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BacKgrouNd
Nasopharyngeal carcinoma (NPC) is a malignant head and 
neck cancer that is endemic in the Southeastern parts of Asia 
and North Africa.1 This tumour is characterized by its sensi-
tivity to radiation and platinum-based chemotherapy, and as 
such survival has improved substantially with the advent of 

radiotherapy advancement and combination chemoradio-
therapy in locally advanced cases.2 Nonetheless, combination 
therapies also contribute to incremental treatment-related 
toxicities, and thus there is a push to tailor treatment intensity 
based on more precise clinical risk stratification. To this end, 
there is a keen interest to explore novel biomarkers derived 
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objective: Radiomics pipelines have been developed 
to extract novel information from radiological images, 
which may help in phenotypic profiling of tumours 
that would correlate to prognosis. Here, we compared 
two publicly available pipelines for radiomics analyses 
on head and neck CT and MRI in nasopharynx cancer 
(NPC).
methods and materials: 100 biopsy-proven NPC cases 
stratified by T- and N-categories were enrolled in this 
study. Two radiomics pipeline, Moddicom (v. 0.51) and 
Pyradiomics (v. 2.1.2) were used to extract radiomics 
features of CT and MRI. Segmentation of primary gross 
tumour volume was performed using Velocity v. 4.0 by 
consensus agreement between three radiation oncolo-
gists. Intraclass correlation between common features 
of the two pipelines was analysed by Spearman’s rank 
correlation. Unsupervised hierarchical clustering was 
used to determine association between radiomics 
features and clinical parameters.
results: We observed a high proportion of correlated 
features in the CT data set, but not for MRI; 76.1% (51 of 

67 common between Moddicom and Pyradiomics) of CT 
features and 28.6% (20 of 70 common) of MRI features 
were significantly correlated. Of these, 100% were 
shape-related for both CT and MRI, 100 and 23.5% were 
first-order-related, 61.9 and 19.0% were texture-related, 
respectively. This interpipeline heterogeneity affected 
the downstream clustering with known prognostic clin-
ical parameters of cTN-status and GTVp. Nonetheless, 
shape features were the most reproducible predictors 
of clinical parameters among the different radiomics 
modules.
conclusion: Here, we highlighted significant heteroge-
neity between two publicly available radiomics pipelines 
that could affect the downstream association with prog-
nostic clinical factors in NPC
advances in knowledge: The present study emphasized 
the broader importance of selecting stable radiomics 
features for disease phenotyping, and it is necessary 
prior to any investigation of multicentre imaging data-
sets to validate the stability of CT-related radiomics 
features for clinical prognostication.
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from molecular profiling of tumours that could inform on prog-
nosis. More recently, radiomics, which aims to use algorithms to 
extract deep radiological features not visible to the naked eye, has 
been explored as a tool to characterize novel radiological pheno-
types that are correlated with prognosis in a number of tumour 
types.3–6 Several radiomics pipelines have been developed, most of 
which are agnostic to the type of imaging modality and anatomical 
site from which the region of interest (ROI) is localized.7 It is thus 
possible that differences in image acquisition and reconstruction 
methods contributing to variation in image quality, among other 
factors including accuracy of ROI segmentation, coding variation 
and baseline clinical characteristics, could affect the downstream 
feature extraction process in radiomics. Collectively, these caveats 
motivated a global collaborative effort to harmonize the radiomics 
analytical processes,8–10 and the first undertaking of the group was 
the standardization of some publicly available radiomics pipelines.

Among them, Pyradiomics is the most widely reported radiomics 
tool in the literature. It provides a flexible analytical platform with 
both a simple and convenient front-end interface in 3-dimen-
sional (3D) Slicer—a free open-source platform for medical image 
computing.11 It regards the voxel-to-voxel relationship in a 3D 
manner (default software option), and outputs several radiomics 
indices relating to first-order, texture modules, and shape. Next, 
Moddicom is another in-house developed radiomics pipeline, 
which is able to handle DICOM/DICOM-RT objects; unlike Pyra-
diomics, it considers two-dimensional voxel-to-voxel relationships 
for each transverse slice within the ROI, and then generates an 
aggregated score by using the mean of all the slices for the textural 
radiomics indices. It was developed primarily to interrogate fractal 
radiomics in MRIs.12 Both radiomics tools have been investigated 
in several human cancers, including oesophageal, lung and head 
and neck cancers, etc. and specific radiomics features have been 
highlighted to correlate with prognosis.5,13,14 All of the common 
features defined in both radiomics tools are International Image 
Biomarker Standardization Initiative-compliant.11,12 However, 
while both pipelines share common radiomics features and defi-
nitions, as aforementioned, the algorithms implementations 
underlying the feature extraction process differ between them. It is 
therefore not known if such interpipeline variations could affect the 
association with clinical parameters.

In this background, we investigated the utility of Pyradiomics and 
Moddicom as radiomics tools to analyze CT and MRI datasets in 
a cohort of NPC cases. In addition, we included a third radiomics 
pipeline—Computational Environment for Radiological Research 
(CERR),15 for comparison with Pyradiomics and Moddicom. We 
included tumours of different T-, N-categories, and gross tumour 
volumes (GTV), and observed significant heterogeneity even for 
the same features between both tools that affected the correlation 
with these known prognostic clinical parameters.

methods aNd materials
Study cohort
We utilized a data set of 100 patients with biopsy-proven NPC 
from a single academic institution. All patients fulfilled the 
following criteria: (1) differentiated or undifferentiated non-ke-
ratinizing NPC based on the WHO classification; (2) absence of 

distant metastasis; (3) and were treated with intensity-modulated 
radiotherapy (IMRT). Patient demographics, including age, gender 
and baseline comorbidities were collected. Tumour characteristics 
including T-, N-category, and GTV of the primary tumour (GTVp) 
were recorded; all patients were restaged according to the Amer-
ican Joint Committee on Cancer seventh edition/International 
Union Against Cancer (2010) stage classification system. For the 
purpose of this study, which was primarily to investigate the impli-
cations of inter pipeline heterogeneity, we included equal numbers 
of patients with T1-4 status NPC. Ethical approval for the study 
was obtained from the SingHealth Centralised Institutional Review 
Board (protocol no. 2018/2352). Informed consent was obtained 
from all living patients.

Treatment strategies
All patients underwent IMRT as primary treatment of NPC. 
The IMRT planning and treatment protocol were as previously 
reported.16 Briefly, GTVp and clinically involved nodes were 
outlined, followed by high-risk and low-risk clinical target volumes 
(CTVs) in the primary tumour region and uninvolved nodal levels. 
70, 60 and 54 Gy, delivered as simultaneous boost technique in 33 
fractions, were prescribed to the GTV, high- and low-risk CTV, 
respectively. Dose constraints to critical organs at risk were deter-
mined by the standard threshold doses. Additionally, for patients 
with Stage III–IVb disease, IMRT was given in combination with 
concurrent chemotherapy of cisplatin (either 40 mg/m2 weekly or 
100 mg/m2 3-weekly), along with either neoadjuvant or adjuvant 
platinum-based chemotherapy regimens.

Imaging protocol
CT perfusion (CTP) scans of the nasopharynx were performed 
using a 120 kVp 64-slice multidetector scanner (Somatom AS, 
Siemens Medical Solutions, Forchhein, Germany). It has a field of 
view (FOV) of 50 cm, slice thickness of 2 mm, and matrix of 512 
× 512. The reconstruction kernel used is B40s. 60 ml of non-ionic 
low-osmolar contrast material was administered intravenously at 
an injection rate of 1.2 ml s−1. It was performed after a 62 s injection 
delay, using following parameters; 120 kVp, 100 mAs, and 2.5 mm 
contiguous sections with ongoing injection of 30 ml of saline boost 
at flow rate 1.3 ml s−1 with total scan time of 72 s.

All patients underwent nasopharynx and cervical region 
contrast-enhanced MR examination using head and neck coils 
with 1.5 T MR scanners (GE HDxt 1.5T, GE Healthcare, Chicago, 
IL). The MR scanner has a FOV of 23 cm, number of signal 
average (NSA) of 2 and Acquisition matrix of 320 by 224. T1 
weighted (T1W) fast spin-echo images in the axial plane (spacing 
between slices = 3 mm), T2 weighted (T2W) fast spin echo MR 
images in the axial plane (spacing between slices = 3 mm) were 
obtained before contrast was administrated. After bolus injec-
tion of contract, axial T1 weighted fast spin echo sequences were 
performed (with the same parameters as before contrast).

GTVp segmentation
Manual segmentation was performed on all CT and MRI images 
by three experienced radiation oncologists (ZL, LL, and MC). 
Final GTVp ROI was decided by consensus agreement between 
the outlined contours. NPC often has a irregularly shaped contour 
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due to its propensity to infiltrate adjacent anatomical barriers in the 
cranium and parapharynx which results in a high degree of interin-
dividual heterogeneity in tumour outlining. Hence, the consensus 
agreement between the radiation oncologists in tumour delin-
eation represents a more pragmatic approach towards extracting 
robust feature values. Delineation on CT was performed using 
standardised window settings: –99, –60, 88 Hounsfield units (HU; 
tumour); –132, –176, 257 HU (soft tissue); –99, –176, 1440 HU 
(bone).

Radiomics feature extraction
Following anonymization of DICOM images, Pyradiomics (v. 
2.1.2)11 and Moddicom (v. 0.51)12 were applied for feature extraction 
from both contrast-enhanced CT and MRI images; only MRI 
T2W images were considered for this study to ensure consistency 
in the GTVp segmentation and feature extraction processes. For 
both pipelines, features from the following five radiomics modules 
were extracted: (1) first-order, (2) grey level co-occurrence matrix 
(GLCM), (3) grey level run length matrix (GLRLM), (4) grey level 
size zone matrix (GLSZM) and (5) shape. In addition, two other 
modules [grey level difference matrix (GLDM) and neighbouring 
grey tone difference matrix (NGTDM)] were extractable by Pyra-
diomics. In addition, CERR, as another open-source platform for 
developing computational radiomics,15 was also used for feature 
extraction from MRI T2 images.

Statistical considerations
Common radiomics features between Pyradiomics and Moddicom 
were analysed using Spearman’s rank correlation. Correlated 
features were defined as p-value ≤ 0.05. Unsupervised hierarchical 
clustering of radiomics features of the two pipelines against known 
prognostic clinical variables of T-, N- categories, and GTVp was 
performed in R (using ward.D2 as the agglomeration method).17–19 
All statistical analyses were performed on the R statistical package 
(v. 3.5.2, https://www. r- project. org). A two-sided p ≤ 0.05 was set 
as the cut-off for statistical significance. The use of the above anal-
ysis method instead of conventional regression analysis or random 
forest for model building is due to the small sample size used in 
this study (100 patients). Additionally, common radiomics features 
between Pyradiomics and CERR were also analysed using Spear-
man’s rank correlation for MRI images.

results
Patient characteristics
Clinical characteristics of our study cohort are listed in Table 1. 
Corresponding N-status, GTVp and treatment parameters are 
summarized for each T-category. Overall, 72 patients were male 
and 28 were female; median GTVp was 20.5 (IQR = 13.0–34.2) 
cc. 29 and 71 patients received IMRT and chemo-IMRT, respec-
tively, as treatment for their disease.

CT and MRI radiomics features in NPC
The extracted radiomics features from the CT and MRI data sets 
are summarized in Supplementary Table 1. In the CT data set, 
105 features were extracted using Pyradiomics; 88 features were 
extracted using Moddicom, of which 11 features were excluded, as 
these features yielded an infinite value. Between them, 67 common 
features were identified: 17 first-order, 18 GLCM, 12 GLRLM, 

12 GLSZM and 8 shape (Figure  1A). 64 patients had available 
MRI at baseline (3 patients did not have paired MRI images and 
feature extraction failed in 33 patients). 105 features were extracted 
using Pyradiomics; 88 features from Moddicom, of which 8 were 
excluded. This yielded 70 common features: 17 first-order, 21 
GLCM, 12 GLRLM, 12 GLSZM, and 8 shape (Figure  1B). The 
numerical symbols of radiomics features extracted by Moddicom 
and Pyradiomics are summarized in Supplementary Table 2.

Interpipeline variation for radiomics features
For the CT data set, Spearman’s rank correlation analyses between 
Pyradiomics and Moddicom revealed that 51 of 67 common CT 
features met the p-value ≤ 0.05 (Supplementary figure 1). Among 
them, all the shape-class features were correlated between the 
pipelines (Figure 2), indicating that the calculation algorithm for 
this feature class is comparable between the two pipelines. First-
order- and GLCM-class features also showed a high proportion 
of correlation between the common features, while a substan-
tial proportion of GLRLM- and GLSZM-class features showed 
discordance between the pipelines (Figure  2). Percentages of 
correlated features for all the feature classes in descending order 
were as follows: 100% (8/8) for shape,100% (17/17) for first-
order, 88.9% (16/18) for GLCM, 41.7% (5/12) for GLSZM and 
41.7% (5/12) for GLRLM.

In contrast, only 20 of the 70 common MRI features met the 
p-value ≤ 0.05 (Supplementary figure 2). Interestingly, only 
shape-related features were fully concordant between the pipe-
lines, but not for the other modules (Figure 3). Percentages of 
correlated features for all the feature classes in descending order 
were as follows: 100% (8/8) for shape, 33.3% (4/12) for GLRLM, 
23.5% (4/17) for first-order, 16.7% (2/12) for GLSZM and 9.5% 
(2/21) for GLCM.

Additionally, spearman’s rank correlation analyses between Pyra-
diomics and CERR were also performed for the MRI data set. 33 of 
the 69 common MRI features met the p-value ≤ 0.05 (Supplemen-
tary figure 3). Shape and first-order related features were both fully 
concordant between the two pipelines. Percentages of correlated 
features for all the feature classes in descending order were as 
follows: 100% (16/16) for first-order, 100% (8/8) for shape, 33.3% 
(4/12) for GLRLM, 23.5%, 19.0% (4/21) for GLCM and 8.3% (1/12) 
for GLSZM.

Impact of interpipeline heterogeneity on clustering 
of clinical variables
Next, we interrogated the effects of the inter pipeline varia-
tion in the extracted CT and MRI features on their association 
with known prognostic clinical variables of T-, N-categories and 
GTVp. For the CT features, we observed consistent clustering 
with clinical parameters for the feature classes that showed high 
proportion of interpipeline consistency (first-order, GLCM and 
shape; Figure  4A, B and E), whereas it was unsurprising that 
clustering patterns differed between pipelines for GLRLM and 
GLSZM features (Figure 4C and D). To summarize, 13 for first-
order (firstorder_02–09,12-14,16,17), 8 for GLCM (glcm_01–
04,07,08,17,18), 3 for GLRLM (glrlm_07,09,11), 3 for GLSZM 
(glszm_01,07,11) and 6 for shape (shape_03–08) of the common 
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features showed the consistent clustering for cT-category and 
GTVp, while 2 for GLRLM (glrlm_02,05), and 4 for GLSZM 
(glszm_02–04,10) showed the opposite clustering for cT-cate-
gory and GTVp. No common shape features showed similar clus-
tering with cN-category (Figure 4F). First-order and shape feature 
classes were highly correlated (100%) between pipelines, which 
explains the higher number of consistently clustered features and 
lower numbers of oppositely clustered features. Textural features 
(GLRLM and GLSZM) are generally poorly correlated (Figure 2) 
which results in a lower numbers of consistently clustered features 
and higher number of oppositely clustered features.

For the MRI features, we observed consistent clustering with 
clinical parameters only for shape-related features, which was 
expected given that this class of features showed the least inter 
pipeline variation (Figure  5E). However, for the other classes 
of features that showed significant inter pipeline heterogeneity, 
clustering patterns differed between Moddicom and Pyra-
diomics for first-order, GLCM, GLRLM and GLSZM features 
(Figure 5A–D). Clustering outcomes were as such for MRI; five 

common shape (shape_03–05, 07, 08) showed the same clus-
tering for cT-status, cN-status and GTVp (Figure 5F). In contrast 
to the clustering result of CT features, only shape features (which 
give perfect correlation between pipeline) give a higher numbers 
of consistently clustered features. The rest of the features are 
poorly correlated (Figure 3) and results in little consistently clus-
tered features.

discussioN
Radiomics refers to the comprehensive quantification of radiolog-
ical phenotypes using data characterization algorithms. Through 
this scientific method, we potentially harbour a new paradigm 
of interrogating imaging data sets, which allows us to add infor-
mation beyond quantification of tumour volume, number and 
locality. The latter are conventional indices that could potentially 
inform on tumour aggression, but nonetheless, few, if any, of 
these factors are being used to guide treatment in the clinic. It 
is therefore envisioned that characterization of deeper radiolog-
ical phenotypes would help to enhance the prediction of tumour 
biology and improve clinical stratification of cancer patients. 

Table 1. Clinical characteristics of 100 nasopharynx cancer patients who wereincluded in the present study.

Clinical Parameters Number of patients T1 T2 T3 T4
Gender

  Male 72 18 20 17 17

  Female 28 7 5 8 8

Age, year

  Median (IQR) 52 (44–61) 56 (45.5–62.5) 52 (39.5–63.5) 54 (40–60) 51 (47.5–59)

T-category

  T1 25

  T2 25

  T3 25

  T4 25

N-category

  N0 14 5 3 1 5

  N1 27 6 9 7 5

  N2 43 11 7 16 9

  N3 16 3 6 1 6

TNM-stage

  Ⅰ 5 5 - - -

  Ⅱ 18 6 3 - -

  Ⅲ 42 11 7 24 -

  ⅣA-B 35 3 6 1 25

Treatment

  Chemo-IMRT 71 15 14 21 21

  IMRT alone 29 10 11 4 4

GTV, cc

  median (IQR) 20.5 (13.0–34.2) 9.8 (8.2–16.9) 20.7 (14.9–25.3) 27.8 (14.7–39.8) 44.1 (22.4–74.5)

GTV, gross tumour volume; IMRT, Intensity modulated radiotherapy; IQR, Inter-quartile range.
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Moreover, its appeal stems from the advantage that radiomics 
relies on profiling of images as opposed to molecular profiling 
of biopsied tumour specimens, and thus offers a non-invasive 
method for surveillance of tumour response to treatment. On 
this note, Pyradiomics and Moddicom are published open-
source platforms for radiomics analyses, which have been inves-
tigated in several human cancers.11,12 While several signatures of 
tumour aggression and treatment response have been reported 
to date, the community remains cynical due to uncertainty on 
the reproducibility of these radiomics signatures. Several queries, 
not limited to data input, image processing, feature extraction, 
and ultimately sensitivity of the radiomics workflow to inter 
population heterogeneity have not been addressed; all of which 
can influence the robustness of radiomics as a clinical tool. To 
partly address this conundrum, we embarked on an important 
study to compare the output of Pyradiomics and Moddicom 
on CT and MRI imaging datasets in NPC, which is a common 
viral-associated head and neck cancer in East and South-Eastern 
Asia.20 There are other works on comparison of other radiomics 
tools,21,22 but this is the first work comparing Pyradiomics and 
Moddicom in NPC context. We made several key observations: 
(1) significantly more radiomics features extracted from CT 
data sets were comparable between Pyradiomics and Moddicom 
compared to MRI (76.1% vs 28.6%); (2) consequently, CT-based 
radiomics features were significantly more stable and pipe-
line-agnostic in terms of association with clinical parameters; 
and (3) finally, it is interesting that that among the different 

features classes, several shape-related features were associated 
with GTVp (Figure 4E). These findings are crucial in instructing 
the workflow for future radiomics work in NPC.

The results on clustering and Spearman correlation show that 
first-order and shape features are more robust to interpipeline 
heterogeneity compared to textural features such as GLCM, 
GLRLM and GLSZM. This is because textural features calcu-
lations are sensitive to pre-processing steps: (1) interpolation 
methods (important when having data with different slice 
and pixel spacings); (2) two-dimensional against 3D methods 
for textural features extractions; (3) aggregation method for 
obtaining scalar value from textural matrices; (4) quantization of 
voxel values for textural matrix computation. The poor correla-
tion between pipelines for MR-based features (especially first-
order) can be explained by noting that Moddicom12 performed 
a re-scaling of voxel values to account for variation in physics 
acquisition settings for MRI sequences. The results on interpipe-
line correlation in this work are also mirrored in our additional 
study with a different radiomics software—CERR15(Supplemen-
tary figure 3), where first-order and shape features tend to be a 
more robust features compared to textural one. Hence, this work 
shows that apart from features calculation being International 
Image Biomarker Standardization Initiative-compliant, it is 
important to understand and perhaps standardisze the pre-pro-
cessing method prior to features extraction to achieve robust 
radiomics phenotyping.

Figure 1. The number of CT and MRI features in each type for Pyradiomics and Moddicom. A: CT data set; B: MRI data set. The blue 
color represents Pyradiomics, while the red colour represents Moddicom. The cross-areas indicate the common features. GLCM, 
grey level co-occurrence matrix; GLRLM, grey level run length matrix; GLSZM, grey level size zonematrix; GLDM, grey level differ-
ence matrix; NGTDM, neighbouring grey tone difference matrix.
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Figure 2. Correlations of 67 common CT features in each type between Pyradiomics and Moddicom. A: First-order; B: GLCM; C: 
GLRLM; D: GLSZM; E: Shape. The green areas showed the Spearman correlation of the common features. Blank means no corre-
lation, red circle means positive correlation, blue circle means negative correlation. The darker of the background or larger of the 
circle, more relevant the correlation of the common features. GLCM, grey level co-occurrence matrix; GLRLM, grey level run length 
matrix; GLSZM, grey level size zone matrix.

Figure 3. Correlations of 70 common MRI features in each type between Pyradiomics and Moddicom. A: First-order; B: GLCM; C: 
GLRLM; D: GLSZM; E: Shape. The green areas showed the Spearman correlation of the common features. Blank means no corre-
lation, red circle means positive correlation, blue circle means negative correlation. The darker of the background or larger of the 
circle, more relevant the correlation of the common features. GLCM, grey level co-occurrence matrix; GLRLM, grey level run length 
matrix; GLSZM, grey level size zone matrix.
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Figure 4. The interpipeline heterogeneity and clustering of cT-, cN-categories, and GTV of CT features of each type. A: First-order; 
B:GLCM; C:GLRLM; D: GLSZM; E: Shape; F: The features (CT) which showed consistent and opposite clustering for cT-, N-catego-
ries, or GTVp between Moddicom and Pyradiomics. GLCM, grey level co-occurrence matrix; GLRLM, grey level run length matrix; 
GLSZM, grey level size zone matrix.

Figure 5. The interpipeline heterogeneity and clustering of cT-, cN-categories, and GTV of MRI features. A: First-order; B:GLCM; 
C:GLRLM; D: GLSZM; E: Shape; F: The features (MRI) which showed consistent and opposite clustering for cT-, N-categories, or 
GTVp between Moddicom and Pyradiomics. GLCM, grey level co-occurrence matrix; GLRLM, grey level run length matrix; GLSZM, 
grey level size zone matrix; GTV, gross tumour volume; GLDM, grey level difference matrix; NGTDM, neighbouring grey tone dif-
ference matrix.
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Perhaps, it is interesting to note that in our cohort, CT-derived 
images were more stable and reproducible than MRI images. 
This may be in part due to the complexity of the image acqui-
sition protocols between the imaging modalities. MRI image 
quality is dependent on spin echo sequences of electromagnetic 
waves, as opposed to CT that relies on the photoelectric effect 
of kV-strength ionizing radiation passing through tissues of 
differing atomic number. The discrepancy in our study perhaps 
highlights the importance of image processing prior to data 
input in the radiomics workflow. At present, it is not known if 
different normalization protocols are needed for radiomics anal-
yses of CT and MRI data sets, and much work is needed in this 
domain going forward.

Next, we observed that several shape features were correlated 
with known clinical prognostic variables in NPC such as cT- 
and cN-status and GTVp, which would suggest that various 
aspects of the tumour shape geometry and surface irregularities 
may be linked to the tumour burden. For example, shape_03 ~ 
08 of CT, and shape_03 ~ 05, 07, 08 of MRI showed the same 
direction of correlation with GTVp in both Pyradiomics and 
Moddicom. Previous studies also showed shape features might 
correlate with GTVp of breast cancer and glioblastoma.14,23 The 
reason why shape features are stable may be that few differences 
existed for the parameters of the shape information between CT 
and MRI regardless of pipelines. Shape_03 (shape_LeastAxis) 
yields the smallest axis length of the ROI-enclosing ellipsoid 
while shape_07 (shape_surfaceArea) yields the surface area of 
the ROI which appears to be consistent as the tumour volume or 
ROI is similar between CT and MRI. As such, these two features 
should be observed in future studies to confirm clinical prog-
nostic correlations.

Finally, we acknowledge that a main limitation of this present 
study relates to the small sample size of our cohort. Nonethe-
less, we contest that such a preliminary analysis is necessary 
prior to any large-scale multicohort radiomics study in NPC. 
Though there exist more commonly used machine learning 
techniques (lasso, regression, support vector machine, random 
forest) in predicting the end points, our motivation for going 
with the unsupervised clustering method is to reduce the 
number of tested features and yet circumvent the problem of 
limited sample size in analysis. We will compare between both 
statistical (supervised against unsupervised) approaches in a 
larger cohort going forward. In addition, the fact that signif-
icant inter pipeline variation is detectable for a proportion 
of the feature classes and across imaging modalities, even in 
a limited cohort of 100 patients support our hypothesis that 
radiomics phenotyping is highly heterogeneous, and feature 
reproducibility is crucial for clinical prediction. Hence, our 
next phase of study will include interrogation of multi centre 
imaging data sets to validate the stability of CT-related radio-
mics features for clinical prognostication. In addition, we 
aim to investigate for the biological correlates of these radio-
mics indices, as previously described in non-small cell lung 
cancer.24

coNclusioN
Here, we report on the significant heterogeneity in radiomics 
phenotyping between two publicly available feature extraction 
tools in NPC. The degree of inter pipeline variation differs by 
feature classes and imaging modality. This has a downstream 
impact on association with prognostic clinical parameters in 
NPC such as tumour volume and extent of infiltration. Collec-
tively, our findings emphasize the broader importance of selecting 
stable radiomics features for disease phenotyping, so as to lead to 
the development of a robust radiomics-based biomarker for clin-
ical implementation.
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