
Gene Therapy Restores Auditory and Vestibular Function in a 
Mouse Model of Usher Syndrome Type 1c

Bifeng Pan1,*, Charles Askew1,*, Alice Galvin1,*, Selena Heman-Ackah1, Yukako Asai1, Artur 
A. Indzhykulian2, Francine M. Jodelka3, Michelle L. Hastings3, Jennifer J. Lentz4, Luk H. 
Vandenberghe5, Jeffrey R. Holt1,6, and Gwenaëlle G.S. Géléoc1

1Dpt of Otolaryngology, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard 
Medical School, Boston, MA

2Dpt of Neurobiology, Harvard Medical School, Boston, MA

3Dpt of Cell Biology & Anatomy, Chicago Medical School, Rosalind Franklin University of 
Medicine and Science, Chicago, IL

4Dpt of Otorhinolaryngology & Bio-communications and Neuroscience Center, LSU Health 
Sciences Center, New Orleans, LA

5Schepens Eye Research Institute, Boston, MA

6Dpt of Neurology, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard 
Medical School, Boston, MA

Abstract

Because there are currently no biological treatments for deafness, we sought to advance gene 

therapy approaches to treat genetic deafness. We reasoned that gene delivery systems that target 

auditory and vestibular sensory cells with high efficiency would be required to restore complex 

auditory and balance function. We focused on Usher Syndrome, a devastating genetic disorder that 
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causes blindness, balance disorders and profound deafness, and used a knock-in mouse model, 

Ush1c c.216G>A, which carries a cryptic splice site mutation found in French-Acadian patients 

with Usher Syndrome type IC (USH1C). Following delivery of wild-type Ush1c into the inner ears 

of neonatal Ush1c c.216G>A mice, we find recovery of gene and protein expression, restoration of 

sensory cell function, rescue of complex auditory function and recovery of hearing and balance 

behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function 

and suggest that biological therapies to treat deafness may be suitable for translation to humans 

with genetic inner ear disorders.

Introduction

Hearing loss affects ~250 million people worldwide, with an estimated half of those cases 

being due to inherited genetic mutations. Recent success using gene therapy in the inner ears 

of animal models provides proof-of-principal that the approach may be used to restore 

function for genetic deafness in humans. However, progress thus far has been limited and 

has failed to restore the exquisite sensitivity of the healthy mammalian inner ear. A 

significant short coming has been the lack of efficient vectors that target large numbers of 

sensory hair cells in the inner ear. For example, AAV2/8 vectors that encoded wild-type 

whirlin lead to rescue of inner hair cell (IHC) morphology but not outer hair cells (OHCs) or 

hearing function1. IHCs comprise about 25% of total auditory hair cells. The other 75% are 

OHCs, which are required to enhance the sensitivity and frequency selectivity of the inner 

ear. In another study, AAV2/1 vectors injected in Tmc1 mutant mice, targeted 80–90% of 

IHCs and revealed moderate auditory rescue with minimal ABR thresholds of ~80 dB (8 

kHz)2. Using a similar viral capsid and promoter that drove expression in just IHCs, yielded 

partial recovery of auditory function (thresholds ~60 dB at 8 kHz) in mice that lacked the 

IHC gene Vglut33. While these studies have demonstrated exogenous gene delivery into 

auditory IHCs, gene delivery to OHCs has remained a challenge. Because many genes that 

cause deafness are expressed in both IHCs and OHCs, gene delivery methods that target 

both cell types are needed to restore complex auditory function. Among the genes expressed 

in both cell types are those that encode Usher Syndrome proteins.

Usher syndrome (USH) is a rare genetic condition that affects 16,000 to 20,000 people in the 

United States and is responsible for 3 to 6% of early childhood deafness4,5,6. Of three 

subtypes, Usher type I (USH1) is the most severe form. USH1 patients suffer profound 

sensorineural hearing loss, vestibular areflexia and progressive blindness. Unless fitted with 

a cochlear implant, USH1 patients do not recover auditory function or develop the ability to 

generate speech. Six genes are associated with USH1: MYO7A (myosin 7a)7,8,9,10, USH1C 
(harmonin)11,12, CDH23 (cadherin 23)13,14, PCDH15 (protocadherin 15)15,16,17, SANS 
(sans)18 and CIB2 (calcium and integrin binding protein 2)19. USH1 proteins are involved in 

morphogenesis of sensory hair bundles and are localized to the apex of hair cells in 

mechanosenosory hair bundles. Harmonin resides at the core of an USH1 interactome where 

it binds to other USH1 proteins. The USH1C gene includes 28 exons, which code for 10 

alternative splice forms11,12, grouped in three different subclasses (a, b and c) depending on 

the domain composition of the protein. In hair cells, harmonin is expressed during early 

postnatal stages but expression declines around postnatal day 30 (P30). The harmonin-b 
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splice form is found at the tips of stereocilia near the tip-link insertion point in mouse hair 

cells20,21,22 where it plays a structural role and is likely required for sensory transduction in 

both auditory and vestibular hair cells 20,23. Harmonin-a is localized at the synapse where it 

associates with Cav1.3 Ca2+ channels and limits channel availability through an ubiquitin-

dependent pathway24,25.

Of several mouse models for Usher syndrome characterized over the past decade, only one, 

Ush1c c.216G>A, reproduces both auditory and retinal deficits that typify human Usher I 

Syndrome. The Ush1c c.216G>A mutation affects expression of all conventional harmonin 

isoforms due to a point mutation similar to one found in a cohort of French-Acadian USH1C 

patients26. The mutation introduces a cryptic splice site at the end of exon three in the Ush1c 
gene and results in translation of a severely truncated protein27. Homozygous Ush1c c.
216G>A mice (c.216AA) suffer from severe hearing loss at one month of age 28, while 

heterozygous c.216GA mice do not present any abnormal phenotype. Cochlear histology in 

c.216AA mice reveals disorganized hair bundles and loss of both inner and outer hair cells in 

middle and basal turns at P3028.

To identify a therapeutic window for treatment, we studied the function and maintenance of 

hair cells in newborn c.216AA mice. Our data show that a large majority of c.216AA hair 

cells survive and remain mechanosensitive during the first postnatal week. Since reduced 

expression of full-length harmonin is the most likely cause of deafness in USH1C c.216G>A 
patients27, we investigated whether early re-introduction of full-length harmonin in c.216AA 

hair cells would preserve hair cell and auditory function in homozygous c.216AA mice. We 

found that a synthetic adeno associated viral vectors (Anc80L65)29 encoding harmonin-a or 

-b successfully transduced larger numbers IHCs and OHCs and drove harmonin expression 

and correct protein localization. Early postnatal round window membrane injection of 

harmonin vectors successfully restored auditory and vestibular function to near wild-type 

levels in otherwise deaf and dizzy c.216AA mice. Our results demonstrate that early re-

introduction of wild-type harmonin with vectors that efficiently target inner and outer hair 

cells can improve auditory sensitivity by over a thousand-fold, relative to first generation 

inner ear gene therapy approaches.

Results

Hair cell survival in Ush1c mice

Homozygous c.216AA mice are deaf and show circling and head tossing behaviors 

characteristic of vestibular dysfunction28. At 1 month of age, there is pronounced inner and 

outer hair cell degeneration at the base of the cochlea and degeneration and hair cell death in 

the middle turn, while the apical portion of the organ is better preserved28. To assess hair 

cell survival at earlier stages, we performed scanning electron microscopy (SEM) analysis 

along the organ of Corti at P8 and P18. Outer hair cells (OHCs) and inner hair cells (IHCs) 

of heterozygous c.216GA mice were preserved and their bundles were properly oriented 

(Fig. 1a–c, g, i and Supplementary Fig. 1a–c, k). However, disorganized hair bundles were 

evident along the entire length of the organ of Corti in homozygous c.216AA mice at both 

ages analyzed (Fig. 1d–f, h, j–l and Supplementary Fig. 1d–j, l). At P8, IHC bundles were 

mildly disorganized at the base, mid and apical regions (Fig. 1d–f, j). While many OHCs of 
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c.216AA mice possessed well-preserved hair bundles (Fig. 1h, k), fragmented and 

disorganized hair bundles were evident sporadically along the organ (Fig. 1d–f, l). 

Disruption was more pronounced at P18, although the majority of hair cells were still 

present as previously reported30 (Supplementary Fig. 1d–f).

To assess hair cell function at early stages, we analyzed uptake of FM1-43, a compound that 

permeates functional mechanosensitive channels31,32,33, in inner ear organs at P4. Uniform 

FM1-43 uptake was observed in hair cells of c.216GA mice (Fig. 2a), but uptake varied 

among OHCs of c.216AA mice, suggesting that some, but not all, cells retained functional 

channels (Fig. 2b). FM1-43 uptake decreased in IHCs of c.216AA mice during the first 

postnatal week (not shown). In utricle hair cells of c.216AA mice, uptake was restricted to 

the extra-striola region at P6, suggesting that hair cells of the striola region lacked 

mechanosensitive channels open at rest (Fig. 2c, d).

Sensory transduction in Ush1c hair cells

Next, we assessed mechanotransduction currents in IHCs, OHCs and vestibular hair cells 

(VHCs) of c.216GA and c.216AA mice during the first postnatal week. 

Mechanotransduction currents were recorded in whole-cell voltage-clamp configuration in 

response to mechanical displacements of hair bundles by a stiff glass probes. In c.216AA 

mice, recordings were obtained from the middle and apical turns of the cochlea from P3 to 

P6. OHCs retained mechanosensitivity, although the amplitudes of the responses were 

reduced by ~63% to 170 ± 80 pA (n=24; p<0.001, Fig. 2e–g). Severely disorganized bundles 

had smaller currents than better preserved hair bundles (120 ± 65 pA, n=9 and 201 ± 74 pA, 

n=15, respectively). Despite the reduction in current amplitude, c.216AA OHC sensitivity to 

mechanical displacements was similar to that of heterozygous c.216GA hair cells (Fig. 2f, 

Supplementary Fig. 2b).

Similarly, while hair bundles from IHCs of c.216AA mice appeared only mildly disrupted 

under the DIC microscope, transduction currents were significantly reduced at P6 (Fig. 2e–

g). Maximum transduction currents in heterozygous c.216GA IHCs (P6-P7) averaged 587 

± 96 pA (n=21) but were reduced by 46% to 316 ± 127 pA (n=19; p<0.001) in c.216AA 

IHCs. c.216AA IHCs showed a significant (p<0.01) reduction in sensitivity (Supplementary 

Fig. 2g). Adaptation, or the decline in transduction current in the presence of constant 

bundle deflection, was also present, but the rate and extent of adaptation was reduced in c.

216AA hair cells relatively c.216GA cells (Supplementary Fig. 2c–e, h–j). These results 

demonstrate that mechanosensitivity is mildly compromised in inner and outer hair cells of 

c.216AA mice and, importantly, that both cell types survive throughout the first postnatal 

week, a prerequisite for gene therapy and restoration of cellular function.

Vestibular hair cells of c.216AA mice also showed a reduction in mechanotransduction 

currents. In the extra-striola region, currents were significantly (p<0.001) reduced to 109 

± 30 pA (n=9, P5-P7) versus 231 ± 53 pA (n=8, P6-P7) for c.216GA currents (Fig. 2e, f, h). 

Very small or no currents were evoked from hair cells of the striola region (6 ± 13 pA, n=6, 

P5-P7), in agreement with the absence of FM1-43 uptake in that region (Fig. 2c,d). In 

conclusion, while utricle hair bundles appeared grossly well-preserved, transduction currents 

were significantly reduced in the extra-striola and absent in the striola.
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Exogenous harmonin rescues sensory transduction in Ush1c hair cells

To assess whether AAV vectors can drive expression of exogenous harmonin splice forms, 

we exposed P1 utricles and organs of Corti from neonatal c.216AA, c.216GA and wild-type 

(C57BL/6J) mice to AAV2/1 vectors encoding EGFP fused to the N-terminus of harmonin-

b1 (EGFP::harmonin-b1) or tdTomato fused to the N-terminus of harmonin-a1 

(tdTomato::harmonin-a1). Hair cells of wild-type, c.216GA and c.216AA mice were 

successfully transduced in vitro (Fig. 3a–c, e). EGFP::harmonin-b1 signal was evident at the 

tips of the stereocilia in VHCs (Fig. 3a), IHCs and OHCs (Fig. 3b, c). EGFP signal was also 

detected at P60 in OHCs and IHCs in the basal portion of the cochlea of mice injected at P1 

(Fig. 3d). TdTomato::harmonin-a1 was detected at the base of auditory hair cells (Fig. 3e). 

Co-staining with a ribbon synapse marker CTBP2 frequently revealed colocalization in P7 

IHCs (Fig. 3e) but not in P7 utricles (data not shown). Localization of our exogenous fusion 

constructs was consistent with previous work that localized harmonin-b to the distal end of 

stereocilia, near the tip-link insertions20,21,22, and harmonin-a to the synapse24,25.

Next, we assessed function in c.216AA hair cells exposed to AAV vectors driving harmonin 

expression.

To enhance the likelihood of functional rescue, we packaged untagged harmonin-a1 or 

harmonin-b1 coding sequences driven by a CMV promoter into AAV2/Anc80L6534. We 

performed RWM injections at P1 of AAV2/Anc80L65.CMV.harmonin-b1 and separately a 

mixture of AAV2/Anc80L65.CMV.harmonin-a1 + AAV2/Anc80L65.CMV.harmonin-b1 and 

assessed mechanotransduction responses 2 weeks after treatment. Although mature OHCs 

(>P10) do not survive ex-vivo recording experiments, robust electrophysiological recordings 

were obtained from IHCs at the equivalent of P14-P16 (Fig. 4). While IHCs from uninjected 

mice displayed severely reduced transduction currents at P16 (79 ± 43 pA, n=8), significant 

recovery (***P<0.001) was observed in mice injected at P1 with harmonin-b1 or a 

combination of harmonin b1 and a1, with respective average maximal transduction currents 

of 388 ± 66 pA (n=15) and 352 ± 28 pA (n=7; Fig. 4c). Transduction current amplitudes in 

IHCs after treatment with harmonin-b1 or the combination of harmonin b1 and a1 were not 

significantly different from those of control c.216GA mice. These results suggest that 

delivery of exogenous harmonin-b1 via RWM injection at early stages can restore 

mechanotransduction in IHCs.

Rescue of auditory brainstem responses in Ush1c mice

To investigate rescue of auditory and balance function in Ush1c mice, we performed P0-P1 

RWM injections of AAV2/Anc80L65.CMV.harmonin-a1 and/or AAV2/

Anc80L65.CMV.harmonin-b1 and later assessed auditory brainstem responses (ABRs), 

distortion product otoacoustic emissions (DPOAEs), acoustic startle reflexes, open field and 

rotarod behavior. Mice were assessed at six weeks, a stage at which c.216AA mice show 

profound hearing loss and vestibular dysfunction. Some of the mice were further tested at 3 

and 6 months. None of the 12 mice injected with AAV2/Anc80L65.CMV.harmonin-a1 

recovered auditory function at 6 weeks (Fig. 5a–c), suggesting exogenous expression of 

harmonin-a1 was insufficient for auditory rescue. However, 19 of 25 mice injected with 

AAV2/Anc80L65.CMV.harmonin-b1 recovered significant auditory function (ABR 
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thresholds < 80 dB) at 6 weeks. The reason for lack of rescue in six of 25 mice was not 

clear, but may have been due to failed injections, clogged injection pipettes or injections that 

missed the targeted perilymphatic space. At low frequencies (5.6 to 16 kHz), the lowest 

ABR thresholds in AAV2/Anc80L65.CMV.harmonin-b1 injected ears were 25–30 dB, 

remarkably similar to thresholds of wild-type mice (Fig. 5a–b). Partial rescue was observed 

at 22.6 kHz and little to none at 32 kHz. Rescue of DPOAE thresholds was also evident (Fig. 

5c) at low frequencies, consistent with rescue of OHC function. Eight of the mice that 

possessed auditory thresholds <45 dB for stimuli 8–11.3 kHz were tested at later stages to 

assess the longevity of the rescue. From 6 weeks to 3 months, ~10 dB ABR threshold shifts 

were observed in the low frequency range and ~30 dB in the high frequency range (Fig. 5d). 

A similar shift was also observed in the DPOAEs thresholds (Fig. 5e). After this time point, 

ABR and DPOAE thresholds remained stable up to 6 months (Fig. 5d–e), the latest time 

point tested.

To assess whether both harmonin-a1 and harmonin-b1 are required for more complete 

auditory rescue, particularly at the high frequency end, we co-injected two vectors, each 

driving expression of one splice form of harmonin. To confirm that both were targeted to the 

hair cells, AAV2/Anc80L65.CMV.tdTomato::harmonin-a1 and AAV2/

Anc80L65.CMV.EGFP::harmonin-b1 were co-injected at P0-P1 (0.5μl + 0.5 μl). 65% of the 

hair cells expressed both harmonin-a1 and harmonin-b1, as evident from cells positive for 

both fluorescent tags (Supplementary Fig. 3). Fluorescently labeled harmonin-a1 was 

occasionally observed in the stereocilia of mice exposed to AAV2/

Anc80L65.CMV.tdTomato::harmonin-a1, perhaps due to over expression. ABR and DPOAE 

thresholds in mice co-injected with unlabeled harmonin-a1 and harmonin-b1 vectors (Fig. 5) 

were similar to those of mice injected with harmonin-b1 alone, suggesting that harmonin-a1 

may be dispensable for auditory function. Notably, harmonin-b1 alone was sufficient for 

significant restoration of auditory thresholds at low frequencies (Fig. 5).

To further characterize the rescue, ABR waveforms from mice with thresholds ≤45 dB were 

analyzed and compared between eight control c.216GA mice and five c.216AA mice 

injected with AAV2/Anc80L65.CMV.harmonin-b1. The analysis of waveform at 8, 11.3 and 

16 kHz revealed normal wave 1 amplitudes, relative (non-significant differences, P>0.2, 

Student t-test) and longer peak 1 latencies (P>0.001) (Supplementary Fig. 4), suggesting a 

possible lag in neurotransmission at the synapse.

In many animals, auditory rescue was also observed in the contralateral ear, with ABR 

thresholds as low as 20 dB at 11.3 kHz (harmonin-b1: average 59.7 ± 5.3 dB, n=15/25; 

harmonin-a1+-b1: average 76.2 ± 10.3 dB, n=4/6). Diffusion of AAV vectors to the 

contralateral ear has been previously observed35 and likely occurs via the cochlear aqueduct.

To determine whether injections at a later developmental stage might lead to partial auditory 

rescue, we performed RWM injections of AAV2/Anc80L65.CMV.harmonin-b1 (0.8 μl) at 

P10-P12 and assessed auditory thresholds at 6 weeks. None of these mice had detectable 

DPOAEs, and their ABR thresholds did not differ from the uninjected c.216AA control mice 

(n=10; data not shown).
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To address the concern that truncated harmonin, a consequence of the c.216G>A mutation, 

may disrupt function by competing with full-length harmonin for endogenous binding 

partners28,30, we generated Anc80L65.CMV.trunc-harm vectors that over-expressed the 

truncated protein and injected them via RWM into the inner ears of c.216GA mice. ABR and 

DPOAES measurements at 4, 6 and 12 weeks revealed no difference in thresholds between 

injected and uninjected c.216GA mice over the entire frequency range (Fig. 5b–c). These 

data, which also serve as a control for the injection technique and the vector, suggest that 

exogenous truncated harmonin does not compete with endogenous full-length harmonin.

Rescue of auditory and vestibular behavior in Ush1c mice

To assess whether the ABR/DPOAE recovery yielded behaviorally relevant recovery of 

auditory function, we measured acoustic startle responses in subsets of mice injected with 

AAV2/Anc80L65.CMV.harmonin-a1, AAV2/Anc80L65.CMV.harmonin-b1, or both vectors. 

Startle response to white noise showed partial rescue in 6 week old mice injected with 

AAV2/Anc80L65.CMV.harmonin-b1 and in mice co-injected with both vectors (Fig. 6a). 

Mice that received harmonin-a1 alone were similar to uninjected c.216AA mice and did not 

recover startle responses.

Since the perilymphatic space is continuous between the cochlea and vestibular labyrinth, 

AAV vectors injected via RWM may transduce vestibular sensory organs. To assess 

vestibular behavior, we tested performance of subsets of mice on a rotarod over five trials. 

While poor rotarod performance was observed in c.216AA and c.216AA mice injected with 

AAV2/Anc80L65.CMV.harmonin-a1 (latency to fall <22 sec on average), c.216AA mice 

injected with AAV2/Anc80L65.CMV.harmonin-b1 and those co-injected with harmonin-a1 

and -b1 vectors maintained balance function on the rotarod for 60–120 seconds, consistent 

with control c.216GA mice (Fig. 6b). We also observed mice in a 42 cm wide open-field 

chamber for 5 min. Recovery in open-field behavior was evident in harmonin-b1 and dual 

harmonin-a1 and b1 injected c.216AA mice. Representative open-field exploration traces are 

plotted in Fig. 6c. c.216GA mice explored the border of the field and displayed minimal full-

body rotations, whereas c.216AA mice displayed more activity throughout the entire 

chamber with increased full-body rotations quantified as rotations/min (Fig. 6d–e). 

Surprisingly, while no ABR rescue was observed in mice injected with AAV2/

Anc80L65.CMV.harmonin-a1, open field data demonstrated recovery of normal behavior to 

the level of the control mice.

Hair bundle morphology in rescued Ush1c mice

We assessed hair bundle morphology with SEM in 6-week old mice that displayed rescue of 

auditory function. c.216AA mice displayed severe hair cells loss at the basal and middle 

regions of the organ (Fig. 7e–f). In the basal region, OHCs were mostly absent in the first 

row and present sporadically in the second and third rows. In the middle region of the organ, 

the first row of OHCs was also largely absent. Milder phenotypes were observed in the 

apical end. High magnification SEM also revealed severely disorganized hair bundles along 

the entire length of the organ of c.216AA mice. Notably, in 6-week old c.216AA mice, no 

hair bundles were observed that retained the typical staircase structure with all three rows of 

stereocilia (Fig. 7h). Instead hair bundles were disorganized, with retracted stereocilia along 
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the first row, abnormal second row and fairly preserved tallest row. In contrast, reduced hair 

cell loss and normal hair bundle morphologies were observed in c.216AA mice that showed 

recovery of function after treatment with harmonin-b1 (Fig. 7i–l, n–p). Hair cells counts 

were estimated from the presence or absence of hair bundles in representative fields of view. 

The data revealed pronounced preservation of hair cell numbers in injected mice from the 

base to the apex of the organ, from 40 to 79% in the base, 68 to 95% in the middle and 93 to 

99% in the apex (n=1824 cells from n=4 c.216AA mice and n=792 from n=2 rescued c.

216AA ears) (Fig. 7m). Although abnormal hair bundles were still evident in harmonin-b1 

injected mice, most hair bundles possessed three rows of stereocilia and had morphology 

almost indistinguishable from that of their heterozygous controls (Fig. 7i, n, p).

Harmonin expression correlates with hair cell survival and ABR thresholds

To confirm expression of AAV2/Anc80L65.CMV.harmonin-b1 and explore the relationship 

between viral expression level and ABR thresholds, we quantified DNA and RNA isolated 

from individual injected and contralateral cochleas. Expression was assessed in six-week old 

c.216GA and AAV2/Anc80L65.CMV.harmonin-b1 injected and non-injected c.216AA mice. 

Mouse Ush1c RNA expressed from the AAV1/Anc80L65.CMV.harmonin-b1 vector 

(Supplementary Fig. 5a) and AAV2/Anc80L65.CMV.harmonin-b1 DNA (Supplementary 

Fig. 5b) were detected in all of the injected cochleas and, to a lesser extent, in the 

contralateral cochleas of injected animals. There was variability between animals in ABR 

thresholds and amount of DNA and RNA expressed (Supplementary Fig. 5c). However, we 

found a strong correlation between AAV2/Anc80L65.CMV.harmonin-b1 DNA levels, the 

amount of mRNA encoding the correctly spliced form of harmonin and ABR threshold 

levels, which suggests that the variability in ABR data may be a direct result of AAV 

expression. Absent or poor AAV expression levels likely resulted from failed RWM 

injections. To confirm that harmonin was expressed in rescued ears, we performed harmonin 

immunostaining in rescued cochleas as well as cochleas harvested from wild type, c.216AA 

and c.216AA mice with failed rescued. Specific harmonin labeling was observed at 

stereocilia tips in wild type and rescued ears but was absent in uninjected c.216AA ears and 

injected but not rescued c.216AA ears (Supplementary Fig. 5d).

To assess long-term hair cell survival in mice that had successful recovery of ABR 

thresholds, we prepared tissue and counted the number of IHCs and OHCs at 6 months of 

age from 5 mice (Supplementary Fig. 6). While the number of IHCs did not vary in the two 

cohorts, 50% or more OHCs remained in the three mice that showed long term ABR rescue. 

OHC survival was observed along the entire organ with the exception of the basal turn 

(Supplementary Fig. 6).

Discussion

While previous work has shown that homozygous knock-in c.216AA mice have significant 

hair cell degeneration at P18 and P3027,28, in early postnatal c.216AA mice, we found 

altered hair bundle morphology, yet functionally viable hair cells, revealing a potential 

therapeutic window. During the first postnatal week, auditory and vestibular epithelia 

retained mechanosensitive hair cells, including some with relatively normal morphology 
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(Fig. 1). Transduction currents were diminished in amplitude but many auditory hair cells 

retained characteristics within the normal range for adaptation and sensitivity 

(Supplementary Fig. 2). In the vestibular system, c.216AA hair cells in the extra-striola 

region had reduced current amplitudes, whereas cells in the striola region did not take up 

FM1-43 and did not respond to bundle displacements (Fig. 2). Therefore, with the exception 

of the striola region, our results suggest that the transduction apparatus can be correctly 

assembled and targeted in mutant mice but that the number of functional complexes appears 

to be reduced during the neonatal period. Since a small percentage of correct splicing still 

occurs in c.216AA mice30, we hypothesize that even low expression levels of wild-type 

harmonin may be sufficient for partial development and short-term maintenance of the 

transduction apparatus in homozygous c.216AA mice during early postnatal stages, allowing 

for an expanded therapeutic window. In contrast, previous work has shown that full 

knockouts of Ush1c have transduction currents that were nearly absent by P723 which we 

predict would limit the window for intervention.

We showed that AAV2/1 vectors successfully targeted hair cells and that harmonin fusion 

constructs were correctly localized (Fig. 3). EGFP::harmonin-b1 was targeted to the tips of 

stereocilia when transfected with AAV vectors in wild-type or mutant auditory or vestibular 

tissues, consistent with prior localization studies23. The harmonin-a1 variant is localized 

near the ribbon synapse where it interacts with CaV1.3 channels to alter exocytosis24,25. 

While expression of tdTomato::harmonin-a1 packaged in AAV2/1 was observed at the base 

of the IHCs and was absent from stereocilia, higher expression levels obtained with AAV2/

Anc80L65 led to diffuse localization throughout the cell and in the stereociliary bundle. 

TdTomato::harmonin-a1 was also observed throughout the utricle, excluded from stereocilia 

and showed little colocalization with ribbon synapse markers at P7. While this may be a 

consequence of the tagged fluorescent marker, it is also possible that harmonin-a1 plays a 

different role in the utricle or that localization differs in more mature epithelia.

We studied whether expression of multiple harmonin isoforms are needed for full functional 

rescue in auditory and vestibular organs. Since harmonin-b plays an important role in the 

stereocilia and harmonin-a has been shown to alter exocytosis, we suspected that both splice 

forms would be necessary to rescue inner ear function. However, co-injection of harmonin-

b1 and harmonin-a1 did not enhance recovery. Thus, harmonin-b1 alone was sufficient to 

restore partial function. ABR responses in rescued mice showed normal wave 1 amplitudes 

and longer peak 1 latencies relative to normal hearing controls (Supplementary Fig. 4), the 

latter perhaps due to an incomplete functional recovery at the synapse.

Auditory rescue was prominent at low but not high frequencies (Fig. 5), while hair bundles 

with normal morphology were observed along the entire organ at 6 weeks of age (Fig. 7). 

The absence of rescue at high frequencies is unlikely to have been caused by damage from 

the injection as high-frequency hearing loss was not observed in any injected c.216GA mice 

(Fig. 5b–c). Poor transduction efficiency at the base26 is also an unlikely explanation given 

AAV targeting along the entire length of the cochlea29. It is possible that other harmonin 

isoforms, such as harmonin-c, may be necessary for rescue of function in the basal high 

frequency end of the cochlea. Alternatively, since cochlear development begins at the basal 
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end, by P0 these hair cells may have matured beyond the point of repair. If so, embryonic 

intervention36,37 may be more effective.

In behavioral assays, harmonin-a1 mediated partial vestibular rescue (indicated by reduced 

circling behavior), whereas harmonin-b1 enabled more complete functional recovery in both 

vestibular tests (reduced circling and enhanced rotarod performance; Fig. 6). The absence of 

transduction and FM1-43 uptake in the striola regions argues that hair cells of the striola 

region and perhaps type I cell function depend on proper harmonin expression (Fig. 2). 

Further studies are needed to clarify the role of harmonin in the vestibular system. 

Additional assays of vestibular function, such as vestibular evoked potentials, may provide a 

physiological measure of the extent of rescue.

A previous study30 restored function in early postnatal Ush1c mice using intra-peritoneal 

injection of antisense oligonucleotides targeting c.216AA. Another report corrected Ush1c 
gene expression in mice with the same antisense oligonucleotide delivered to the amniotic 

cavity38. An advantage of the antisense approach is that all splice forms may be expressed, 

however repeated injections may be needed to maintain long-term rescue. AAV vectors, on 

the other hand, can provide long-term transgene expression in post-mitotic tissue even in the 

absence of genome integration39,40. Our results obtained at 12 and 24 weeks suggest that 

this may indeed be the case in inner ear hair cells. Both strategies have now provided 

compelling evidence that gene therapy can be further developed to treat Usher Syndrome 

type 1C for patients who have the 216G>A splice site mutation and possibly other USH1C 
mutations.

In summary, our data provide further support for development of viral-mediated gene 

transfer in the inner ear to treat disorders that affect sensory hair cells. Here, using a vector 

with high transduction efficiency in both IHCs and OHCs, we show the most complete 

rescue of auditory function for any inner ear gene therapy application to date with over a 

thousand-fold improvement in sound pressure level sensitivity (thresholds ~25 dB at 8 kHz), 

relative to prior studies2,3. Furthermore, we show the most complete gene therapy recovery 

of vestibular function in a genetic model of combined auditory and vestibular dysfunction. 

Translation of these successes to the clinic will likely necessitate optimization of the 

delivery vectors, promoters and coding sequences, validation of the viral targeting and 

efficacy in larger animal models in vivo, and perhaps in human tissue in vitro, as well as a 

better understanding of the therapeutic window in humans. Lastly, while conventional AAV 

vectors have a good safety profile, next generation AAVs, such as Anc80L65, have not yet 

been evaluated in humans and thus will require careful scrutiny before wide-spread 

application.

Online Methods

Animals

Ush1c c.216G>A knock-in mice were obtained from Louisiana State University Health 

Science Center. The imported strain while on a C57BL6 background were previously bred 

out of the Cdh23 (Ahl) mutation causing age related hearing loss41,42. All procedures used 

for this work met the NIH guidelines for the care and use of laboratory animals and were 
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approved by the Institutional Animal Care and Use Committees at Boston Children’s 

Hospital (Protocols# 12-02-2146, #14-03-2659R and #15-01-2878R). Mice were genotyped 

using toe clip (before P8) or ear punch (after P8) and PCR was performed as described 

previously26. For all studies, both male and female mice were used in approximately equal 

proportions. No randomization paradigm was otherwise applied.

Tissue preparation

Utricle and organ of Corti from Ush1c c.216G>A heterozygous or homozygous mutant mice 

were harvested from postnatal day 0 to 8 (P0 to P8) for electrophysiological studies. 

Postnatal mouse pups were killed by rapid decapitation. The temporal bones were excised 

and bathed in MEM (Invitrogen, Carlsbad, CA) supplemented with 10mM HEPES (pH 7.4). 

The organ of Corti was dissected away without the use of enzyme as described previously43. 

Utricles were removed after 10 min protease treatment (Protease XXIV, Sigma) at 0.1 

mg/ml. The excised organs were mounted on round glass coverslips. A pair of thin glass 

fibers previously glued to the coverslip was placed on the edge of the tissue to stabilize it in 

a flat position. Tissues were either used acutely or kept in culture in presence of 1% Fetal 

Bovine Serum. Cultures were maintained for 7 to 10 days and the media was replaced every 

2 to 3 days for experiments that involved viral vectors infection in vitro.

Scanning electron microscopy (SEM)

SEM was performed at P7, P18 and ~P42 (6 weeks) along the organ of Corti of control and 

mutant mice. P18 SEM was performed in collaboration with Dr. Edwin Rubel at the 

University of Washington. Inner ears were fixed in 4% glutaraldehyde in 0.1M sodium 

phosphate at 4°C overnight. The next day specimens were rinsed three times in 0.1M sodium 

phosphate buffer (PB) and post-fixed in 1% osmium tetroxide in 0.1M PB for 30 min in an 

ice bath. Specimens were then rinsed in 0.1M PB and dehydrated through a graded ethanol 

series: 35%, 70%, 95%, and 100% (x2). Samples were critical point dried, mounted on SEM 

stubs, and sputter coated with Au/Pd. SEM was performed using a JEOL JSM-840A 

scanning electron microscope. A similar preparation was performed for P8 and 6 weeks 

stages by Dr. Géléoc and Dr. Indzhykulian. Organ of Corti explants were fixed in 2.5% 

glutaraldehyde in 0.1M cacodylate buffer (Electron Microscopy Sciences) supplemented 

with 2mM CaCl2 for 1h at room temperature. Specimens were dehydrated in a graded series 

of acetone, critical-point dried from liquid CO2, sputter-coated with 4–5nm of platinum 

(Q150T, Quorum Technologies, United Kingdom), and observed with a field emission 

scanning electron microscope (S-4800, Hitachi, Japan).

Electrophysiological recording

Recordings were performed in standard artificial perilymph solution containing (in mM): 

144 NaCl, 0.7 NaH2PO4, 5.8 KCl, 1.3 CaCl2, 0.9 MgCl2, 5.6 D-glucose, and 10 HEPES-

NaOH, adjusted to pH 7.4 and 320mOsmol/kg. Vitamins (1:50) and amino acids (1:100) 

were added from concentrates (Invitrogen, Carlsbad, CA). Hair cells were viewed from the 

apical surface using an upright Axioskop FS microscope (Zeiss, Oberkochen, Germany) 

equipped with a 63X water immersion objective with differential interference contrast 

optics. Recording pipettes (3–5 MΩ) were pulled from borosilicate capillary glass (Garner 

Glass, Claremont, CA) and filled with intracellular solution containing (in mM): 135 KCl, 5 
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EGTA-KOH, 10 HEPES, 2.5 K2ATP, 3.5 MgCl2, 0.1 CaCl2, pH 7.4. Currents were recorded 

under whole-cell voltage-clamp at a holding potential of −64mV at room temperature. Data 

were acquired using an Axopatch Multiclamp 700A or Axopatch 200A (Molecular devices, 

Palo Alto, CA) filtered at 10 kHz with a low pass Bessel filter, digitized at ≥20 kHz with a 

12-bit acquisition board (Digidata 1322) and pClamp 8.2 and 10.5 (Molecular Devices, Palo 

Alto, CA). Data were analyzed offline with OriginLab software and are presented as means 

± standard deviations unless otherwise noted.

Mechanical stimulation

OHCs and IHCs: Mechanical stimuli were transmitted via a stiff glass probe mounted on a 

one-dimensional PICMA chip piezo actuator (Physik Instruments, Waldbronn, Gernamy) 

driven by a 400 mA ENV400 Amplifier (Piezosystem Jena Germany)44. The tip of the probe 

was fired polished (Fire polisher, H602, World Precision Instruments Inc., Sarasota, FL) to 

fit stereociliary bundle44. Deflections were evoked by applying voltage steps filtered with an 

8-pole Bessel filter (Khron-Hite, Brockton, MA) at 50 kHz to eliminate residual pipette 

resonance. Hair bundle deflections were monitored using a C2400 CCD camera 

(Hamamatsu, Japan). Voltage steps were used to calibrate the motion of the stimulus probe 

around ± 2μm of its rest position. Video images of the probe were recorded to confirm 

absence of off-axis motion and calibrate the probe motion (spatial resolution of ~ 4 nm). The 

10–90% rise-time of the probe was ~20 μsec. VHCs: Mechanical stimuli were transmitted 

via a stiff glass probe mounted on a piezoelectric bimorph element. Coupling was performed 

by gentle suction of the kinocilium into the stimulus pipette. Deflections were evoked by 

applying voltage steps to the piezoelectrical device which consisted of two bimorphs 

mounted in series and directly coupled to the stimulus probe. Voltage steps were controlled 

by pClamp 8.0 software and filtered with a 8 pole Bessel filter at 1 kHz (Khron-Hite, 

Brockton, MA). Hair bundle deflections were monitored using a C2400 CCD camera 

(Hamamatsu, Japan). The motion of the stimulus probe was calibrated around (± 2 μm) its 

rest position prior to the experiments.

Viral vector generation

Harmonin-a1 and harmonin-b1 plasmid were prepared in our laboratory from EGFP tagged 

labeled constructs graciously provided by Lily Zheng and James Bartles45 (Department of 

Cell and Molecular Biology, Northwestern University, Feinberg School of medicine, 

Chicago, IL). Harmonin-a1 was originally obtained from mouse kidney and harmonin-b1 

from isolated mouse cochlea sensory epithelium. We further modified the harmonin-a1 

construct to replace the EGFP tag with tdTomato at its N terminal end. Fluorescently labeled 

and unlabeled constructs were packaged into AAV vectors. Viral vectors were generated by 

the viral core facility at Boston Children’s Hospital and the Gene Transfer Vector Core at the 

Massachusetts Eye and Ear Infirmary. The following vectors were generated: 

AAV2/1.CMV.tdTomato::harmonin-a1 4.3×10^13gc/ml (BCH); 

AAV2/1.CMV.EGFP::harmonin-b1 2.7×10^14 gc/ml (BCH); 

AAV2/1.CMV.EGFP::harmonin-a1: 2.8×10^12 gc/ml (MEEI); AAV2/

Anc80L65.CMV.harmonin-a1: 1.9×10^12 gc/ml (MEEI); AAV2/Anc80L65.CMV.harmonin-

b1: 1.7×10^12 gc/ml (MEEI); AAV2/Anc80L65.CMV.tdTomato::harmonin-a1: 4.1×10^12 

gc/ml (MEEI); AAV2/Anc80L65.CMV.EGFP::Harmonin-b1: 3.0×10^12 gc/ml (MEEI);
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Cloning of the truncated harmonin was performed from total RNA isolated from cochleas of 

c.216AA mice (RNAqueous micro kit, Ambion) and reverse transcribed with QuantiTect 

Reverse Transcription kit (Qiagen). The cDNA of trunc-harmonin was amplified by PCR 

with Platinum Taq DNA polymerase High Fidelity (Invitrogen) and primers:

Trunc-harmonin.F GAGGTACCATGGACCGGAAGGTGGCCCGAG

Trunc-harmomin.RV CAGGATCCGGACAATTTCATCCCCTAC

The 387 bp PCR product was cloned into a shuttle vector with AAV2 inverted terminal 

repeats (ITRs) where the transgene cassette was driven by a CMV promoter. Custom vector 

was packaged into the Anc80L65 capsid: AAV2/Anc80L65.CMV.trunc-harm.WPRE: 

9.0×10^12 gc/ml (MEEI).

FM1-43 imaging

FM1-43 (Invitrogen) was diluted in extracellular recording solution (5μM) and applied to 

tissues for 10 seconds and then washed 3 times in extracellular recording solution to remove 

excess ye and prevent uptake via endocytosis. After 5 minutes the intracellular FM1-43 was 

imaged using an epifluorescence light source, differential interference contrast optics, and an 

FM1-43 filter set (Chroma Technologies) on a Zeiss Axioscope FS plus with water 

immersion 20x, 40x, and 63x objectives. Images were captured at 16-bit with a CCD camera 

and Argus-20 image processor (Hamamatsu) using background fluorescence subtraction. 

The same gain and contrast settings were maintained for the acquisition of all images and 

analyzed offline with Adobe Photoshop or Image-J software.

Confocal imaging

To prepare the tissue for confocal imaging from postnatal mice P0-P8, fixation was 

performed for 15 min with 4% Paraformaldehyde (PFA). Permeabilization with 0.01% triton 

and counterstaining with Alexa Fluor phalloidin (Invitrogen, 1/200) was used to labeled 

actin filaments. Images were obtained on a LSM700 Zeiss confocal microscope. In older 

mice (4 to 8 weeks), temporal bones were removed after euthanasia and placed in 4% PFA 

for 1 hour, followed by decalcification for 24 to 36 hours with 120mM EDTA. The sensory 

epithelium was then dissected out and treated as above for immunostaining. Mouse anti-

CTBP2 (BD bioscience #612044, 1/200) or anti-harmonin (Novus Biologicals, LLC 

#NBP1-89189, 1/100) were applied for 48 hours and incubated with secondary antibody 

(1/200) and Alexa Fluor Phallodin to label F-actin (1/200) 3–12h at 4°C. Images were 

acquired on a Zeiss LSM 710 laser confocal microscope (IDDRC Imaging Core grant P30 

HD18655) and processed with Zeiss LSM image viewer 4.2.

RT-PCR

cDNA was prepared from 6 auditory organs of P2-P3 wild-type, heterozygous and 

homozygous Ush1c c.216G>A mice using QuantiTect Revese Transcription Kit (Qiagen). 

cDNA encoding full length (450bp) or truncated harmonin (−35bp) was amplified using the 

following primers: Forward primer mUsh1c_Ex2F: 5′ 
CTCATTGAAAATGACGCAGAGAAGG 3′, Reverse mUsh1c_Ex5R: 5′ 
TCTCACTTTGATGGACACGGTCTT 3′. These primers are specific for mouse Ush1c 
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sequences and will amplify both endogenous and AAV2-derived Ush1c as the target 

sequence is outside the region of the human knocked in portion of the Ush1c c.216A allele. 

DNA and RNA levels were also assessed from mouse tissue collected at six weeks post-

treatment. DNA and RNA were isolated from the cochlea using TRIzol reagent (Life 

Technologies, Carlsbad, CA) according to the manufacturer’s protocol. RNA was reverse 

transcribed using GoScript reverse transcription system (Promega, Madison, WI). 

Radiolabeled PCR was carried out using GoTaq Green Master Mix (Promega, Madison, 

WI). For viral DNA amplification, primers specific for mouse Ush1c: mUsh1c_Ex3F (5′-

GAACCCAACCGCCTGCCG) and mUsh1c_Ex4WTR (5′-

TGCAGACGGTCCAAGCGT-3′) were used. These primers only amplify the viral Ush1c 
DNA because the homozygous Ush1c.216AA mice have the human USH1C c.216A gene 

knocked-in at exons 3 and 4, replacing the mouse sequence (32). For cDNA amplification of 

full-length (450bp) and aberrantly spliced/truncated harmonin (415bp), the same primers as 

above were used (mUsh1c_Ex2F and mUsh1c_Ex5R). Gapdh primers were: mGapdh_Ex3F 

(5′-GTGAGGCCGGTGCTGAGTATG-3′) and mGapdh_Ex4R (5′-

GCCAAAGTTGTCATGGATGAC-3′). Products were separated on a 6% nondenaturing 

polyacrylamide gel and quantified using a Typhoon 9400 phosphorimager (GE Healthcare).

Round window membrane (RWM) injection

RWM injections were performed as approved by the Institutional Animal Care and Use 

Committees at Boston Children’s Hospital animal protocol #15-01-2878R. 0.8 μl-1ul of 

AAV vectors were injected in neonatal mice P0-P1 and P10-P12. P0-P1 mice were first 

anesthetized using hypothermia exposure while P10-P12 mice were anesthetized with 

isoflurane. Upon anesthesia, post-auricular incision was made to expose the otic bulla and 

visualize the cochlea. Injections were done through the RWM with a glass micropipette 

controlled by a micromanipulator6. The volume of the injected materials was controlled at 

an approximately 0.02 μl/min for 10 min. Standard post-operative care was applied. Sample 

size for in vivo studies were determined on a continuing basis to optimize the sample size 

and decrease the variance.

Auditory brainstem responses (ABRs) and distortion products (DPOAEs)

ABRs and DPOAEs were recorded from mice anesthetized with xylazine (5–10mg/kg i.p.) 

and ketamine (60 – 100mg/kg i.p.). Subcutaneous needle electrodes were inserted into the 

skin a) dorsally between the two ears (reference electrode); b) behind the left pinna 

(recording electrode); and c) dorsally at the rump of the animal (ground electrode). The 

meatus at the base of the pinna was trimmed away to expose the ear canal. For ABR 

recordings the ear canal and hearing apparatus (EPL Acoustic system, MEEI, Boston) were 

presented with 5-millisec tone pips. The responses were amplified (10,000 times), filtered 

(0.1–3 kHz), and averaged with an analog-to-digital board in a PC based data-acquisition 

system (EPL, Cochlear function test suite, MEEI, Boston). Sound level was raised in 5 to 10 

dB steps from 0 to 110 dB sound pressure level (decibels SPL). At each level, 512 to 1024 

responses were averaged (with stimulus polarity alternated) after “artifact rejection”. 

Threshold was determined by visual inspection. Data were analyzed and plotted using 

Origin-2015 (OriginLab Corporation, MA). Thresholds averages ± standard deviations are 

presented unless otherwise stated. For DPOAEs, f1 and f2 primary tones (f2/f1 = 1.2) were 
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presented with f2 varied between 5.6 and 45.2 kHz in half-octave steps and L1–L2 = 10 dB 

SPL. At each f2, L2 was varied between 10 and 80 dB in 10dB increments. DPOAE 

threshold was defined from the average spectra as the L2-level eliciting a DPOAE of 

magnitude 5 dB above the noise floor. The mean noise floor level was under 0 dB across all 

frequencies. Stimuli were generated with 24-bit digital I–O cards (National Instruments 

PXI-4461) in a PXI-1042Q chassis, amplified by an SA-1 speaker driver (Tucker–Davis 

Technologies, Inc.), and delivered from two electrostatic drivers (CUI CDMG15008-03A) in 

our custom acoustic system. An electret microphone (Knowles FG-23329-P07) at the end of 

a small probe tube was used to monitor ear-canal sound pressure. The majority of these 

experiments were not performed under blind conditions.

Acoustic startle responses

The acoustic startle responses (ASR) were measured using the Startle Monitor (Kinder 

Scientific). Mice were placed in a small-sized, nonrestrictive, cubical Plexiglas recording 

chamber (27 cm × 10 cm × 12.5 cm) fixed on a piezo/plexiglass sensing assembly and 

allowed to acclimate for 5 min with a 60 dB background white noise. Each session consisted 

of 35 trials, during which a single noise pulse ranging in 10 dB intensities from 60–120 dB 

was delivered with an inter-trial interval averaging 30s (25–35 s range). Pulses were 

arranged in a pseudorandom order, on a constant 60 dB back ground noise to limit external 

noise interference. The Startle Monitor system reduced the response to each pulse into 

measurements of first N, max N, and max time of the response (ms), for calculations of peak 

startle response (ASR amplitude) and time from stimulus to peak startle response (ASR 

latency). ASR were all conducted blind.

Vestibular assessment

Vestibular function was assessed using open field and rotarod balance test. The open field 

test was conducted using a circular frame measuring 42cm in diameter, placed inside a 

sound chamber with overhead LED lighting, set to 30lux at the center, inside a dimmed 

room. Mice were placed one at a time inside the circular open field, and allowed to explore 

for 5min. Behavior was recorded and tracked using Ethovision XT, enabling measures of 

distance traveled and velocity. Open field assessments were all conducted blind. The rotarod 

performance involved placement of mice on a rod in an enclosed housing that began rotating 

at 4 rpm and accelerated at a rate of 0.1 rpm s−1. The mice were placed on the rods on day 

one for 5 min to get familiarized with the equipment. The next day, the animals were placed 

on the rods for a total of 5 trials. A 5 min resting period was imposed between trials. The 

length of time the animals were able to remain on the device before dropping onto the 

instrumented floor of the housing was displayed on a timer and recorded after each test run.

Statistical analyses

Test and control vectors were evaluated in at least three mice per group at each time point to 

ensure reproducibility. Sample sizes are noted in figure legends. All animals with successful 

RWM injection were included in the study analysis. Those animals with unsuccessful 

injection were excluded from the mean but included in the legend for full disclosure. 

Injection success was determined according to ABR recovery with thresholds < 80 dB SPL. 

Statistical analyses were performed with Origin 2016 (OriginLab Corporation). Data are 
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presented as means ± standard deviations (S.D) or standard error of the mean (S.E.M.) as 

noted in the text and figure legend. One-way analysis of variance (ANOVA) or Student t-test 

was used to determine significant differences between the means. In the box plot graphs, the 

ends of whisker is defined by maximum and minimum values. Central rectangle spans from 

first quartile to third quartile. The segment in the rectangle indicates median and the square 

dot indicates the mean.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the Manton Center for Orphan Disease Pilot Award 2011 to G. Geleoc (Boston 
Children’s Hospital), the Bertarelli Foundation, Program in Translational Neuroscience and Neuroengineering, 
Kidz-b-Kidz Foundation (now Arts for USH), the Jeff and Kimberly Barber Gene Therapy Research Fund and a 
consortium agreement under a primary award from the Foundation Fighting Blindness, Cost Center #7 5794 (P.I. L. 
Vandenberghe). A. Indzhykulian received support from R01DC000304 (DP Corey). S. Heman-Ackah was the 
recipient of the diversity faculty fellowship award from Harvard Medical School. Behavior and Viral Cores at 
Boston Children’s Hospital are supported by the Boston Children’s Hospital Intellectual and Developmental 
Disabilities Research Center (BCH IDDRC), P30 HD18655. M. Hasting contribution was supported by 
R01DC012596. We thank M. Valero (EPL, MEEI) for assistance with ABRs, S. Xu (BCH core) for help with the 
behavior work, C. Wang (BCH viral core) for AAV production, and C. Nist-Lund (BCH) for technical assistance.

References

1. Chien WW, et al. Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf 
Whirler Mice. Mol Ther. 2016; 24:17–25. [PubMed: 26307667] 

2. Askew C, et al. Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med. 2015; 
7:295ra108.

3. Akil O, et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene 
therapy. Neuron. 2012; 75:283–293. [PubMed: 22841313] 

4. Boughman JA, Vernon M, Shaver KA. Usher syndrome: definition and estimate of prevalence from 
two high-risk populations. J Chronic Dis. 1983; 36:595–603. [PubMed: 6885960] 

5. Smith RJ, et al. Clinical diagnosis of the Usher syndromes. Usher Syndrome Consortium. Am J Med 
Genet. 1994; 50:32–38. [PubMed: 8160750] 

6. Vernon M. Usher’s syndrome — deafness and progressive blindness. Clinical cases, prevention, 
theory and literature survey. J Chronic Dis. 1969; 22:133–151. [PubMed: 4897966] 

7. Weil D, et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature. 1995; 
374:60–61. [PubMed: 7870171] 

8. Weston MD, et al. Myosin VIIA mutation screening in 189 Usher syndrome type 1 patients. Am J 
Hum Genet. 1996; 59:1074–1083. [PubMed: 8900236] 

9. Adato A, et al. Mutation profile of all 49 exons of the human myosin VIIA gene, and haplotype 
analysis, in Usher 1B families from diverse origins. Am J Hum Genet. 1997; 61:813–821. [PubMed: 
9382091] 

10. Liu XZ, Newton VE, Steel KP, Brown SD. Identification of a new mutation of the myosin VII head 
region in Usher syndrome type 1. Hum Mutat. 1997; 10:168–170. [PubMed: 9259201] 

11. Bitner-Glindzicz M, et al. A recessive contiguous gene deletion causing infantile hyperinsulinism, 
enteropathy and deafness identifies the Usher type 1C gene. Nat Genet. 2000; 26:56–60. [PubMed: 
10973248] 

12. Verpy E, et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear 
sensory hair cells, underlies Usher syndrome type 1C. Nat Genet. 2000; 26:51–55. [PubMed: 
10973247] 

Pan et al. Page 16

Nat Biotechnol. Author manuscript; available in PMC 2017 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Bolz H, et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes 
Usher syndrome type 1D. Nat Genet. 2001; 27:108–112. [PubMed: 11138009] 

14. Bork JM, et al. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are 
caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet. 2001; 
68:26–37. [PubMed: 11090341] 

15. Ahmed ZM, et al. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. 
Am J Hum Genet. 2001; 69:25–34. [PubMed: 11398101] 

16. Alagramam KN, et al. The mouse Ames waltzer hearing-loss mutant is caused by mutation of 
Pcdh15, a novel protocadherin gene. Nat Genet. 2001a; 27:99–102. [PubMed: 11138007] 

17. Alagramam KN, et al. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 
1F. Hum Mol Genet. 2001b; 10:1709–1718. [PubMed: 11487575] 

18. Weil D, et al. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding 
SANS, a protein that associates with the USH1C protein, harmonin. Hum Mol Genet. 2003; 
12:463–471. [PubMed: 12588794] 

19. Riazuddin S, et al. Alterations of the CIB2 calcium- and integrin-binding protein cause Usher 
syndrome type 1J and nonsyndromic deafness DFNB48. Nat Genet. 2012; 44:1265–1271. 
[PubMed: 23023331] 

20. Boeda B, et al. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate 
to shape the sensory hair cell bundle. EMBO J. 2002; 21:6689–6699. [PubMed: 12485990] 

21. Lefevre G, et al. A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the 
hair bundle in its cohesion, orientation and differential growth. Development. 2008; 135:1427–
1437. [PubMed: 18339676] 

22. Grillet N, et al. Harmonin mutations cause mechanotransduction defects in cochlear hair cells. 
Neuron. 2009; 62:375–387. [PubMed: 19447093] 

23. Michalski N, et al. Harmonin-b, an actin-binding scaffold protein, is involved in the adaptation of 
mechanoelectrical transduction by sensory hair cells. Pflugers Arch. 2009; 459:115–130. 
[PubMed: 19756723] 

24. Gregory FD, et al. Harmonin inhibits presynaptic Cav1.3 Ca(2)(+) channels in mouse inner hair 
cells. Nat Neurosci. 2011; 14:1109–1111. [PubMed: 21822269] 

25. Gregory FD, Pangrsic T, Calin-Jageman IE, Moser T, Lee A. Harmonin enhances voltage-
dependent facilitation of Cav1.3 channels and synchronous exocytosis in mouse inner hair cells. J 
Physiol. 2013; 591:3253–3269. [PubMed: 23613530] 

26. Lentz J, Pan F, Ng SS, Deininger P, Keats B. Ush1c216A knock-in mouse survives Katrina. Mutat 
Res. 2007; 616:139–144. [PubMed: 17174357] 

27. Lentz J, et al. The USH1C 216G-->A splice-site mutation results in a 35-base-pair deletion. Hum 
Genet. 2005; 116:225–227. [PubMed: 15578223] 

28. Lentz JJ, et al. Deafness and retinal degeneration in a novel USH1C knock-in mouse model. Dev 
Neurobiol. 2010; 70:253–267. [PubMed: 20095043] 

29. Landegger L, et al. A synthetic AAV vector enables safe and efficient gene transfer to the 
mammalian inner ear. Nat Biotechnol. 2017; 35:XX–XX.

30. Lentz JJ, et al. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse 
model of human deafness. Nat Med. 2013; 19:345–350. [PubMed: 23380860] 

31. Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP. FM1-43 dye behaves as a permeant 
blocker of the hair-cell mechanotransducer channel. J Neurosci. 2001; 21:7013–7025. [PubMed: 
11549711] 

32. Meyers JR, et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion 
channels. J Neurosci. 2003; 23:4054–4065. [PubMed: 12764092] 

33. Geleoc GS, Holt JR. Developmental acquisition of sensory transduction in hair cells of the mouse 
inner ear. Nat Neurosci. 2003; 6:1019–1020. [PubMed: 12973354] 

34. Zinn E, et al. In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene 
Therapy Vector. Cell Rep. 2015; 12:1056–1068. [PubMed: 26235624] 

35. Kho ST, Pettis RM, Mhatre AN, Lalwani AK. Safety of adeno-associated virus as cochlear gene 
transfer vector: analysis of distant spread beyond injected cochleae. Mol Ther. 2000; 4:368–373.

Pan et al. Page 17

Nat Biotechnol. Author manuscript; available in PMC 2017 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Bedrosian JC, et al. In vivo delivery of recombinant viruses to the fetal murine cochlea: 
transduction characteristics and long-term effects on auditory function. Mol Ther. 2006; 14:328–
335. [PubMed: 16765094] 

37. Wang L, Jiang H, Brigande JV. Gene transfer to the developing mouse inner ear by in vivo 
electroporation. J Vis Exp. 2012; 64 pii: 3653. 

38. Depreux FF, et al. Antisense oligonucleotides delivered to the amniotic cavity in utero modulate 
gene expression in the postnatal mouse. Nucleic Acids Res. 2016; 44:9519–9529. [PubMed: 
27683224] 

39. Clark KR, Sferra TJ, Johnson PR. Recombinant adeno-associated viral vectors mediate long-term 
transgene expression in muscle. Hum Gene Ther. 1997; 8:659–669. [PubMed: 9113506] 

40. Duan D, et al. Circular intermediates of recombinant adeno-associated virus have defined structural 
characteristics responsible for long-term episomal persistence in muscle tissue. J Virol. 1998; 
72:8568–8577. [PubMed: 9765395] 

41. Noben-Trauth K, Zheng QY, Johnson KR. Association of cadherin 23 with polygenic inheritance 
and genetic modification of sensorineural hearing loss. Nat Genet. 2000; 35:21–23.

42. Kane KL, et al. Genetic background effects on age-related hearing loss associated with Cdh23 
variants in mice. Hear Res. 2012; 283:80–88. [PubMed: 22138310] 

43. Lelli A, Asai Y, Forge A, Holt JR, Geleoc GS. Tonotopic gradient in the developmental acquisition 
of sensory transduction in outer hair cells of the mouse cochlea. J Neurophysiol. 2009; 101:2961–
2973. [PubMed: 19339464] 

44. Stauffer EA, Holt JR. Sensory transduction and adaptation in inner and outer hair cells of the 
mouse auditory system. J Neurophysiol. 2007; 98:3360–3369. [PubMed: 17942617] 

45. Zheng L, Zheng J, Whitlon DS, Garcia-Anoveros J, Bartles JR. Targeting of the hair cell proteins 
cadherin 23, harmonin, myosin XVa, espin, and prestin in an epithelial cell model. J Neurosci. 
2010; 30:7187–7201. [PubMed: 20505086] 

Pan et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2017 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Scanning electron microscopy of the organ of Corti in Ush1c c.216G>A mice at P8
(a–f) Basal, middle and apical regions of the organ of Corti were imaged in P8 c.216GA (n = 

3 mice) and c.216AA (n = 4 mice) mice. OHC and IHC hair bundles were preserved in 

heterozygous mice but some hair bundles appeared disorganized along the organ of Corti in 

homozygous 216AA mice. (g–l) High magnification images revealed fragmented and 

disorganized bundles with disruptions in the staircase array in many but not all OHC (g–h) 

and IHCs (i–j). Examples of OHC hair bundles imaged in the middle region of the organ at 

P8 illustrate a preserved (k) and a disorganized hair bundle (l) present in the same 

preparation. Stars indicate preserved hair bundles; arrowhead, disorganized hair bundles; and 

arrows, wavy IHC bundles. Scale bars low mag.: 5 μm (a–f); high mag.: 2 μm (g), 3 μm (h), 

2 μm (i–j) and 1 μm (k,l).
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Figure 2. Mechanotransduction in hair cells of Ush1c c.216G>A neonatal mice
(a–d) The permeable styryl dye FM1-43 was used to assess the presence of open 

transduction channels in hair cells of c.216GA and c.216AA mice. In the organ of Corti, FM 

uptake was reduced in sensory hair cells of c.216AA mice at P4 (a–b, mid base). Note that 

IHC FM1-43 fluorescence appears dimmer as IHCs are in a different focal plane. Left: DIC, 

Right: FM1-43; Scale bar 10μm. In the utricle, FM1-43 uptake was restricted to the extra-

striola region in c.216AA mutants at P6 (c; scale bar 50μm) while utricular hair cells 

retained gross normal bundle morphology as assessed by DIC (d; scale bar 10μm). The 

white lines on panel c and d delineate the striola (no uptake) and extra-striola regions 

(uptake). Experiment was repeated three times. (e–h) Mechanotransduction was assessed in 

OHCs, IHCs and VHCs in neonatal c.216GA and c.216AA mice (number of mice recorded 

from respectively are: n= 7, 6 for OHCs, n= 2, 4 for IHCs and n= 2, 6 for VHCs, number of 

cells are indicated above the bar graph; Holding potential: −60mV). Representative 

transduction currents (e), their associated current/displacement plots fitted with a second 

order Boltzmann function (f) and average peak transduction current are plotted (g–h). In the 

cochlea, recordings were obtained in the middle and mid-apical turn of the organ at P3-P6. 

In the utricle transduction currents were recorded from VHCs of the extra-striola (E.S.) and 

striola (S.) region between P5 and P7 (e–f). While hair bundles appeared well preserved 

under DIC, smaller average transduction currents were evoked in c.216AA mutants (h). 
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Average peak transduction was significantly different between the two genotypes in OHCs, 

IHCs and VHCs (***P < 0.01, One-way ANOVA).

Pan et al. Page 21

Nat Biotechnol. Author manuscript; available in PMC 2017 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Expression and localization of fluorescently labeled harmonin in tissues exposed to 
adeno-associated viral vectors in vitro and in vivo
(a–c) Acutely dissected P0-P1 inner ear tissue were exposed to AAV2/1 vectors for 24h, kept 

in culture for 7 to 8 days before being fixed, counterstained (Alexa Fluor phalloidin, 

Invitrogen) and imaged with a Zeiss LSM confocal microscope. A large number of sensory 

hair cells were infected in wild-type utricle and expression of harmonin-b1 fused to EGFP 

was evident in most hair cells with specific localization at the apex of the sensory hair 

bundle (a, scale bar: 10 μm- upper panels; 5μm- lower panels). Similarly expression of 

EGFP::harmonin-b1 was evident at the tip of the stereocilia in OHCs and IHCs of c.216AA 

and wild-type mice (b, scale bar: 10 μm; c, scale bar: 3μm). When 1 μl 

AAV2/1.CMV.EGFP::harmonin-b1 vectors were injected at P1, EGFP signal was detected in 

some IHCs and OHCs at P60 in the left injected ear (d, scale bar: 30 μm). Exogenous 

tdTomato::harmonin-a1 was detected in the cell body of IHCs and OHCs in P7 organotypic 

cultures exposed to AAV2/1.CMV.tdTomato::harmonin-a1 for 24 h at P0 (e, scale bar: 5μm). 

Some harmonin-a1 puncta were colocalized with CTBP2 (blue; mouse anti-CTBP2 1/200, 

BD bioscience) in particular at the base of the sensory cells presumably near the ribbon 

synapse (arrowheads). No expression was observed in the stereociliary bundle.
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Figure 4. Recovery of mechanotransduction in hair cells of mice injected with Anc80L65 
harmonin vectors
(a–c) Mechanotransduction currents were recorded in IHCs of c.216AA uninjected control 

mice (n=8 cells, one mouse) and c.216AA mice injected at P1 with AAV2/

Anc80L65.CMV.harmonin-b1 (0.8 μl, 1.9×10^12 gc/ml, n=15 cells, one mouse) or a 

combined injection of the AAV2/Anc80L65.CMV.harmonin-a1 (1.7×10^12 gc/ml) and 

AAV2/Anc80L65.CMV.harmonin-b1 (0.5 μl + 0.5 μl, n=7 cells, one mouse). Tissue was 

extracted at P5-P6, before the cochlea became ossified, and was maintained in culture for 10 

days. (9 to 10 DIV). While small mechanotransduction currents could be induced by hair 

bundle stimulations of c.216AA mice, larger currents were evoked in c.216AA mice injected 

with vectors driving harmonin-b1 or dual harmonin-a1 and -b1 expression (a). 

Corresponding I/X curve for each dataset and double Boltzmann fitting function. Respective 

maximal mechanotransduction current Imax= 102.1 pA (c.216AA); 424.3 pA (c.216AA + 

harmonin-b1) and 341.1 pA (c.216AA + harmonin-a1&-b1) (b). Average responses (Mean ± 

S.D.) show significant recovery of transduction (***P < 0.001) for harmonin-b1 and 

harmonin-a1 +-b1 injected relative to uninjected mice. Average transduction currents were 

not significantly different in harmonin-b1 injected mice and c.216GA control mice (N.S. 

P>0.5). Recovery of mechanotransduction was also not significantly improved when 

harmonin-a and harmonin-b were combined. (c), one-way ANOVA.
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Figure 5. ABR and DPOAE threshold recovery in mice injected at P1 with AAV2/
Anc80L65.CMV.harmonin-b1
(a) Representative ABR responses for 16 kHz tones in 6 weeks old c.216AA control mice 

and c.216AA mice injected at P1 via RWM injection of vectors encoding harmonin-a1(0.8 

μl, 1.7×10^12 gc/ml), harmonin-b1 (0.8 μl, 1.9×10^12 gc/ml) or a combination of the two 

(0.5 μl + 0.5 μl). Recovered ABR thresholds near 30 dB were measured in mice injected 

with harmonin-b1 alone or harmonin-a1 and b1 together. (b) Mean ABR responses obtained 

for: c.216 AA (n=13); c.216GA (n=12); c.216GA + trunc-harmonin (n=4); c.216AA + 

harmonin-a1 (n=12); c.216AA + harmonin-b1 (n=19 with rescued ABR thresholds < 80 dB 

of 25 tested); c.216AA + harmonin-a1&-b1 (n=6 rescued with ABR thresholds <80 dB/11 

tested). Mean ± S.E, continuous lines. Dotted lines: ABR thresholds for the entire frequency 

range in mice whose 16 kHz recordings are shown in panel a. (c) Mean DPOAEs responses 

obtained for: c.216AA (n=13); c.216GA (n=12); c.216GA + trunc-harmonin (n=4); c.

216AA + harmonin-a1 (n=12); c.216AA + harmonin-b1 (n=15 rescued with DPOAE 
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thresholds <70 dB/25 tested); c.216AA + harmonin-a1&-b1 (n=4 rescued with DPOAEs 

<70 dB/11 tested). Mean ± S.E, continuous lines. Dotted lines: DPOAEs thresholds for the 

four mice whose recordings are illustrated in panel A. Arrows indicate that the thresholds 

are higher than the maximal stimulus level tested. (d–e) ABRs and DPOAEs responses 

obtained at 6 weeks and 3 months in eight mice that showed initial ABR thresholds under or 

equal to 45 dB SPL. Seven of the eight mice were kept for 6 months (one taken for 

histology) and had ABRs and DPOAEs assessed (dotted line). Mean ± S.E. While ABRs and 

DPOAEs thresholds shifts were evident over the first three month, hearing rescue was still 

prominent at 6 months of age in the lower frequency range.
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Figure 6. Startle response, rotarod performance and open field behavior recovery in mice 
injected at P1 with AAV2/Anc80L65.CMV.harmonin-a1 and AAV2/Anc80L65.CMV.harmonin-
b1
(a) Startle response to white noise stimuli was recorded in 6 weeks old control c.216GA, c.

216AA mice and injected mice. Partial but significant startle rescue was evident in mice 

injected with harmonin-b1 but not harmonin-a1 (data overlap with control c.216AA mice). 

Averages ± S.E. are shown for all mice tested. Statistical analysis: 216AA relative to 216AA 

+ Harm a1&b1: p=0.008 at 100db; p= 0.005 at 110dB; 216AA relative to 216AA + Harm 

b1: p= 0.007 at 100dB; 0.001 at 110dB, Student t-test. (b) Rotarod performance was 

recorded between 4 and 6 weeks in control c.216GA, c.216AA and injected mice. Full 

recovery was observed in all mice tested that were injected with harmonin-b1 and harmonin-

a1/b1. No recovery was observed for harmonin-a1 alone. Averages ± S.E. are shown for all 

mice tested. (c–e) Open field observations were performed in 42 cm wide arena for 5 min in 
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6 weeks old control c.216GA, c.216AA and injected mice. Representative tracks over 2.5 

min are shown (c). While c.216AA mice explore the entire field, and perform repetitive full-

body rotations, c.216AA mice injected at P1 with harmonin-a1, harmonin-b1 or the 

combination of the two vectors demonstrate normal behavior similar to their heterozygous c.

216GA. Mean ± S.D. for the number of rotations (d) and distance covered (e) per minute for 

all mice tested. Significant recovery ***P < 0.001 was observed between the uninjected and 

injected mice. Statistical analysis by one-way ANOVA.
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Figure 7. Scanning electron microscopy of the organ of Corti in mice injected with AAV2/
Anc80L65.CMV.harmonin-b1
Basal, Middle and Apical regions of the organ of Corti were imaged at six weeks in c.

216GA (a–d), c.216AA (e–h) and c.216AA (i–l, n–p) mice injected at P1 (RMW injection 

0.8 μl AAV2/Anc80L65.CMV.harmonin-b1). OHC and IHC hair bundles were preserved in 

c.216GA mice but appeared disorganized along the organ of Corti in c.216AA mice. 

Noticeable hair cell loss (asterisk) and hair bundle disorganization was observed in c.216AA 

mice with more pronounced degeneration in the basal end of the organ. Hair bundles of c.

216AA mice lacked normal stereocilia rows. The shorter rows appeared to be retracted while 

the tallest rows were maintained in c.216AA mice (arrow). While hair cell loss and bundle 

disorganization were still evident in rescued c.216AA mice, hair cell survival was noticeably 

higher in the basal and middle regions of the Organ. Hair cell counts are summarized in the 

bar graph. A total of 1824 cells were counted in c.216AA mice (4 ears) and 792 in rescued c.

216AA mice (2 ears). Mean ± S.E. High magnification imaging reveals rescue of the 

staircase array in injected c.216AA mice (arrow) in many but not all cells (arrowhead). Scale 

bar low magnification: 5 μm; high magnification: 1 μm.
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