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ABSTRACT

Objective: To summarize applications of natural language processing (NLP) in model informed drug develop-

ment (MIDD) and identify potential areas of improvement.

Materials and Methods: Publications found on PubMed and Google Scholar, websites and GitHub repositories

for NLP libraries and models. Publications describing applications of NLP in MIDD were reviewed. The applica-

tions were stratified into 3 stages: drug discovery, clinical trials, and pharmacovigilance. Key NLP functionalities

used for these applications were assessed. Programming libraries and open-source resources for the imple-

mentation of NLP functionalities in MIDD were identified.

Results: NLP has been utilized to aid various processes in drug development lifecycle such as gene-disease

mapping, biomarker discovery, patient-trial matching, adverse drug events detection, etc. These applications

commonly use NLP functionalities of named entity recognition, word embeddings, entity resolution, assertion

status detection, relation extraction, and topic modeling. The current state-of-the-art for implementing these

functionalities in MIDD applications are transformer models that utilize transfer learning for enhanced perfor-

mance. Various libraries in python, R, and Java like huggingface, sparkNLP, and KoRpus as well as open-source

platforms such as DisGeNet, DeepEnroll, and Transmol have enabled convenient implementation of NLP mod-

els to MIDD applications.

Discussion: Challenges such as reproducibility, explainability, fairness, limited data, limited language-support,

and security need to be overcome to ensure wider adoption of NLP in MIDD landscape. There are opportunities

to improve the performance of existing models and expand the use of NLP in newer areas of MIDD.

Conclusions: This review provides an overview of the potential and pitfalls of current NLP approaches in MIDD.
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LAY SUMMARY

One of the biggest problems in healthcare fields is that a large amount of medical data remains unstructured (eg, text, im-

age, signal, etc.) and untapped after it is created. Natural language processing (NLP) has been leveraged in recent years to

extract relevant information out of unstructured data. NLP is an artificial intelligence technique to process and analyze

human-generated spoken or written data. This review focuses on current NLP applications in the field of drug discovery and

development. It provides a comprehensive overview of NLP in model informed drug development (MIDD) which involves

quantitative models for decision-making in drug development. Researchers utilize NLP to mine data from previously un-

tapped sources. This aims to increase the efficiency of the drug development process. We also highlight the technical

aspects of various tools utilized to develop the currently existing NLP models. We provide information on various easily ac-

cessible resources which can be deployed to develop an NLP model for MIDD applications. Lastly, this article gives insights

into potential opportunities that currently exist to expand and carry NLP in MIDD forward.

INTRODUCTION

Natural language processing (NLP) is an artificial intelligence (AI)

technique to process and analyze human-generated spoken or writ-

ten data. It utilizes syntactic and semantic analysis to analyze text

data. NLP has evolved over the last decade and advanced to a level

where it has become an integral part of our life—it is being used for

email filters, voice assistants, language translation, digital phone

calls, and text analytics.1

The rise of big data in the healthcare industry is setting the stage

for AI tools such as NLP to assist with improving the delivery of

care.2 One of the big problems of healthcare fields is that about

80% of medical data remains unstructured (eg, text, image, signal,

etc.) and untapped after it is created.3 NLP has shown high potential

in healthcare and model informed drug development (MIDD)4 to

overcome the challenges that exist with natural language data utili-

zation and generation.3 NLP has enabled the shift from time-con-

suming manual and siloed curation of natural language data to

automated, large scale and standard processes for analyzing text and

speech data.

MIDD involves leveraging quantitative models to inform deci-

sion-making in drug development.5 In the field of MIDD, NLP can

be leveraged to extract information out of structured (eg, electronic

health records [EHRs]) and unstructured (eg, research documents)

data to optimize and/or accelerate various processes in the drug de-

velopment lifecycle, eg, determining drug–target interaction6 and

drug–drug interaction,7 biomarker discovery,8 drug repurposing,9,10

patient-trial matching,11 model-based meta-analysis,12 disease pro-

gression modeling,13 and others.14 NLP platforms perform the role

of assessing potential associations between chemical/drug entities,

their target proteins, and novel disease-related pathways by exten-

sive analysis of scientific literature. NLP can also accelerate repur-

posing of approved drugs for new diseases which enables

pharmacologists to address new market at a fraction of cost and

time. NLP contribution in future drug safety is an important aspect

of leveraging text mining automation to unveil valuable information

invisible among aggregation of unstructured data. NLP usage for

matching participants to clinical trials is a crucial application in this

area.6 NLP and AI provide a suitable solution to handle this prob-

lem to save time.

Papers in the past have identified the potential of AI in drug dis-

covery and development fields.4,14,15 Some literature has focused on

the drug discovery processes.16–18 This review focuses on current

NLP applications in the field of drug discovery and development

and provides a comprehensive overview of NLP in MIDD. We high-

light the technical aspects of various tools utilized to develop the

existing language models. We also provide information on various

easily accessible resources which can be deployed to develop an NLP

model for MIDD applications. Lastly, this article gives insights into

potential opportunities that currently exist to expand and carry NLP

in MIDD forward.

METHODS

The review process was divided into 2 parts: review of the applications

of NLP algorithms in different stages of drug development lifecycle

and review of technical aspects of various NLP algorithms (Figure 1).

Firstly, all the papers identified on PubMed and Google Scholar

with use of NLP techniques in different stages of drug discovery and

development were reviewed based on the inclusion and exclusion

criteria. The drug development process was stratified into 3 stages:

(1) Discovery, (2) Clinical Trials, and (3) Pharmacovigilance. Papers

highlighting the use of NLP were classified into 1 of the 3 stages.

For each application, key NLP functionalities in the workflow were

identified.

In the next step, a technical review of all the identified NLP func-

tionalities was carried out. For each functionality, the implementa-

tion pipeline was analyzed. Furthermore, the current state-of-the-art

for the functionalities were identified. Biomedical application spe-

cific AI-based models and libraries for implementation of those func-

tionalities were reviewed from sources which include publications

and GitHub or websites for the specific models (Figure 2). This in-

formation on various models and libraries was used to populate the

2 inventories presented in this article (Tables 2 and 3). Various NLP-

task-based features of the libraries such as ability to perform text

preprocessing, named entity recognition (NER), relation extraction,

sentiment analysis etc. were included in the inventory (Table 2). Ad-

ditional features for the libraries in the inventory include the avail-

ability of pre-trained neural models for direct implementation using

transfer learning and support for multiple languages. The current

state-of-the-art model inventory (Table 3) incorporates information

about transformer-based models that were recently developed and

can be used for carrying out various NLP tasks in the MIDD space.

These models have been pretrained on biomedical literature and are

known to produce state-of-the-art results on various tasks.

Inclusion criteria

• The included articles must be published between 2010 and Feb-

ruary 2022.
• Articles which discussed the most recent development (until Feb-

ruary 2022) or current state-of-the-art algorithm that outper-

forms baseline for various NLP functionalities.
• Articles which highlighted applications of NLP algorithms in

various stages of drug development including drug discovery,

clinical trial, and pharmacovigilance.
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• Recently launched transformer-based current state-of-the-art

models for biomedical applications were included for the model

inventory.
• Articles which highlighted NLP algorithm implementation in

drug discovery and development areas using any open-source

pre-trained models.
• Libraries used for Biomedical NLP applications in Python, Java,

R, and Scala were included for the library inventory.

Exclusion criteria

• Any NLP implementation libraries in languages other than py-

thon, java, R, Scala, and Cþþ were excluded from the review.
• NLP transformer models that were trained on datasets other

than biomedical datasets such as PubMed, ChemProt, NCBI-

diseases etc.
• NLP systems involving speech analysis or generation.

RESULTS

NLP aims to transform text information into structured data with

the purpose of enhancing the usability of the data and quality of

decisions made based on that data. Looking into the specific field of

drug discovery and development, a plethora of NLP approaches

have been utilized in the previous few years to make use of the huge

amount of unstructured data that has been generated and is avail-

able in the domain. NLP offers several functionalities that enable

analysis of unstructured text data for drug discovery and develop-

ment applications. Some of the most used NLP functionalities

for drug development are listed and explained in the next section

(Table 1) and Supplementary Material.

One or more of these functionalities can be utilized to build a

text processing pipeline to accomplish various drug discovery and

development application objectives such as mining EHR data to de-

tect adverse drug reactions or extracting information for potential

drug targets from scientific literature. A typical NLP pipeline in drug

Figure 1. Entire review process workflow. The review process was divided into 2 parts: (1) review of applications NLP in MIDD space and (2) technical review of

state-of-the-art methods for implementation of various NLP functionalities most used in MIDD space.

Figure 2. Process flow for NLP libraries inventory. The figure describes the review process followed for developing the “NLP libraries inventory for drug discovery

and development.” A total of 47 libraries were identified from Google scholar resources. Out of these, 7 libraries for speech processing were excluded from fur-

ther screening. Out of the remaining 40 libraries, 20 were found to be used in different biomedical or biochemical applications. The websites, github repositories,

and publications on the libraries were reviewed and the libraries were analyzed for the presence or absence of 14 features. These features were selected based

on the most used NLP functionalities in the drug discovery and development space.
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Table 1. Relevant NLP key concepts

NLP concept Definition Methodology Biomedical or biochemical applications MIDD-specific open-source resources

Word embedding A class of techniques where individual

words are represented as real-valued

vectors, often tens or hundreds of

dimensions in a predefined vector

space.

It uses language models and feature extraction

methods to map words to vectors capturing

their context and meaning. Generic pre-

trained models such as GloVe,19 word2vec,20

and fastText21 have become prevalent.

Biomedical NLP encompasses use of word

embeddings as feature input to

downstream ML or DL models. Different

textual resources like EHR, clinical notes,

biomedical publications, Wikipedia, news

etc. are utilized to train these word

embeddings.

BioWordVec and BioSentVec22

Named Entity

Recognition (NER)

A sequence-labeling task that

encompasses locating and categorizing

important nouns and proper nouns in

text which carry key information in a

sentence.

It utilizes either 1 or a combination of the 2

underlying methods: (1) Rule-based method

which uses a set of handcrafted grammatical

and syntactic rules, and dictionaries to extract

the named entities. (2) Machine learning

(ML) or deep learning (DL) based method

that utilizes a feature-based representation of

the observed data.23

It is used in the clinical domain to extract

names of drugs, protein, disease, and

genes from radiology reports, discharge

summaries, problem lists, nursing

documentation, medical education

documents, and scientific literature.

MedLEE,24 MetaMap,25

KnowledgeMap,26 cTAKES,27

HiTEX,28 MedTagger,29 and

ChemSpot30

Assertion status

detection

Status detection in medical assertions as

“present,” “absent,” “conditional,”

or “associated with someone else,”

Given an entity in a medical text, it classifies its

asserted class from the context as being

present, absent, or possible in the patient.31

In recent years, assertion detection models

have been developed using Convolutional

neural networks (CNNs), Long-short term

memory network (LSTMs) and attention

techniques.32

In bio-clinical NLP, it is primarily used for

assertion status detection for disease

modeling. The meaning of clinical entities

is heavily affected by assertion modifiers

such as negation, uncertain, hypothetical,

experiencer, and so on.

MITRE system33

Entity resolution It is the practice of linking data records

that represent the same entity in the

absence of a join key.

The process is comprised of the following steps:

(1) Blocking—categorizing entities into

blocks based on their descriptions. (2) Block

processing—removing redundancies within

blocks. (3) Matching—matching within a

block based on entity descriptions. (4)

Clustering—grouping of identified matches

together.

In biomedical applications, it is used in

record linkage by taking domain-specific

knowledge into consideration to avoid

domain-general assumptions that do not

hold in this domain (eg, overlap in names

of chemical compounds).34

DeepER35 and Bell et al.’s rule-based

sieve architecture34

Relation extraction It is the task of extracting structured

information and semantic relations

from natural language text between

2 or more entities of a certain type like

person, organization, or location.

It uses co-occurrence, pattern matching,

machine learning, deep learning, knowledge-

driven methods,36 or transfer learning.

In the drug discovery and development

domain, it is relevant in extraction of

drug–disease, gene–disease, drug–target,

and drug–drug relationships.

BioReI37 and DocRBERT38

Topic modeling It is an unsupervised approach used for

finding and classifying various topics

embedded within a document or a

piece of text.

It is based on the idea that a document is a

mixture of topics which are a probability

distribution over words. Term frequency-

inverse document frequency, non-negative

matrix factorization, Latent Dirichlet

Allocation, Latent Semantic Analysis,39

attention,39 and generative adversarial

networks40 are some of the methods used for

implementing it.

In the biomedical domain, topic modeling

has been applied to use-cases beyond

documents and words, eg, to classify

genomic sequences, to classify drugs

according to safety and therapeutic use

and to find links between genes and dis-

eases.41

Gensim, Stanford topic modling

toolbox and MALLET42
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Table 2. NLP libraries for MIDD

Library name

Features

Programming

language

Pretrained

neural net-

work models

Word

embeddings

Multi-

language

support

Tokenization

Part-of-

speech

tagging

Stemming/

lemmatization

Named entity

recognition

Entity

resolution

Sentiment

analysis

Relation

extraction

Assertion

status

detection

Topic

modeling

Spacy43 Python x x x x x x x x x

Gensim44 Python x x x x x x x

NLTK45 Python x x x x x x x x

CoreNLP46 Java x x x x x x x x x

Scispacy47 Python x x x x x x x x x

SparkNLP48 Python, Java,

Scala, R

x x x x x x x x x x x x

SparkNLP for

healthcare49

Python, Java,

Scala, R

x x x x x x x x x x

Torchtext50 Python x x x x

KoRpus51 R x x x

Tensorflow52 Python x x x x x x x x x x

Scikit learn53 Python x x x

Textblob54 Python x x x x

Pattern55 Python, R x x x x x

Hugging face56 Python x x x x x

Allen NLP57 Python x x x x x x x x x

Fasttext21 Python x x x x x x

Stanza58 Python x x x x x x x

Flair59 Python x x x x x x

Fastai60 Python x x x x

Spacyr61 R x x x x x x

J
A

M
IA

O
p

e
n

,
2

0
2

2
,
V

o
l.

0
0

,
N

o
.
0

5



Table 3. NLP models for MIDD

Model Full form Pretrained on Architecture Built on Performance Year

BioBERT62,63 Bio-Bidirectional Encoder Representations from

Transformers

PubMed and PMC Transformer BERT Outperforms state-of-the-art (SOTA) for named entity

recognition, relation extraction, question answering

September 19

SciBERT64,65 Science—Bidirectional Encoder

Representations from Transformers

Semantic Scholar Transformer BERT Outperforms SOTA for named entity recognition,

relation extraction, patient enrollment task

November 19

ClinicalBERT66,67 Clinical Bidirectional Encoder

Representations from Transformers

MIMIC III Transformer BERT Outperforms deep language model for clinical

prediction

November 20

BioClinicalBERT68,69 Bio-Clinical Bidirectional Encoder

Representations from Transformers

MIMIC III Transformer BioBERT Outperforms BERT and BioBERT on named entity

recognition and natural language inference

June 19

BioMed-RoBERTa70,71 BioMedical Robustly optimized

Bidirectional Encoder Representations from

Transformers

Semantic Scholar Transformer RoBERTa Outperforms RoBERTa on text classification, relation

extraction and named entity recognition

May 20

Bio Discharge

Summary BERT69,72

Bio Discharge Summary Bidirectional Encoder

Representations from Transformers

MIMIC III discharge

summaries

Transformer BioBERT Outperforms BERT and BioBERT on named entity

recognition and natural language inference

June 19

BioALBERT73 Bio-A Lite Bidirectional Encoder Representa-

tions from Transformers

PubMed, PMC,

MIMIC III

Transformer ALBERT Outperforms SOTA for named entity recognition,

relation extraction, question answering, sentence

similarity, document classification

July 21

ChemBERTa74,75 Chem-Bidirectional Encoder Representations

from Transformers

PubChem Transformer RoBERTa Outperforms baseline on one task of molecular

property prediction

October 20
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development can also include text pre-processing methodologies

such as tokenization, stemming, lemmatization, and part-of-speech

tagging followed by a combination of various NLP functionalities.

NLP model inventory
The NLP landscape is promising, as several techniques have been de-

veloped to optimize the performance of various NLP functionalities.

With the emergence of transfer learning and transformers in NLP,

the efficiency of the process has increased while reducing the depen-

dence on large amount of training data. Several libraries in most-

commonly used languages such as python, R, and Java have made

the implementation easier with the availability of pre-trained state-

of-the-art neural network models. With the increasing use of various

NLP algorithms in the healthcare sector, transformer models have

been developed specific to healthcare applications such as BioBERT,

SciBERT, etc. by training the basic BERT model on biomedical data

corpus like PubMed, MIMIC-III, etc. Numerous libraries have made

such models accessible for implementation.

We summarized our findings on the NLP in MIDD libraries and

models in Tables 2 and 3, respectively. Table 2 provides features of

all the state-of-the-art libraries in python, R, and Java for biomedical

applications. The features in the inventory are crucial NLP functional-

ities in different phases of drug discovery and development which

were extracted from our literature search and highlighted in the sec-

tion above. Table 3 provides an overview of state-of-the-art NLP

models useful in MIDD. These inventories aim to help researchers in

choosing the resources for implementing pre-trained neural models or

NLP techniques for their respective NLP application.

NLP in the lifecycle of drug development
There are several facets of the lifecycle of drug development (DD) in

which Real World Data (RWD) and NLP algorithms have been

implemented with the aim of improving outcomes. To guide the

structure of the model inventory, we reviewed literature and use-

cases in the following areas:

1. Drug discovery

2. Clinical trials

3. Pharmacovigilance

In each of the cases, different forms of NLP were applied to textual

data to derive novel insights in all stages of drug development that

would previously have been difficult or even impossible to capture.

Drug discovery

In the drug discovery process, understanding gene–disease associa-

tions, pathways, and systems is critical. Much of the data that can

aid in extracting this information is in unstructured text.76 Further-

more, most new targets are derived from novel biological discoveries

first appearing in scientific literature from academic sources.77 NLP-

based text mining has provided a solution which has been widely

utilized for applications in gene–disease mapping, target identifica-

tion, biomarker discovery, and drug repurposing efforts.78 NLP has

also been utilized to analyze text-based representations of molecular

structures for discovery and design of novel drugs.16 Instead of rely-

ing on disparate manually curated sources, an NLP system can mine

and extract relevant and valuable knowledge from all these sources

at once. In the sections below, the uses of NLP in various drug dis-

covery areas are highlighted.

Gene–disease mapping. Analyzing gene–disease association is a cru-

cial step for target identification and biomarker discovery in the

drug discovery pipeline. Experimental methods for identifying gene–

disease associations, such as genome-wide association studies and

linkage analysis can be expensive and time-consuming.79 Hence,

researchers have turned to various in silico methods in the past few

years which utilize text-mining, crowdsourcing, network and seman-

tic-similarity-based algorithms.79,80 Mining of biomedical literature

is key to extracting actionable information present in free-text data.

NLP comes into play in the process by enabling automated text-

mining with techniques such as NER81 and relation extraction.82 A

few examples of such systems include DisGeNET,83 BeFREE,81 a

co-occurrence interaction network presented in Al-Aamri et al80 and

a BioBERT-based model introduced in Deng et al.84

Drug–target interaction prediction. Predicting drug–target interac-

tion aims to identify binding of new drug candidate compounds to

protein targets. A few approaches have been recently developed to

address this problem using NLP techniques. These techniques use

word embeddings to represent chemical structures of the drug mole-

cule and the binding protein from an un-labeled biomedical litera-

ture.85 Raw data such as simplified molecular-input line-entry

system (SMILES) strings for molecules and protein sequences are

vectorized in this process of feature representation.86 One common

approach for feature representation is using CNN-based models.87

However, it fails to take into account the relationship between dif-

ferent atoms in the molecules.88 Hence, self-attention88 and trans-

former-based embedding models85 are used to overcome this

challenge. Further steps in the process involve machine learning or

deep learning models to predict the affinity between the drug mole-

cule and target protein.89,90 Features such as the biological, topolog-

ical and physio-chemical properties of the drugs/target are

considered for making these predictions.91

Biomarker discovery. With the rise of the technologies to extract

valuable information available in biomedical big data—electronic

medical records (EMRs) and biomedical literature, there is an in-

creased hope of discovering novel biomarkers that can be used to di-

agnose, predict, and monitor the important aspects of a disease.

Biomarkers also serve as surrogate endpoints in early-phase tri-

als.8,92,93 Biomarker and disease names are identified in free-text

data using NER and the frequency of their co-occurrences. The rela-

tionship between disease and biomarkers can be understood using

word embedding and similarity approaches.93 Singh et al8 presents a

big data mining approach from EHR data using NER and assertion

status detection techniques along with machine learning to facilitate

biomarker discovery. Holmes et al25,94 introduced a new method to

extract high quality, contextual biomarker information from pathol-

ogy reports using MetaMap.

Drug repurposing. Drug repurposing is discovering new therapeutic

opportunities for existing drugs. It can ensure a faster drug develop-

ment and approval process, safer treatment and reduced healthcare

cost. Computational approaches like virtual screening, molecular

docking, deep learning and NLP play a vital role in many of the

drug repurposing studies.10,95–102 The drug–disease treatment pairs

that are extracted using NLP from literature, EHR, clinical notes,

and real-world sources can be used for drug repurposing in 2

ways: the extracted pairs being used themselves or a drug or dis-

ease’s similarity with candidate drug or disease respectively is used

JAMIA Open, 2022, Vol. 00, No. 0 7



to hypothesize a new therapeutic indication for a given drug.103 Sub-

ramanian et al95 used SciBERT for drug-cancer association classifi-

cation. In another study, the researchers carried out a drug-wide

association study for COVID-19 drug-repurposing using MedXN104

NLP platform for drug information extraction.105 Relation extrac-

tion and entity linking are other key NLP techniques that help cap-

ture complex relationships in unstructured text.96

Drug design. Drug design in the initial stages of drug discovery is

rendered as an optimization problem to search for the optimal com-

bination of building blocks to find the most stable structure in the

given conditions. De novo design of molecules has recently benefited

from deep generative models, various NLP techniques and transfer

learning.106 The task of generating more SMILES strings having an

input string is viewed as a language modeling task. To this end,

Transmol was developed as a vanilla transformer language model

for SMILES sequence generation.107,108 In another study, ULMFit

model is used to leverage transfer learning to generate new molecu-

lar sequences.107 A recent study introduced Seq2Mol, a method con-

ditioned on the protein target sequence to generate de novo SMILES

strings of molecules that are relevant to the target using a deep bi-

directional language model ELMo.109

Clinical trials

Approximately 5.6% of clinical trials in the clinicaltrials.gov data-

base have been terminated prematurely (2021). A failed trial sinks

not only the investment into the trial itself but also the preclinical

development costs, rendering the loss per failed clinical trial at 800

million to 1.4 billion USD.110 Failure to optimize clinical trial de-

sign, inefficient enrollment processes, and poor retention rates are

one of the main reasons for premature trial closure.111 NLP has

been utilized to overcome these issues and help improve the clinical

trial process.

Patient-trial matching. Identification of suitable patients can be

resource-intensive, often relying on manual review of clinical notes

to identify potentially eligible patients, where the information may

be split over different systems. Researchers have utilized various

NLP techniques for automating clinical trial eligibility pre-screening

for patients, increasing the efficiency of the patient selection and re-

cruitment process. NER, assertion status detection, relation extrac-

tion, and entity linking features have been primarily used to extract

relevant fields from clinical trial eligibility criteria.112–116 These

were mapped against relevant fields extracted from unstructured pa-

tient EHRs using the same techniques for efficient patient-cohort

matching.114,117–120 Recently, advanced models such as Criteria2-

Query121 which uses an Information Extraction pipeline integrated

with a Natural Language Interface, DeepEnroll122 which uses hier-

archical embeddings and COMPOSE123 which uses word embed-

dings on clinical trials eligibility criteria along with a pseudo-

Siamese network have provided significant improvement in the

patient-trial matching process.

Pharmacokinetic/Pharmacodynamic (PK/PD) studies. PK/PD stud-

ies are crucial to determine the dosing and schedule during a clinical

trial.124 Post-marketing PK/PD analyses are used to evaluate drug re-

sponse in patients in real-world setting. These studies require longi-

tudinal dose, outcomes, and potential covariates information.

Mining EHRs for this data can be a potential solution. NLP has

been leveraged by researchers to automate the process of real-world

data extraction from EHRs.125 Existing NLP data mining tools such

as MedEx,126 MedXN,104 and medExtractR127 were utilized.

Document preparation for regulatory submissions. NLP is being

used to accelerate document preparation with tools that can perform

parallel search, document creation, data integrity review and rapidly

assembling briefing documents for regulatory submissions.128

Pharmacovigilance

According to the Center for Disease Control and Prevention (CDC),

adverse drug events (ADEs) cause approximately 1.3 million emer-

gency department visits each year. It is extremely vital to assess the

safety of a drug to avoid any potential adverse events resulting from

it. Additionally, active post-marketing surveillance is crucial to ac-

count for all side effects that can result from the drug in a larger

population over the duration of its usage. EHR and NLP have en-

abled a more accurate detection of such adverse events compared to

the conventional manual methods.

Adverse drug event detection. ADEs are unexpected medical occur-

rences resulting from drug related intervention. The current method

for ADE detection involves manual retrospective record review of

medical data stored within EMRs in structured and free-text form.

Over the past few years, researchers have utilized various NLP tech-

niques to automate this process by including free-text data from

EHRs. The workflow includes identifying and extracting the rela-

tionship between a drug and ADE from unstructured EHR data, in-

cident reporting systems, or social media. NER identifies

medications and their attributes (dosage, route, duration, and fre-

quency), indications, ADEs, and severity.129,130 Word Sense Disam-

biguation is used to further filter the identified entities and confirm

their contextual sense. The relation extraction task identifies rela-

tions between the named entities: medication-indication and medi-

cation-ADE.129 Word embeddings are utilized to vectorize the input

for training an ML130 or DL131 model to identify and classify ADEs.

Numerous publicly available NLP systems have been extended to

perform ADE detection tasks, including MedLEE,132 MetaMap,25

cTAKES,27 MedEx,126 and GATE.133 Wu et al134 introduced an

NLP system with multi-head self-attention to detect adverse drug

reactions from tweets using pre-trained word embeddings, text pre-

processing, part of speech embeddings, and sentiment embeddings.

Drug–drug interaction prediction. In cases where 2 or more drugs

are co-administered, drug-drug interaction detection becomes a criti-

cal part of post-marketing surveillance. Interactions between 2 drugs

may lead to side-effects, increased or decreased impact or an adverse

reaction. Since there are numerous combinations of drugs available,

it is difficult and time-consuming to manually collect all the drug–

drug interaction events of patients from reports and scientific litera-

ture. To overcome this, several efforts have been made to automate

the process by using different text-mining approaches incorporating

NLP techniques such as NER, relation extraction, and word embed-

dings.135,136

EHR data de-identification

To facilitate the use of EHR data without compromising patient pri-

vacy multiple NLP methods are being explored.137 These methods

include Rule-based extraction, feature-based ML, and Neural meth-
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ods. The goal is to be both effective in detecting protected health in-

formation (PHI) and efficient in processing the data.

DISCUSSION

With the rapid advances in the field of NLP in the past few years, it

has found applications in several industries to automate time-

consuming manual processing of human-generated natural lan-

guage. Drug discovery and development is one such field which can

leverage the promising future of NLP to its advantage. Our literature

review results presented in this article highlight some of the most

promising avenues of NLP applications in the journey of a drug

from molecule to market.

We found that several researchers have utilized NLP techniques

such as NER, relation extraction, word embeddings, assertion status

detection, topic modeling, natural language generation, and entity

resolution for drug discovery and development applications. Table 2

lists all the current state-of-the-art library resources in python, Java,

R, and Scala that can be used to develop models for one or more of

the mentioned tasks. The table also includes bio- and clinical-

specific libraries that can be utilized to achieve better performance

in drug discovery and development applications. The state-of-the-art

performance is attributed to the availability of pre-trained neural

network models within these libraries that have been trained on bio-

medical literature. The neural language model-based approaches

have been proven to achieve better performance.

With further improvements in the deep learning space, NLP

models have moved from Recurrent neural network (RNN) and

LSTM to attention-based models and transformers. The added fea-

ture of transfer learning with the transformers has led to even higher

accuracies. Table 3 captures the trends in the evolution of the state-

of-the-art transformer models pretrained on biochemical and bio-

medical literature. Many of the libraries listed in table 2 utilize these

models for enhanced performance. Both these tables provide insights

into the technical aspects of various NLP algorithms and tools that

are available to easily access those algorithms for drug development

implementation that are highlighted in Figure 3.
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Figure 3. NLP in stages of drug development. The figure shows NLP functionalities used for applications in 3 stages of drug development process: (1) drug dis-

covery, (2) clinical trials, and (3) pharmacovigilance. The data sources utilized for NLP implementation in these applications are also listed. We also provide some

examples of open-source systems for these applications along with links to training datasets.
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Figure 3 provides a comprehensive overview of the applicability

of various NLP tasks for drug discovery and development use-cases.

The figure summarizes NLP use cases in MIDD with examples for

drug discovery, clinical trials and pharmacovigilance. The figure ties

together the findings of the 2 parts of the literature review—applica-

tions and technical aspects of various NLP techniques. It depicts the

techniques used for each application of NLP in the drug develop-

ment domain.

As we saw in our results, there has been a shift from rule-based

approaches to increasingly complex neural language models leading

to achieving state-of-the-art results. However, this shift has come

with a performance-explainability trade-off. The traditional NLP

techniques using rule-based or statistical methods are inherently ex-

plainable but the prevalence of deep learning models and word em-

bedding techniques have given rise to the need of incorporating

explainability as a feature in the models. Some work has been done

in recent years to expand the field of explainable and interpretable

NLP models.138–141 Biological and chemical interpretability and

explainability of NLP models remains a challenge to be addressed in

the field of drug discovery and development. Further exploration

and application of explainability and interpretability for NLP neural

models in drug discovery and development is crucial at the moment

to improve NLP acceptability by researchers as well as regulators.

Further issues like bias in NLP models stemming from bias in data

and algorithm design, security issues surrounding PHI, reproducibility

of results are some of the limitations that are hindering wider adop-

tion of these advance techniques for drug development applications.

In order to ensure better adoption of NLP to MIDD, we identified

the following opportunities in the field as a result of our research:

1. The drug discovery and development fields present several oppor-

tunities to researchers to apply NLP to further improve the perfor-

mance of the already existing models.

2. In order to enable wider adoption of NLP in MIDD, additional

work is required in the field to make the models more explainable,

interpretable, fair, reproducible, and to overcome issues of secu-

rity (discussed further in Supplementary File).

3. Within drug discovery and development, applications in improv-

ing clinical trials and pharmacovigilance can be critical for cost

savings. It is evident from our review that opportunities exist to

explore the fields of document preparation for regulatory submis-

sions, PK/PD modeling and EHR deidentification as not much

work has been done on these applications.

4. Current NLP approaches are limited to a few languages like En-

glish or Dutch.142,143 The research can be expanded to include

other languages to make the best use of the plethora of available

data in regional languages. This can be useful in expanding the

reach of NLP systems and improving the performance of the cur-

rent state-of-the-art algorithms.

5. Another avenue of interest can be the use of few-shot learning in

NLP144 to overcome the challenge of limited data, eg, in the case

of drug discovery for rare diseases.

CONCLUSION

Our review focuses on how NLP’s use is evolving in the drug devel-

opment space. It highlights several functionalities of NLP that aid in

automation of MIDD processes in favor of increased efficiency. The

article also mentions some resources that can be useful in developing

an NLP pipeline using current state-of-the-art methods for MIDD

applications. Lastly, it provides insights into how it can be taken for-

ward by addressing some of the unmet needs in the field.
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145. Pi~nero J, Saüch J, Sanz F, et al. The DisGeNET cytoscape app: exploring

and visualizing disease genomics data. Comput Struct Biotechnol J 2021;

19: 2960–7. doi:10.1016/j.csbj.2021.05.015

146. OHNLP. MedXN: Medication Extraction and Normalization for Clini-

cal Text. Open Health Natural Language Processing; 2022. https://

github.com/OHNLP/MedXN. Accessed February 15, 2022.

147. saulhazelius. TRANSMOL. 2021. https://github.com/saulhazelius/trans-

mol. Accessed February 20, 2022.

JAMIA Open, 2022, Vol. 00, No. 0 13

http://arxiv.org/abs/2010.15900
https://doi.org/10.1016/j.conctc.2018.08.001
https://doi.org/10.1007/978-3-030-59137-3_7
https://doi.org/10.1007/978-3-319-25515-6_1
http://arxiv.org/abs/2006.07296
https://doi.org/10.1093/jamia/ocz109
http://arxiv.org/abs/2001.08179
http://arxiv.org/abs/2001.08179
http://arxiv.org/abs/2006.08765
https://doi.org/10.1197/jamia.M3378
https://doi.org/10.1101/19007286
https://gate.ac.uk/
https://doi.org/10.18653/v1/W18-5909
https://medium.com/nedap/de-identification-of-ehr-using-nlp-a270d40fc442
https://medium.com/nedap/de-identification-of-ehr-using-nlp-a270d40fc442
https://arxiv.org/abs/2107.05693v1
https://doi.org/10.24963/ijcai.2018/468
https://arxiv.org/abs/2108.13961v1
https://arxiv.org/abs/1811.05468v1
https://doi.org/10.1016/j.csbj.2021.05.015
https://github.com/OHNLP/MedXN
https://github.com/OHNLP/MedXN
https://github.com/saulhazelius/transmol
https://github.com/saulhazelius/transmol


148. Huang K. MolTrans: Molecular Interaction Transformer for Drug Tar-

get Interaction Prediction. 2022. https://github.com/kexinhuang12345/

MolTrans. Accessed February 20, 2022.

149. v1xerunt. COMPOSE: Cross-Modal Pseudo-Siamese Network for Pa-

tient Trial Matching. 2021. https://github.com/v1xerunt/COMPOSE.

Accessed February 20, 2022.

150. deepenroll. deepenroll/DeepEnroll. 2021. https://github.com/deepenroll/

DeepEnroll. Accessed February 20, 2022.

151. Layne_Huang. EGFI. 2022. https://github.com/Layne-Huang/EGFI.

Accessed February 28, 2022.

152. deidentify. Nedap N.V. 2022. https://github.com/nedap/deidentify.

Accessed February 28, 2022.

153. The Comparative Toxicogenomics Database j CTD. http://ctdbase.org/.

Accessed February 28, 2022.

154. GWAS Catalog. https://www.ebi.ac.uk/gwas/. Accessed February 28,

2022.

155. Literature-derived Human Gene-Disease Network. https://www.dbs.ifi.

lmu.de/~bundschu/LHGDN.html. Accessed February 28, 2022.

156. MarkerDB. https://markerdb.ca/. Accessed February 28, 2022.

157. Drugs@FDA: FDA-Approved Drugs. https://www.accessdata.fda.gov/

scripts/cder/daf/index.cfm. Accessed February 28, 2022.

158. repoDB. http://apps.chiragjpgroup.org/repoDB/. Accessed February 28,

2022.

159. CURE ID. https://cure.ncats.io/introduction. Accessed February 28,

2022.

160. ChEMBL Database. https://www.ebi.ac.uk/chembl/. Accessed February

28, 2022.

161. GDB Databases. https://gdb.unibe.ch/downloads/. Accessed February

28, 2022.

162. Sterling T, Irwin JJ. ZINC 15—ligand discovery for everyone. J Chem

Inf Model 2015; 55 (11): 2324–37.

163. Liu T, Lin Y, Wen X, et al. BindingDB: a web-accessible database of ex-

perimentally determined protein-ligand binding affinities. Nucleic Acids

Res 2007; 35 (Database issue): D198–201.

164. Tanoli Z, Alam Z, V€ah€a-Koskela M, et al. Drug Target Commons 2.0: a

community platform for systematic analysis of drug–target interaction

profiles. Database (Oxford) 2018; 2018: bay083.

165. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the

DrugBank database for 2018. Nucleic Acids Res 2018; 46 (D1): D1074–82.

166. ClinicalTrials.gov. https://www.clinicaltrials.gov/. Accessed February

28, 2022.

167. SIDER Side Effect Resource. http://sideeffects.embl.de/. Accessed Febru-

ary 28, 2022.

168. Research C for DE and FDA Adverse Event Reporting System (FAERS)

Public Dashboard. FDA Published Online First: 22 October 2021. https://

www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-

system-faers/fda-adverse-event-reporting-system-faers-public-dashboard.

Accessed February 28, 2022.

169. T3DB. http://www.t3db.ca/. Accessed February 28, 2022.

170. DDinter. http://ddinter.scbdd.com/. Accessed February 28, 2022.

171. PharmGKB. PharmGKB. https://www.pharmgkb.org/. Accessed Febru-

ary 28, 2022.

172. Johnson A, Pollard T, Mark R. MIMIC-III Clinical Database. 2015.

doi:10.13026/C2XW26.

14 JAMIA Open, 2022, Vol. 00, No. 0

https://github.com/kexinhuang12345/MolTrans
https://github.com/kexinhuang12345/MolTrans
https://github.com/v1xerunt/COMPOSE
https://github.com/deepenroll/DeepEnroll
https://github.com/deepenroll/DeepEnroll
https://github.com/Layne-Huang/EGFI
https://github.com/nedap/deidentify
http://ctdbase.org/
https://www.ebi.ac.uk/gwas/
https://www.dbs.ifi.lmu.de/~bundschu/LHGDN.html
https://www.dbs.ifi.lmu.de/~bundschu/LHGDN.html
https://markerdb.ca/
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
http://apps.chiragjpgroup.org/repoDB/
https://cure.ncats.io/introduction
https://www.ebi.ac.uk/chembl/
https://gdb.unibe.ch/downloads/
https://www.clinicaltrials.gov/
http://sideeffects.embl.de/
https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard
https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard
https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard
http://www.t3db.ca/
http://ddinter.scbdd.com/
https://www.pharmgkb.org/
https://doi.org/10.13026/C2XW26



