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Abstract
Objective: To determine the relationship between serum total 25-hydroxyvitamin D (25(OH)D), directly measured free 25(OH)

D and calculated free 25(OH)D with regard to vitamin D-binding protein (DBP) phenotypes, sex, BMI, age and season, and

their interrelationship to vitamin D supplementation.

Design, patients and interventions: A randomized controlled trial with 20 000 IU of vitamin D3 per week or placebo for

12 months was designed. A total of 472 subjects, 236 in each of the intervention groups, were included in the analyses.

Main outcome measures: Baseline serum concentrations and increases in serum total 25(OH)D, directly measured free

25(OH)D, calculated free 25(OH)D and DBP.

Results: Serum total 25(OH)D and DBP concentrations were significantly lower in subjects with the phenotype Gc2/Gc2

compared to phenotypes with the Gc1S allele, and lower in males compared to females. When using directly measured free

25(OH)D, the differences related to DBP phenotypes and sexes were clearly diminished. All calculated free 25(OH)D

concentrations were overestimated compared to the directly measured free 25(OH)D. Serum parathyroid hormone showed

an inverse correlation with all vitamin D parameters analyzed. The increases after 12 months of vitamin D supplementation

were not significantly different for any of the vitamin D parameters regardless of DBP phenotype, sex or age.

Supplementation with vitamin D did not affect serum DBP.

Conclusion: Direct measurements of free 25(OH)D reduce the differences seen in total 25(OH)D between DBP phenotype

groups and sexes, probably caused by differences in DBP concentrations. With conditions affecting serum DBP

concentrations, direct measurements of free 25(OH)D should be considered.
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Introduction
Total 25-hydroxyvitamin D (25(OH)D) is the metabolite

used to evaluate a person’s vitamin D status. In the

circulation close to 90% of total 25(OH)D are bound to

vitamin D-binding protein (DBP) with high affinity, about

10% are more loosely bound to albumin and !0.1% are
in an unbound, or free, form (1). For the calculation of free

25(OH)D one therefore needs to know serum total

25(OH)D concentrations as well as serum DBP and

albumin concentrations (2). Recently it has also been

possible to measure free 25(OH)D directly using a
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commercially available kit. According to the ‘free hor-

mone hypothesis’ it is the unbound hormone that is

the biologically active; for 25(OH)D this may also include

the fraction bound to albumin that together with

the unbound form have been classified as ‘bio-available’

25(OH)D (3).

DBP is synthesized by the liver, a process that is

stimulated by estrogen (4). Some conditions, such as

cirrhosis due to affected synthesis (5) and nephritic

syndrome due to protein loss (4) are associated with low

DBP concentrations, while pregnancy (6) and estrogen

therapy (7) are both known to cause higher DBP

concentrations. More than 120 genetic variations of DBP

exist; however, for practical purposes the three major

polymorphic alleles of DBP in humans, GC1F, GC1S and

GC2, yielding six allelic combinations and corresponding

phenotypes, are the relevant ones (8). These genetic

factors have been showed to explain almost 80% of the

variations in serum DBP concentrations, which show great

differences between ethnic groups (9). Thus, in Europeans

the Gc1S allele is most frequently seen, whereas in

Africans GC1F is the most common allele (4).

In spite of lower serum total 25(OH)D concentrations

African Americans have better bone health and less

fractures than European Americans (10). However, Powe

et al. (9) have shown that the known differences in serum

total 25(OH)D between African and European Americans

equalizes when evaluating calculated free or bio-available

25(OH)D concentrations, and differences in serum total

25(OH)D may therefore not reflect differences in biologi-

cal activity. Recently this finding in African and European

Americans was confirmed by Aloia et al. (11) using directly

measured free serum 25(OH)D. Accordingly, other

differences in serum total 25(OH)D, like those between

DBP phenotypes, sexes, age groups, BMI categories, as well

as seasons, may diminish or disappear when evaluating

free 25(OH)D concentrations. On the other hand,

relations with presumed vitamin D related effects, like

parathyroid hormone (PTH) secretion, might increase.

Furthermore, there are conflicting reports on the DBP

response to vitamin D supplementation (12, 13). If a

response exists, that would affect not only the total

25(OH)D, but to an even greater degree the free

25(OH)D concentrations. We have recently performed a

large randomized controlled trial (RCT) with high dose

vitamin D supplementation where we have genotyped

for DBP polymorphisms, have calculated and directly

measured concentrations of free serum 25(OH)D, and

therefore had the opportunity to address the above

questions.
www.eje-online.orgwww.eje-online.org
Subjects and methods

Overall design

The data in the present study (baseline and 12 months)

were obtained from an RCT where vitamin D vs placebo

was given to subjects with prediabetes for 5 years with

prevention of diabetes as primary endpoint. Included in

the analysis are those with complete datasets for serum

albumin, serum total 25(OH)D, serum directly measured

free 25(OH)D and serum DBP.

Study population

Methods regarding the conduct of the RCT have been

published in detail previously (14). Briefly, inclusion criteria

were 21–80 years of age and impaired fasting glucose (IFG)

and/or impaired glucose tolerance (IGT). Exclusion criteria

were primary hyperparathyroidism, sarcoidosis or other

granulomatous disorders, urolithiasis, cancer during the

last 5 years, reduced kidney function, or unstable angina

pectoris, acute myocardial infarction or stroke the last year.

Fertile women had to use contraception, could not be

pregnant, and could not be lactating. Study participants

were allowed to take vitamin D supplements of maximum

400 IU/day. At baseline 511 subjects received study medi-

cation, 256 subjects were given 20 000 IU of vitamin D3 per

week and 255 placebo. Four hundred eighty-four, 242

in each group, completed the 1-year visit.
Measurements

Height and weight were measured wearing light clothing and

no shoes. BMI was calculated as weight (kg) divided by

squared height (m2). Serum calcium, serum PTH and HbA1c

were measured as previously described (15). Serum total

25(OH)D was measured by an in-house LC–MS/MS, the limit

of detection (LoD) was !4 mmol/l, and the between day

coefficient of variation (CV) !9% (16). Serum albumin was

measured by a colorimetric method (bromocresol green)

using an automated analyzer, Cobas 8000 (c702, Roche

Diagnostics). Serum DBP was measured by using an in house

competitive RIA with a polyclonal antibody according to

Kauppinen-Mäkelin et al. (17) at the Hormone Laboratory,

Oslo University Hospital. Direct measurement of serum free

25(OH)D was done using a competitive ELISA kits from

Diasource Diagnostics based on patented MAB developed by

Future Diagnostics (http://www.vitamin-d-diagnostics.com/

Vitamin-D/Free-25OH-Vitamin-D/Free-25OH-Vitamin-D-

ELISA-96-tests-RUO), the range was 0.2–87.4 pmol/l, the LoD

was 7.0 pmol/l and the precision was !10%.

http://www.vitamin-d-diagnostics.com/Vitamin-D/Free-25OH-Vitamin-D/Free-25OH-Vitamin-D-ELISA-96-tests-RUO
http://www.vitamin-d-diagnostics.com/Vitamin-D/Free-25OH-Vitamin-D/Free-25OH-Vitamin-D-ELISA-96-tests-RUO
http://www.vitamin-d-diagnostics.com/Vitamin-D/Free-25OH-Vitamin-D/Free-25OH-Vitamin-D-ELISA-96-tests-RUO
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Genotyping and calculations of free and

bio-available 25(OH)D

Genotyping was performed by KBiosciences (http://www.

lgcgenomics.com/genotyping/) with a competitive allele-

specific PCR (KASPar) assay. Based on genotyping for two

single-nucleotide polymorphisms (SNPs) in the DBP gene

(rs7041 and rs4588), the six phenotypes were identified

(Supplementary Tables 1 and 2, see section on supple-

mentary data given at the end of this article). For serum

25(OH)D the binding coefficient for albumin is 6!105/M

and the binding coefficient for DBP is 7!108/M (2). Free- and

bio-available serum 25(OH)D concentrations were calculated

using serum total 25(OH)D, DBP and albumin concen-

trations using a free testosterone equation (18) adapted for

calculating free 25(OH)D (19) (Supplementary material).
Statistical analysis

Normal distribution was evaluated by visual inspection of

histograms and by skewness and kurtosis. Normally

distributed data are presented as meanGS.D., PTH being

the only non-normally distributed variable is presented as

median (2.5th and 97.5th percentiles). Level of signi-

ficance was set at P!0.05 (two-tailed). Independent

samples t-test was used to compare the vitamin-D and

placebo groups, whereas paired samples t-tests were used

to compare serum calculated free 25(OH)D and directly

measured free 25(OH)D. For sex c2 test and for age and

BMI one-way ANOVA were used to determine differences

in distribution between DBP phenotype groups, BMI

groups and age groups. A general linear model was used

to examine the DBP phenotype – vitamin D parameters
Table 1 Baseline characteristics of all subjects and according to ra

Number of subjects
Male/female
BMI (kg/m2)
Age (years)
HbA1c (%)
Serum calcium (mmol/l)
Serum PTH (pmol/l) 5
Serum albumin (g/l)
Serum DBP (mmol/l)
Serum total 25(OH)D (nmol/l)
Serum calculated free 25(OH)D (pmol/l)
Serum calculated bio-available 25(OH)D (nmol/l)
Serum directly measured free 25(OH)D (pmol/l)

PTH, parathyroid hormone; DBP, vitamin D binding protein; 25(OH)D, 25-hydro
associations with sex, BMI, age and season as covariates.

The Bonferroni procedure was used for post-hoc analysis.

Independent sample t-tests were used to evaluate

differences between sex and season, whereas linear trend

analyses were used across BMI groups and age groups.

Univariate correlations were assessed with Pearson corre-

lation coefficient (PTH was log transformed). IBM SPSS

Statistics version 22 was used for all statistical analyses.
Ethics

The study was approved by the Norwegian Medicines

Agency and by the Regional Committee for Medical

Research Ethics. The trial is registered at ClinicalTrials.gov

(NCT00685594).
Results

Participant characteristics

Complete data sets were available in 472 subjects, 236

in each of the intervention groups. Baseline values are

presented in Table 1. The directly measured free 25(OH)D

concentrations were lower than the calculated free

25(OH)D (Table 1). There were no significant differences

between the vitamin D and placebo groups.
Serum total 25(OH)D, calculated free 25(OH)D, calculated

bio-available 25(OH)D, directly measured free 25(OH)D

and DBP in relation to DBP phenotypes at baseline

As expected, Gc1S was by far the most abundant allele.

There were no significant differences between the DBP

phenotypes regarding sex, BMI, age or albumin (Table 2).
ndomization status.

All subjects

Randomization status

Vitamin D Placebo

472 236 236
293/179 150/86 143/93

29.9G4.3 30.1G4.2 29.8G4.4
62.0G8.7 62.0G8.2 62.0G9.1
6.0G0.3 6.0G0.3 6.0G0.3

2.31G0.08 2.31G0.07 2.31G0.08
.3 (5.5, 5.9) 5.5 (5.5, 6.1) 5.3 (5.3, 5.9)
45.2G2.3 45.2G2.3 45.1G2.2
3.7G0.5 3.7G0.5 3.7G0.6

60.7G21.6 59.9G22.0 61.5G21.1
20.4G7.0 20.4G7.2 20.4G6.7
8.3G2.8 8.3G3.0 8.3G2.6
13.7G4.2 13.7G4.3 13.7G4.2

xyvitamin D.

www.eje-online.orgwww.eje-online.org
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Table 2 Distribution of sex, age, BMI, albumin, DBP and vitamin D parameters according to DBP phenotype. General linear model

with sex, BMI, age and season as covariates. Bonferroni method for post-hoc analysis.

DBP phenotypes

Gc1S/Gc1S Gc1S/Gc1F Gc1S/Gc2 Gc1F/Gc1F Gc1F/Gc2 Gc2/Gc2

Number of subjects 148 124 117 20 39 24

Sex (females/males) 58/90 53/71 37/80 7/13 16/23 8/16
BMI (kg/m2) 29.3G4.5 30.2G4.2 30.4G4.2 31.3G4.0 29.7G4.6 30.1G2.9
Age (years) 62.2G8.4 61.3G9.2 62.4G8.4 63.3G8.9 61.3G9.0 62.4G9.3

PTH (pmol/l) 5.6 (5.2, 5.9) 6.0 (5.5, 6.4) 5.9 (5.4, 6.3) 5.3 (4.6, 5.9) 5.4 (5.0, 5.7) 5.2 (4.5, 5.8)
Serum albumin (g/l) 45.1G2.3 45.3G2.0 45.1G2.5 45.5G2.0 45.4G2.2 45.4G2.5
Serum DBP (mmol/l) 3.7G0.5b 3.8G0.5b 3.6G0.5b 3.9G0.7b 3.8G0.7 b 3.1G0.4 a

Serum total 25(OH)D (nmol/l) 62.9G23.9b 64.2G22.9b 59.6G19.6d 56.8G17.0 56.9G17.7 43.9G13.5 a,c

Serum calculated free 25(OH)D (pmol/l) 21.0G7.4 21.1G6.9 20.4G6.8 18.6G6.4 18.8G6.2 17.3G5.5
Serum calculated bio-available 25(OH)D (nmol/l) 8.6G3.1 8.7G2.8 8.3G2.7 7.7G2.7 7.7G2.6 7.1G2.2

Serum directly measured free 25(OH)D (pmol/l) 13.4G4.2 14.2G4.3 13.9G4.2 12.4G3.3 14.0G4.6 12.2G4.1

DBP, vitamin D binding protein; 25(OH)D, 25-hydroxyvitamin D.
aSignificantly lower than P!0.001.
bP!0.001.
cSignificantly lower than P!0.05.
dP!0.05.
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Serum total 25(OH)D concentrations were signi-

ficantly lower for the phenotype Gc2/Gc2 compared to

Gc1S/Gc1S, Gc1S/Gc1F and GC1S/Gc2 (Table 2). The

phenotype Gc2/Gc2 also had significantly lower serum

DBP concentration compared with all the other pheno-

type groups (Table 2).

For calculated free 25(OH)D, calculated bio-available

25(OH)D and directly measured free 25(OH)D the

differences between the DBP phenotypes diminished and

were no longer statistically significant (Table 2). The least

differences between phenotypes were found for the direct

measurements; as an example the difference between

Gc2/Gc2 and Gc1S/Gc1S were 30.2% for total 25(OH)D,

17.6% for calculated free 25(OH)D and only 9.0% for

directly measured free 25(OH)D.

We also calculated free 25(OH)D using specific

binding coefficients for the six different DBP phenotypes;

however, this did not improve the results (data not

shown).
Serum total 25(OH)D, calculated free 25(OH)D,

calculated bio-available 25(OH)D, directly measured

free 25(OH)D and DBP in relation to sex, BMI, age and

season at baseline

Males had significantly lower serum total 25(OH)D than

females, a difference of 10.5% (Supplementary Table 3, see

section on supplementary data given at the end of this

article). Similarly, serum DBP concentrations were signi-

ficantly lower for males compared to females; and in line
www.eje-online.orgwww.eje-online.org
with this no significant differences were found for serum

calculated free 25(OH)D, calculated bio-available

25(OH)D or directly measured free 25(OH)D concen-

trations (Supplementary Table 3).

With increasing BMI a non-significant trend (PZ0.08)

for decreasing serum total 25(OH)D was seen with a 9.2%

difference between the lowest and highest BMI groups. A

similar, but significant trend was seen for serum DBP. As

for total 25(OH)D there were no significant differences in

the free and bio-available 25(OH)D concentrations

between BMI groups; further, for the directly measured

free 25(OH)D the difference had almost completely

disappeared (Supplementary Table 3).

There was with increasing age a significant linear trend

with increasingly higher serum total 25(OH)D, calculated

free 25(OH)D, calculated bio-available 25(OH)D and

directly measured free 25(OH)D (Supplementary Table 3).

However, no such trend was seen for serum DBP, and

therefore the differences between the lowest and highest

age groups for total 25(OH)D and the corresponding

differences for directly measured free 25(OH)D were

basically the same (17.0% and 17.1% respectively).

For season we compared the three consecutive highest

months of serum total 25(OH)D (July–September) with the

three lowest (February–April), and since their serum DBP

did not differ significantly, the difference remained

statistically significant, and also almost identical, for the

calculated free 25(OH)D, calculated bio-available

25(OH)D and directly measured free 25(OH)D (P!0.001)

(data not shown).

http://www.eje-online.org/cgi/content/full/EJE-15-1089/DC1
http://www.eje-online.org/cgi/content/full/EJE-15-1089/DC1
http://www.eje-online.org/cgi/content/full/EJE-15-1089/DC1
http://www.eje-online.org/cgi/content/full/EJE-15-1089/DC1
www.eje-online.org
www.eje-online.org


Table 3 Correlations between variables.

Serum total

25(OH)D (nmol/l)

Serum directly measured

free 25(OH)D (pmol/l)

Serum

DBP (mmol/l)

Serum

albumin (g/l)

Serum

PTH (pmol/l)

Serum total 25(OH)D (nmol/l) 1 0.73* 0.24* K0.04 K0.15*
Serum directly measured free 25(OH)D

(pmol/l)
0.73* 1 0.05 K0.05 K0.12*

Serum DBP (mmol/l) 0.24* 0.05 1 0.15* K0.04
Serum albumin (g/l) K0.04 K0.05 0.15* 1 K0.06†

Serum PTH (pmol/l)a K0.21* K0.17* K0.05 K0.09 1

*P!0.001; †P!0.05; 25(OH)D, 25-hydroxyvitamin D; DBP, vitamin D binding protein; PTH, parathyroid hormone.
aDenotes log-transformed data.
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Correlations for serum total 25(OH)D, calculated

free 25(OH)D, directly measured free 25(OH)D,

albumin, DBP and PTH at baseline

Serum PTH was negatively and similarly correlated with

serum total 25(OH)D and directly measured free 25(OH)D

(Table 3). Additionally, strong correlations were found

between serum total 25(OH)D and directly measured free

25(OH)D (Table 3), and also between all other vitamin D

parameters (data not shown). Serum DBP correlated with

total 25(OH)D, but not the directly measured free

25(OH)D (Table 3).
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Figure 1

Correlation between delta (12 month values minus baseline value)

serum total 25(OH)D and delta directly measured free 25(OH)D.
Effect of vitamin D supplementation on serum DBP,

total 25(OH)D, calculated free 25(OH)D and directly

measured free 25(OH)D

In both the vitamin D and the placebo group there was a

slight and similar non-significant decrease in serum DBP

after 1 year (K0.2G0.5 and K0.2G0.6 mmol/l respectively).

Similarly, there were no statistically significant differences

between the six DBP phenotypes, sexes, BMI groups or age

groups regarding change in serum DBP (Supplementary

Tables 4 and 5, see section on supplementary data given at

the end of this article). Further, there were no significant

differences between DBP phenotypes, sexes or age groups in

changes in serum total 25(OH)D, calculated free 25(OH)D or

directly measured free 25(OH)D (Supplementary Tables 4

and 5). Even so, there appeared to be non-significant

differences in the increase in serum total 25(OH)D between

DBP groups phenotype (Supplementary Table 4). For all

25(OH)D measures the highest increases were seen for

subjects in the lowest BMI groups (Supplementary Table 5).

There was a strong correlation between increase in all

measures of serum 25(OH)D as exemplified between delta

serum total 25(OH)D and delta serum directly measured

free 25(OH)D in Fig. 1. The correlation was similar for all

six DBP phenotypes (data not shown).
Discussion

In the present study we have found that serum total

25(OH)D concentrations are dependent on DBP pheno-

type, that differences between DBP phenotypes diminish

when calculating or measuring serum free 25(OH)D, and

that serum DBP concentrations are unaffected by vitamin

D supplementation. Further, calculations appear to over-

estimate the free 25(OH)D concentrations compared to

the direct measurements.

Serum total 25(OH)D concentrations were signi-

ficantly lower for the DBP phenotype Gc2/Gc2 compared

to phenotypes with the Gc1S allele as previously reported

(20). Although the serum calculated free 25(OH)D,
www.eje-online.orgwww.eje-online.org
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calculated bio-available 25(OH)D and directly measured

free 25(OH)D also were lowest in this phenotype, the

differences were greatly diminished and no longer

significant. Thus, the difference between the DBP pheno-

types Gc2/Gc2 and Gc1S/Gc1S decreased from 30.2% for

total 25(OH)D to 9.0% for directly measured free

25(OH)D. This is in line with the almost identical free

25(OH)D concentrations in black and white Americans

(9, 11), despite great differences in total 25(OH)D, due to

different distribution of DBP phenotypes (4). This could

also partly explain why African Americans have better

bone health than European Americans despite lower total

25(OH)D concentrations.

It is well known that serum DBP concentrations

are affected by phenotype (21), and in our study serum

DBP concentrations for the phenotype Gc2/Gc2 were

significantly lower compared to all other phenotypes.

This has also been found in most (20, 22, 23), but not

all previous studies (9). Thus, Powe et al. (9) found that

the DBP phenotype Gc1F/Gc1F, predominantly found

in black Americans, had by far the lowest serum DBP

concentration. This is contrary to our study, and

other studies from Scandinavia (21, 22), where this

phenotype had the highest serum DBP concentration. As

reported by Bouillon et al. the discrepancy may be due to

differences in antibodies used in the DBP assays (24), or

perhaps it reflects that there are other race-related factors

than DBP phenotype that affect the serum DBP

concentration.

Males had significantly lower serum total 25(OH)D

concentrations and also serum DBP concentrations than

females. For calculated free 25(OH)D and calculated bio-

available 25(OH)D these differences between the sexes

diminished, and for the directly measured free 25(OH)D

the concentrations were equal. The difference in serum

DBP between sexes has previously been reported (25) and

is most likely caused by the estrogen susceptible DBP

synthesis (4). Similar, although non-significant, the

difference between the lowest and highest BMI group for

serum total 25(OH)D concentrations were reduced for the

directly measured free 25(OH)D, probably because of the

significant linear trend with lower serum DBP concen-

tration with higher BMI. For BMI earlier reports are

conflicting with some reporting differences in serum DBP

(26), while others report no differences (25, 27). This

question is therefore not settled.

As in previous reports from our region (28, 29),

there was for age groups a significant linear trend with

the highest serum total 25(OH)D concentrations in the

oldest subjects. This is most likely due to a diet richer
www.eje-online.orgwww.eje-online.org
in fatty fish and a higher use of vitamin D supplements

in the oldest age groups (28). However, serum DBP did

not differ between age groups, and a significant positive

linear trend was also seen for all the other 25(OH)D

measures.

Similar to that seen for age group, there were no

differences in serum DBP between the months with the

highest and lowest serum total 25(OH)D concentrations,

and accordingly, the differences between these months

remained for serum calculated free 25(OH)D, calculated bio-

available 25(OH)D and directly measured free 25(OH)D.

We found that the calculated serum free 25(OH)D

concentrations are overestimated compared to the directly

measured free 25(OH)D. For calculations of serum free

25(OH)D concentration DBP concentrations are needed.

Since different DBP assays recognize the DBP phenotypes

differently (11, 24), this will affect the calculated free

25(OH)D concentrations. Furthermore, the validity of the

equation for calculating free 25(OH)D concentration

which is derived from an equation for free testosterone

(2), has been questioned (24). Therefore, it may be wise

not to use the calculated concentrations before these

issues have been settled.

We also performed analyses with the DBP phenotype

specific binding coefficients. However, and contrary to

what we expected, this did not improve the results. The

binding coefficients for Gc1S, Gc1F and GC2 are the

binding coefficients for the homozygote DBP phenotypes;

however, the binding coefficients used for the hetero-

zygote DBP phenotypes were the mean of the two

combined haplotypes binding coefficient (30). These

binding coefficients may not be correct, which may at

least partly explain our unexpected findings.

Since vitamin D both indirectly, through increased

calcium absorption from the intestines, and directly,

through inhibition of PTH synthesis, decreases the PTH

secretion, the serum PTH concentrations has been

suggested as a vitamin D biomarker (31). One could

therefore hypothesize that the 25(OH)D measure that best

correlate with the serum PTH concentrations would be the

best indicator of the vitamin D status. Unfortunately,

previous studies are conflicting; Schwartz et al. (32)

reported a significant inverse correlation with PTH for

directly measured free 25(OH)D, but not for calculated free

25(OH)D, whereas Aloia et al. (11) in one study reported a

significant negative correlation with PTH for total

25(OH)D, but not for directly measured free 25(OH)D.

However, in another study by Aloia et al. (33) a

significantly negative correlation for both total 25(OH)D

and directly measured free 25(OH)D was found, and in our

www.eje-online.org
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study, all measures of 25(OH)D had a similar and negative

correlation with PTH. Although the free hormone

hypothesis is appealing, it should be recalled that there

is a receptor-mediated endocytosis of the DBP/total

25(OH)D complex in the proximal renal cells (34), and

probably also in other cells (1), which could favor serum

total 25(OH)D as an indicator of vitamin D status.

As compared to placebo, there was no effect on the

serum DBP concentrations by vitamin D supplementation

for 1 year regardless of DBP phenotype, sex, BMI or age

group which is similar to that reported by Ponda et al. (13)

and Sonderman et al. (35). Similarly, in the vitamin D group

there were no significant differences in increase for any of

the vitamin D parameters between the DBP phenotypes,

sexes or age groups. On the other hand, there appear to be

non-significant differences between the DBP phenotype

groups regarding the increase in serum total 25(OH)D;

however, the DBP phenotype groups are small and thereby

limits the power to detect any real differences. It therefore

appears unlikely that the DBP concentration is regulated in

order to keep the free fraction of serum 25(OH)D stable as

seen in other endocrine systems (36).

There are some limitations to our study; we included

subjects with prediabetes which limits the generalizability

of the results, the study population consists almost

exclusively of Caucasians leaving us with a skewed

distribution of DBP phenotypes, and we did not have

bone density measurements that could have given

additional information regarding which 25(OH)D par-

ameter is the best biomarker of vitamin D status. On the

other hand, we included a large number of subjects, had

direct measurements of serum free 25(OH)D, and could

also examine the effects of vitamin D supplementation on

different vitamin D parameters and serum DBP, which

so far have not been thoroughly studied.

In conclusion, we have found that the direct

measurement of free 25(OH)D diminishes differences

between DBP phenotypes and sexes as compared to

serum total 25(OH)D. In situations where DBP phenotypes

differ between groups, as seen between white and black

Americans, and in conditions associated with low DBP

concentrations like liver cirrhosis or nephritic syndrome,

or high DBP concentrations like pregnancy and estrogen

therapy, direct measurement of serum free 25(OH)D

should be considered.
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