when that input variable is removed from the model. Variable sensitivity

ratio (VSR) value was determined as ratio of VSE and ensemble model error (RMSE value)

when all input variables are available. A higher important variable in the model was detected

by higher VSR.

MATLAB (Matlab, 2010) software was employed to write codes and run the models.
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