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Structural brain network topology underpinning
ADHD and response to methylphenidate
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Abstract
Behavioural disturbances in attention deficit hyperactivity disorder (ADHD) are thought to be due to dysfunction of
spatially distributed, interconnected neural systems. While there is a fast-growing literature on functional
dysconnectivity in ADHD, far less is known about the structural architecture underpinning these disturbances and how
it may contribute to ADHD symptomology and treatment prognosis. We applied graph theoretical analyses on
diffusion MRI tractography data to produce quantitative measures of global network organisation and local efficiency
of network nodes. Support vector machines (SVMs) were used for comparison of multivariate graph measures of 37
children and adolescents with ADHD relative to 26 age and gender matched typically developing children (TDC). We
also explored associations between graph measures and functionally-relevant outcomes such as symptom severity
and prediction of methylphenidate (MPH) treatment response. We found that multivariate patterns of reduced local
efficiency, predominantly in subcortical regions (SC), were able to distinguish between ADHD and TDC groups with
76% accuracy. For treatment prognosis, higher global efficiency, higher local efficiency of the right supramarginal
gyrus and multivariate patterns of increased local efficiency across multiple networks at baseline also predicted greater
symptom reduction after 6 weeks of MPH treatment. Our findings demonstrate that graph measures of structural
topology provide valuable diagnostic and prognostic markers of ADHD, which may aid in mechanistic understanding
of this complex disorder.

Introduction
Dysfunction of spatially distributed, interconnected

neural systems is thought to be one of the major causes of
behavioural disturbances in ADHD1. A myriad of studies
using functional magnetic resonance imaging (fMRI) have
reported altered intrinsic connectivity within and between
networks such as the dorsal and ventral attention, salience
and default mode networks2–4. However, far less is known
about the structural networks underpinning these

functional disturbances and how they may contribute to
ADHD symptomology and prognosis.
Diffusion-weighted imaging (DWI) is a method widely

used to examine microstructural brain properties and
white matter connections5. Numerous studies have
reported alterations in microstructural properties within
specific tracts in ADHD, predominantly those linking
prefrontal, parietal, cerebellar and SC (e.g.6,7 see8 for a
review). These anomalies have also been associated with
clinical symptom severity7 and the improvement of
symptoms across development9, demonstrating the rele-
vance of white matter integrity to core symptoms
of ADHD.
More recently, our understanding of neural connectivity

has been enriched through the application of sophisticated
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network analysis approaches. These methods allow for the
description of complex patterns of neural connectivity (i.e.
the ‘connectome’) and quantification of specific network
properties10. Graph theory is one such method that uses an
entirely data-driven approach to produce metrics able to
characterise neural networks in terms of information flow
and network efficiency. Global efficiency is a quantified
measure of how efficiently information can be distributed
through the network, with shorter paths (measured by a
lower number of network links) representing faster and more
efficient transfer of information11. Local efficiency of brain
regions (or network nodes) essentially unpacks this global
efficiency metric by measuring information flow in the vici-
nity of the node12. Most work thus far on brain networks in
ADHD has utilised resting-state fMRI (rs-fMRI), which has
typically found lower global efficiency in children with
ADHD relative to typically developing children (TDC)13.
White matter architecture is a crucial element underpinning
functional activity via the efficient communication between
disparate brain regions. There is growing evidence to suggest
that structural networks of the brain to some extent shape
the processes underlying brain function14.
To date, only three studies have used network-based

methods in children and adolescents with ADHD using
DWI15–17. These studies are relatively consistent in their
overall network descriptions, finding reduced global effi-
ciency and increased local efficiency in ADHD relative to
TDC15,17. This corroborates findings from rs-fMRI stu-
dies18, and indicates reduced communication between more
modular, specialised subnetworks in ADHD. Hong and
colleagues16 identified a network spanning frontal, striatial
and cerebellar brain regions that significantly differed in
ADHD, with tract integrity in specific regions correlating
with attentional deficits. Cao et al.15 found increased
structural connectivity in orbitofrontal–striatal circuitry and
decreased prefrontal dominant circuitry. By contrast, Beare
et al.17 reported a sub-network of stronger connectivity
encompassing bilateral frontostriatal and left occipital,
temporal, and parietal regions, with white matter micro-
structure within these networks being associated with
ADHD symptom severity. While there are some incon-
sistencies in regional findings, collectively, these previous
studies suggest there is pathological wiring in white matter
networks in ADHD, which may be crucial structural sub-
strates underlying behavioural impairments in ADHD.
Despite previous studies finding links between structural

networks and symptoms of ADHD, no previous work has
examined whether structural network topology is also
linked to prognostic outcomes. MPH is the first-line med-
ication typically used to treat the clinical and cognitive
symptoms of ADHD. Its therapeutic effects in ADHD occur
via blocking the reuptake of catecholamines, which restores
brain activation patterns and functional connectivity
towards normative levels, particularly within cortico-striato-

cerebellar networks19–24. In ~30% of cases, however, it is
either ineffective or causes intolerable side-effects25. This
differential response to medication is inherently linked to
individual variation in the neurobiology of the brain26.
Diffusion imaging measures have successfully predicted
pharmacological treatment outcomes in other psychiatric
conditions, including major depressive disorder27, first
episode psychosis28 and bipolar disorder29. Better char-
acterisation of the biological profile associated with suc-
cessful MPH therapy will help further our understanding of
ADHD aetiology, and may aid in the identification of novel
treatment targets for non-responders.
Here, we used diffusion tractography and graph theo-

retical analyses to compare white matter whole-brain
structural networks in children and adolescents with
ADHD relative to TDC. Critically, we also examined
whether differences in network features were associated
with better response to MPH treatment or symptom
severity. Support vector models were performed for each
analysis in order to assess multivariate feature contribu-
tions to group differences and outcome measures. Based
on previous work, we expected to find reduced global
efficiency in ADHD relative to TDC. We further hypo-
thesised that prior to treatment, there would be reduced
local efficiency in catecholamine-rich regions within
cortico-striatal networks in individuals who subsequently
respond best to MPH treatment.

Materials and Methods
Participant characteristics
DWI data were acquired from 37 children and adoles-

cents with ADHD (8–17 years) and 26 age and gender
matched TDC’s. Children with ADHD undertook imaging
as part of a baseline research session, prior to commencing
6 weeks of open-label MPH (international Study to Predict
Optimised Treatment Response in ADHD; iSPOT-A; Trial
registration information: https://clinicaltrials.gov/ct2/show/
NCT00863499). A detailed description of diagnosis proce-
dure has been published previously30. Briefly, diagnoses
were made by referring clinicians based on Diagnostic and
Statistical Manual of mental Disorders (4th ed.: DSM-IV)
criteria, and confirmed using the Mini International Neu-
ropsychiatric Interview for children and adolescents (MINI-
Kid; Sheehan et al.31) and the Attention Deficit/Hyper-
activity Disorder Rating Scale (ADHD-RS-IV)(administered
to the parent/guardian). Typically developing controls were
drawn from iSPOT-A and the Limbic Maturational Chan-
ges in young Adulthood (LIMCA) study32, which used
identical experimental procedures on the same scanner.
They were screened for Axis 1 mental disorders using the
MINI-KID or SPHERE-1233. Sample size was based on
previous studies investigating whole-brain connectomics
using diffusion tensor imaging in child and adolescent
ADHD15,17.
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iSPOT-A received IRB approval from the Human
Research Ethics Committee, Western Sydney Local
Health District and was conducted according to the
principles of the Declaration of Helsinki 2008. All parti-
cipants (and/or guardian when less than 16 years) pro-
vided written informed consent.

Study treatment
Participants were medication-free at baseline testing

and a minimum 5 half-life washout period was applied for
those who took medication. ADHD participants were
prescribed open-label MPH by their treating paedia-
trician, which they continued for 6 weeks. Dosage was
titrated and optimised as required by their treating pae-
diatrician. During this time, participants refrained from all
other ADHD treatments.

Measures
ADHD symptom severity was assessed using the total

score on the parent-completed ADHD-RS-IV. The
ADHD-RS-IV assesses symptoms according to the 18
DSM-IV criteria, each symptom rated from 0 to 3. The
current analysis uses baseline imaging and clinical
symptoms, as well as percent change between baseline
(week 0) and Week 6 (post-treatment) clinical symptom
scores.

Imaging acquisition
Data were acquired using an 8-channel head coil on a 3-

Tesla GE Sigma HDx scanner (GE Healthcare, Milwau-
kee, Wisconsin) at the Westmead Hospital, Sydney.
Details of the protocol can be found in Supplementary
Methods.

Imaging preprocessing and tractography
DWI data were preprocessed and analysed using the

FMRIB Software library (FSL) (v5.0.1) (http://www.fmrib.
ox.ac.uk/fsl). Raw DWI data were corrected for head
movement and eddy current distortions prior to diffu-
sion tensor models being fitted independently for each
voxel within the brain. Data were segmented into 68
cortical regions and seven subcortical structures
(amygdala, hippocampus, thalamus, caudate, putamen,
palladium and nucleus accumbens) to generate 82 × 82
connectivity matrices. See supplementary methods for
details on whole-brain parcellation and tractography
matrix generation.

Graph theory
Graph theoretic analyses were performed on the inter-

regional connectivity matrices (weighted undirected net-
works) using the Brain Connectivity Toolbox (http://www.
brain-connectivity-toolbox.net/)34. To avoid biases asso-
ciated with using a single threshold, we examined

topological properties across a range of thresholds (5% < S
< 30% in steps of 1%) and calculated a single area under the
curve (AUC) measure over these thresholds. We calculated
the following global network measures: (1) the character-
istic path length (the mean number of connections on the
shortest path between any two regions in the network); (2)
the clustering coefficient, which quantifies the probability
that two nodes connected to an index node are also con-
nected with each other and (3) global efficiency, computed
as the harmonic mean of the inverse path length. We also
examined the local efficiency of individual network regions,
which measures the efficiency of the subgraph defined by an
index node’s neighbours after removal of that node and
putatively indexes fault tolerance. To aid with interpreta-
tion, regional results were classified into functional net-
works defined by Yeo’s 7 network parcellation: visual,
somatomotor (SM), dorsal attention (DAN), ventral atten-
tion (VAN), limbic, frontoparietal (FP) and default mode
network (DMN)35, along with SC.

Statistical analysis
Statistical analysis was designed to address the study

aims of (1) Identifying differences between diagnostic
groups (ADHD vs TDC), (2) Predicting MPH treatment-
related symptom change and (3) Identifying associations
with ADHD symptom severity.
T tests and ANCOVA’s were used first to test group

differences on univariate outcome measures. Associations
between graph measures and baseline ADHD symptoms
were assessed using correlations, and associations
between graph measures and percent change in ADHD
symptoms after 6 weeks of MPH treatment were assessed
using linear regressions. All analyses were conducted with
and without the covariates age, gender, MPH dose (mg/kg),
ADHD subtype, duration of previous stimulant treatment
and stimulant use in the 6 months prior to study entry.
The false discovery rate (FDR) for t tests, ANCOVAS,
correlations and regression models were corrected for
using the Benjamini–Hochberg36 method, where p values
were adjusted to q values. The FDR was corrected for each
research question (i.e. n= 63 when comparing ADHD
and TDC, and n= 37 for ADHD only) and both p and q
values are provided where appropriate.
Three separate SVMs were completed to test whether the

82 local efficiency measures could be combined to predict
diagnostic group, treatment-related symptom change and
symptom severity. Model tuning parameters cost (C) and
sigma (Σ; in the case of non-linear SVM) were iteratively
optimised based on the root mean standard error (RMSE).
Models were validated using leave-one-out cross-validation
(LOOCV) procedure due to the modest sample size and its
superiority in reducing bias and variance of cross-validated
accuracy over k-fold cross-validation37. Model performance
for classification prediction was assessed using binomial
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tests, where each model’s accuracy was compared to its
corresponding no information rates (NIR) accuracy. Given
the unbalanced nature of some data classes (e.g. ADHD and
healthy controls), we also performed permutation testing
(1000 times). Model performance for regression prediction
was assessed by correlating observed and predicted values.
For significant SVM models, we also included covariates to
establish whether including covariates improved the mod-
el’s performance over local efficiency measures alone.
Variable importance in classification SVM models was
determined by calculating the area under the receiver
operator characteristic (ROC) curve for each variable.
Variable importance in regression SVM models was
determined by fitting a loess smoother between the out-
come and the predictor, then calculating the r2 statistic for
each model against the intercept only null model. All ana-
lyses were performed using R 3.6.138. SVM models were
generated using the ‘caret'39 and ‘kernlab' packages40.
Supplementary analyses comparing TDCs vs MPH

responders (>25% reduction in symptom severity) and
non-responders were also conducted on any significant
treatment response univariate results to aid in determin-
ing the normative benchmark.

Results
Multivariate patterns of local efficiency predict diagnostic
group
There were no differences between ADHD and TDC

groups in global graph measures (global efficiency, t(61)
=−0.042, p= 0.673; characteristic path length, t(61)=
−0.311, p= 0.757; mean clustering coefficient, t(61)=
1.035, p= 0.258) or univariate measures of nodal local
efficiency after correcting for multiple comparisons.
However, using linear SVM we found a significant model
of combination of local efficiency measures to predict
ADHD from TDC with 76.2% accuracy (C= 0.218, p=
0.003; see Table 1 for cross-validated model details and
Fig. 1A for the most important regional contributors).
The top ten regions contributing to this model were the
left pallidum, putamen and thalamus and right thalamus
and caudate (SC), the right pars opercularis (DAN), left
mid temporal (DMN), left postcentral and transverse
temporal (SM) and right amygdala (limbic), all of which
had lower local efficiency in ADHD relative to TDC (see
Supplementary Table 1 for a full list of variable con-
tributions to the model). The model was rerun with the
covariates age and gender included, however this did not
improve the model’s accuracy (see Table 1).

Global efficiency and local efficiency of the right
supramarginal gyrus are predictive of MPH-related change
in symptoms
Higher global efficiency at baseline predicted a greater

percent reduction in total ADHD symptom severity (b=

−5064.1, t(34)=−2.76, p= 0.009, q= 0.027) and a greater
percent reduction in inattention symptom severity (b=
−4234.9, t(34)=−2.57, p= 0.015, q= 0.045) after 6 weeks
of MPH treatment. Regionally, higher local efficiency of the
right supramarginal gyrus at baseline predicted greater
percent reduction in total ADHD symptoms with MPH
treatment (b=−3319.6, t(34)=−3.94, p < 0.001, q < 0.001)
(Fig. 2). These findings all held after adjusting for age,
gender, MPH dose, stimulant use in the 6 months prior to
study entry, duration of previous stimulant use and ADHD
subtype (see supplementary materials). Both global effi-
ciency and local efficiency of the right supramarginal gyrus
were lower in MPH non-responders relative to TDCs, while
MPH responders and TDCs did not differ (see Supple-
mentary Fig. 1 for these results and Supplementary Table 2
for demographic and clinical characteristics of MPH
responders, non-responders and TDCs).

Multivariate patterns of local efficiency also predict MPH-
related change in symptoms
Using linear SVM, multivariate measures of local effi-

ciency predicted change in ADHD symptom severity after
6 weeks of MPH treatment (r= 0.37, p= 0.029, permuta-
tion p= 0.036). The top ten regions contributing to this
model were the right thalamus (SC), bilateral precentral
gyrus (DAN), left superior frontal gyrus, right isthmus
cingulate and pars triangularis (FP), right fusiform (visual),
right supramarginal gyrus (VAN) and right rostral middle

Table 1 Accuracy statistics for support vector machine
(SVM) classifier models predicting diagnostic group (ADHD
vs TDC), using leave-one-out cross-validation.

Performance

measures

ADHD vs TDC

Local efficiency

(82 regions)

Local efficiency+ age

and gender

Cost 10.9 0.218

Accuracy % 76.2 76.2

CI 95% (lower, upper) (63.8, 86.0) (63.8, 86.0)

Accuracy null % 58.7 58.7

Sensitivity 91.9 81.1

Specificity 53.9 69.0

PPV 73.9 79.0

NPV 82.4 72.0

p value 0.003 0.003

Permutation p value <0.001 <0.001

Covariates dosage and past stimulant medication excluded as data for these
variables does not exist for healthy controls.
ADHD attention deficit hyperactivity disorder, TDC typically developing children,
CI confidence interval, PPV positive predictive value, NPV negative
predictive value.
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frontal gyrus (DMN), all of which had greater local effi-
ciency associated with greater improvement in symptoms.
Adding the covariates age, gender, dosage previous stimu-
lant use, duration of previous stimulant use and ADHD
subtype improved the model’s performance (r= 0.54, p <
0.001, permutation p < 0.001). However, these variables did
not appear in the top 30 contributing to the model.

No associations between graph measures and baseline
ADHD symptom severity
There were no associations between graph measures

and baseline total ADHD symptom severity, inattention
symptom severity or hyperactivity symptom severity.

Discussion
Behavioural disturbances in ADHD are thought to be

due to dysfunction of spatially distributed, interconnected
neural systems. While there is a fast-growing literature on
the impact of functional dysconnectivity in ADHD, far
less is known about the structural architecture under-
pinning these disturbances and how it may contribute
to ADHD symptomology and treatment prospects.
To address this gap, we used diffusion tractography to
examine structural topology in ADHD and TDCs and to
explore associations between this white matter organisa-
tion and functionally-relevant outcomes such as symptom
severity and MPH treatment response. We found that

multivariate patterns of reduced local efficiency, pre-
dominantly in SC, were able to distinguish the ADHD
group from TDCs, while multivariate patterns of
increased local efficiency across multiple networks were
able to predict better MPH treatment response. Higher
global efficiency and higher local efficiency of the right
supramarginal gyrus were also associated with an
improved prognosis for MPH treatment. Our findings
demonstrate that graph measures of structural topology
provide valuable diagnostic and prognostic markers of
ADHD, which may aid in mechanistic understanding of
this complex disorder.

Multivariate topological measures can predict diagnostic
group and MPH treatment prognosis
Forty percent of the regions contributing most to dis-

tinguishing ADHD and TDC were SC. Aberrance within
the dopamine-rich basal ganglia has long been implicated
in the mechanisms of ADHD, and the striatum (caudate
and putamen) has been one of the most consistently
reported regions of structural and functional difference41–43.
Altered microstructural properties such as fractional
anisotropy have been reported most consistently within
the anterior corona radiata and internal capsule in
ADHD, which are key tracts surrounding the basal
ganglia8.While the importance of additional regions such
as the parietal lobe and cerebellum have come to light in

Fig. 1 Ranked variable importance for linear SVM models. A. Regions contributing most to prediction of diagnostic group (ADHD vs TDC).
B. Regions contributing most to prediction of change in ADHD symptom severity after 6 weeks of MPH treatment. Representation of location,
network and weighting of these regional contributors is shown on the right. For visual clarity, only the top ten most important contributors to the
models are shown. Weightings for the remaining contributing brain regions can be found in Supplementary Table 1.

Griffiths et al. Translational Psychiatry          (2021) 11:150 Page 5 of 9



more recent years1,2, the current results demonstrate that
dysfunction within the basal ganglia remain a core part of
the disorder. Notably, the bilateral caudate, pallidum and
thalamus are integral components of cortico-striatal
feedback and feedforward loops that are able to mod-
ulate activity in a range of cognitive, sensorimotor and
limbic circuits44. As such, lower local efficiency within
these nodes has the capacity to have flow on effects for a
broad range of networks and functions. The lack of uni-
variate results suggests that rather than one or two
specific regions contributing to group differences, there is
a constellation of regions that are wired differently,
resulting in a more subtle but diffuse change in
information flow.
Meanwhile, the regions contributing most to predicting

success of MPH treatment were spread across a range of
functional networks, but particularly within the prefrontal
cortex. MPH at therapeutic doses preferentially activates
catecholamine neurotransmission within the PFC45. This
could suggest that efficient information flow from and
between structures heavily innervated by dopamine and
noradrenaline is fundamental to likelihood of good
treatment outcomes with MPH. Non-stimulants such as
atomoxetine also act on catecholamine systems within
similar regions, therefore it would be interesting for future
work to examine the specificity of this result to MPH
relative to catecholamine therapies more broadly.

Global efficiency and local efficiency of the right
supramarginal gyrus are associated with MPH treatment
response
Global efficiency and local efficiency measure how

efficiently information is exchanged at the global and local
levels, respectively12. In our ADHD cohort, higher global
efficiency predicted a greater percent reduction in total

ADHD symptom severity with MPH treatment. Con-
nectome organisation becomes increasingly integrated
across early neurodevelopment, which co-occurs with the
synaptic pruning and increased myelination that takes
place around puberty46,47. This leads to global efficiency
increases across childhood and adolescence as commu-
nication improves between more disparate subnetworks.
Based on this logic, our results suggest that more devel-
opmentally advanced global organisation is associated
with better MPH treatment response. Notably, this result
held after adjusting for age, gender, previous stimulant
use and MPH dose.
Higher global efficiency was also predictive of greater

treatment-related improvement of inattentive symptoms.
This suggests that the significant association between
total ADHD symptom severity change and global effi-
ciency is predominantly driven by changes in these
symptoms rather than changes in hyperactivity/impul-
sivity. This could reflect the more diffuse nature of net-
works supporting attention relative to impulse control.
Regionally, we found that higher local efficiency of the

right supramarginal gyrus (VAN) at baseline was asso-
ciated with better MPH treatment response. The right
lateralised VAN is involved in monitoring the environ-
ment for behaviourally relevant stimuli48, and has pre-
viously been reported as having disturbed intrinsic
connectivity in ADHD4. Notably, the supramarginal gyrus
is involved in polymodal sensory integration in the asso-
ciation cortex. The association cortex contains densely
connected hubs of the connectome, and has fast rates of
myelination and cortical shrinking during adolescence49.
The rapid neurodevelopment of these hubs during ado-
lescence is argued to be a genetically patterned process of
consolidation49, which may provide clues to the atypical
neurodevelopment seen in ADHD. Based on this one

Fig. 2 Scatterplots depicting associations between global efficiency and methylphenidate treatment-related change in ADHD total symptom severity
and inattentive symptom severity, and change in ADHD-RS total symptom severity and local efficiency of the right supramarginal gyrus.
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could speculate that possible alterations in gene expres-
sion directing neurodevelopment may also be pivotal to
ADHD treatment prognosis, via modification of key hub
development.
It is important to first note that diffusion tractography

cannot determine the precise cortical origins of specific
white matter tracts or whether connections are mono- or
polysynaptic50. However, both primate tracing studies and
human in vivo diffusion imaging have demonstrated that
the supramarginal gyrus connects with parts of the lateral
frontal cortex via the superior longitudinal fasciculus
III51,52, a tract in which previous studies have reported
disturbed microstructure in children with ADHD53.
Future studies could examine the potential for integrity of
this tract to be associated with MPH response in children
with ADHD.
Importantly, supplementary analyses revealed that

mean local efficiency of the right supramarginal gyrus was
lower in MPH non-responders relative to TDCs, whereas
MPH responders and TDCs did not differ. This supports
the idea that successful treatment with MPH may require
intact structural connectivity rather than reflecting a shift
from abnormal to normal connectivity. This is a pattern
reflected in other disorders and medications; we recently
found that depressed patients with greater than normal
functional connectivity within key networks were the
most likely to benefit from antidepressant treatment54.

No associations between structural topology measures
and ADHD symptom severity
We did not observe any significant correlation between

symptom severity measures and global or local measures
of efficiency. Previous studies found correlations between
white matter microstructural properties and ADHD
symptoms rather than graph measures16,17, which may
indicate that tract integrity is associated with current
symptomology while structural topology has more bear-
ing on prognosis.
Unlike previous studies, we found lower local efficiency

in all regions contributing to diagnostic prediction. Also,
while we had anticipated that TDCs would have higher
global efficiency relative to ADHD, this was not the case.
The supplementary analysis comparing TDCs vs MPH
responders and non-responders revealed that this occur-
red due to heterogeneity within the ADHD group. Mean
global efficiency for MPH non-responders and responders
groups fell below and above TDCs, respectively.

Limitations
Our findings should be viewed in light of some limita-

tions. Firstly, the DTI method has difficulty resolving
crossing fibre bundles, therefore, providing reduced
accuracy of tractography relative to constrained spherical
deconvolution-based methods55. Fortunately, however,

potential errors in tractography are systematically applied,
therefore this has minimal impact on our analyses. In
addition, the diffusion tractography method utilised
counts total streams from the seed, which does not allow
for specificity in determining affected white matter tracts
or directionality. Secondly, despite all participants
undergoing a medication washout period, some partici-
pants had a history of stimulant use. This may have
already altered structural organisation prior to study
entry. While stimulant use in the past 6 months was
included as a covariate and did not alter findings, future
replication attempts should be completed in a medication
naïve sample56. Thirdly, given the relatively modest
sample size, we were limited to the leave-one-out cross-
validation method. While this is superior in reducing bias
and variance of accuracy in smaller cohorts, our results
should be validated using an independent sample. Finally,
we have made speculations on the links with functional
measures. A recent multimodal imaging study did find
coherence between structural and functional aberrances
in a large sample of children with ADHD, as well as
associations with clinical features of ADHD57. None-
theless, our results should be validated against functional
brain organisation using resting state or functional tasks.

Summary
Structural connectivity places constraints on which

functional interactions occur in the network, particularly
during neurodevelopment. Our findings have demon-
strated that graph measures of structural topology provide
valuable diagnostic and prognostic markers of child and
adolescent ADHD. They also highlight that variability in
structural topology plays a role in determining the efficacy
of MPH response. These new insights contribute to the
mechanistic understanding of this complex disorder.
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