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Abstract

A large body of work has gone into understanding the effect of mutations on protein structure and 

function. Conventional treatments have involved quantifying the change in stability, activity and 

relaxation rates of the mutants with respect to the wild-type protein. However, it is now becoming 

increasingly apparent that mutational perturbations consistently modulate the packing and 

dynamics of a significant fraction of protein residues, even those that are located >10–15 Å from 

the mutated site. Such long-range modulation of protein features can distinctly tune protein 

stability and the native conformational ensemble contributing to allosteric modulation of function. 

In this review, I summarize a series of experimental and computational observations that highlight 

the incredibly pliable nature of proteins and their response to mutational perturbations manifested 

via the intra-protein interaction network. I highlight how an intimate understanding of mutational 

effects could pave the way for integrating stability, folding, cooperativity and even allostery within 

a single physical framework.

Introduction

Mutations in proteins occur via multiple well-understood molecular mechanisms primarily 

at the level of DNA contributing to variability in the population. Such variability is the 

cornerstone of evolution as functionally advantageous mutations get fixed in the presence of 

a selection pressure. Decades of work on mutations have revealed rich information on 

protein conformational behavior, binding site identities and thermodynamics, folding 

mechanisms and allostery. In parallel, understanding and modeling mutational effects has 

tremendous implications in not just designing proteins with enhanced solubility, stability, 

and catalytic efficiency, but also to understand evolutionary trajectories of proteins, enzyme 

evolvability and the contribution of mutant phenotypes to organismal fitness [1–5]. 

Numerous avenues are currently available to engineer proteins ranging from charge-charge 

interactions on the protein surface [6] to directed evolution [7] and saturation mutagenesis-

based approaches [8,9].
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A ‘neutral’ mutation is conventionally defined as a perturbation that has little effect on the 

organismal fitness (say, functioning of a protein or survival of the organism). However, the 

same mutation in conjunction with mutations at other sites can have a positive or a negative 

effect on the fitness landscape. How is this epistatic characteristic enabled? It is important to 

realize that the interior (surface) of a protein is a highly unique environment determined by 

the unique protein sequence with specific packing (electrostatic/polar) interactions. 

Therefore, any perturbation from a mutation is expected to be complex, as it would involve 

an abrupt reorganization of the evolutionarily tuned interaction network. In fact, it is well 

recognized in the field of protein NMR that mutations manifest as non-trivial effects on 

chemical shifts and order parameters of a majority of residues in the protein. However, there 

is an apparent disconnect between an NMR view of mutational effects (complex changes in 

multiple terms) and studies that merely quantify the change in stability or folding rate of the 

mutant compared to the wild-type. In this review, I highlight and summarize some of the 

recent developments towards resolving this apparent conflict and how a mere consideration 

of the intra-protein interaction network provides a convincing rationale with several testable 

predictions.

Mutational effects propagate beyond the firstshell of interactions

A reductionist approach in viewing proteins is to treat protein residues as nodes and the 

intra-protein interactions as edges [10]. When the edges are perturbed, either by deletion or 

by modulation of their strengths, the network properties are modulated not just in the 

immediate neighborhood but also at longer distances [11•] (Figure 1a). Such propagation 

and dissipation (used strictly in an equilibrium sense with no kinetic connotation) of 

perturbations with increasing distances from the source of perturbation is a robust feature of 

networks [12]. True to this expectation, point mutations in CI2 [13], Ubiquitin [14], T4 

lysozyme [15], SSo7d [16], Staphylococcal nuclease [17•] and Protein L [18] all contribute 

to persistent modulation of chemical shifts, hydrogen-exchange protection factors or 

dynamics almost throughout the entire structure (for example, see Figure 1b, c). Such long-

distance coupling of residues can affect catalysis in enzymes as shown through single-point 

and double-point mutations (>15 Å from the active site) in dihydrofolate reductase that 

modulate the rate of hydride transfer by up to three orders of magnitude [19,20]. By 

measuring chemical shift perturbations (CSPs) of β1-adrenergic receptor upon mutations and 

ligand binding, Grzesiek and coworkers identified that both the structural perturbations 

propagate to long distances determining the functionally relevant motions of the 

transmembrane helices [21•]. A study on Cyclophilin A, a peptidyl prolyl cis–trans 

isomerase, reported a 30% reduction in the rate of isomerization upon a conservative V29L 

mutation located nearly 15 Å away from the active site [22•]. While the activity modulation 

is minor in Cyclophilin, a 1000-fold increase in phosphotriesterase activity could be 

engineered in a bacterial lactonase by ‘tinkering’ with mutations in the second-shell of the 

active-site residues [23•]. Such extreme behaviors and context-dependence could be a 

manifestation of the robustness of the intra-protein interaction network to perturbations 

wherein the network readjusts to accommodate a residue by altering the dynamics and 

packing of distant residues. It also suggests that multiple mutations might be required in a 
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protein-specific manner to irreversibly alter the interaction network or the correlated motions 

and hence the functional output.

The fact that distal mutations can alter activity (to variable extents) raises questions on 

whether this is an intrinsic response of proteins to structural perturbations due to the fluid-

like nature of the protein interior [24]. True to this expectation, a global analysis of 25 

mutations from 12 different protein structures from the viewpoint of chemical shift 

perturbations revealed that the effect of mutations could be consistently felt even up till 10–

20 Å from the mutation site, and is independent of the nature of the mutation, protein type or 

secondary structure content (for example, see Figure 1d) [25•]. Experimental double-mutant 

cycles that measure the degree of energetic coupling of one reside to another reveal a similar 

long-range coupling of residues [26,27]. In all of the cases above, an exponential-like 

dissipation of network parameters, coupling energy or chemical shift perturbations have 

been identified highlighting the possibility of a universal function form to describe 

mutational effects [25•]. The pervasive long-range coupling patterns explain the large 

conservation of even distal residues (as far as 20–27 Å) around the active site of enzymes 

[28•]. It is important to emphasize here that such conservation can have varied origins 

including functional requirements (either at the active site or binding of an effector at an 

allosteric site), stability (thermodynamic and kinetic), preventing aggregation and so on. As 

an aside, I would like to point out that long-range structural modulation is not only observed 

on mutational perturbations, but also on ligand-binding and phosphorylation [25•], similar to 

the domino-like propagative-cum-dissipative phenomenon observed in repeat proteins [29].

Truncation mutations primarily weaken native interactions

What are the molecular origins of destabilization induced by truncation mutations? An 

analysis of microsecond-long molecular dynamics trajectories of Ubiquitin WT and seven 

aliphatic truncation mutations revealed a distinct weakening of packing interactions across 

nearly the entire protein. The relative residue-level van der Waals interaction energy 

approaches zero (i.e. no perturbation) only at longer distances from the mutated site (Figure 

1e) [11•]. Taking a cue from MD simulations, the effect of truncation mutations was recently 

modeled by considering two shells of interactions around the perturbed residue [11•]; the 

first shell accounts for the neighbors within a 6 Å distance from the mutated site, while the 

second shell accounts for the neighbors of neighbors and thus residues nearly 12 Å from the 

mutated site. By introducing different destabilization magnitudes in the first- and second-

shells, accounting for the nature of mutation and parameterizing them into a statistical 

mechanical model [30,31], it was possible to reproduce the changes in stabilities of 375 

truncation mutations in 19 different proteins with a correlation and slope comparable to that 

from the multi-parameter FOLDX energy function [11•]. In other words, on accounting for 

the nature of the mutation (merely from the ratio of atoms in the mutant compared to the 

WT), the first- and second-shell van der Waals interactions are weakened by 50% and 20%, 

respectively (Figure 1f). However, since there are many more interactions that define the 

second-shell, the energetic contributions are near equivalent but distributed throughout the 

structure. It is important to emphasize the implication of the above statement; for instance, 

L43, which is located in the hydrophobic core of ubiquitin is therefore connected to ~80% of 
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the 76 residues in ubiquitin, underscoring the extent to which the intraprotein interaction 

network can be perturbed.

While the discussion above is primarily on truncation mutations, mutations that enhance the 

molecular volume also decrease protein stability though the mechanism is still unclear. Since 

the interior of a protein displays the packing density of a solid (despite displaying large 

dynamics [24,32]), any change in the protein interior environment (that is unique as the 

sequences themselves are unique) would disrupt interactions, as the protein molecule would 

struggle to fit in an amino acid with a larger volume. Not surprisingly, mutations that 

enhance molecular volume also contribute to an exponential-like dependence of the 

chemical shift perturbations as a function of distance from the mutated site [25•]. The same 

applies to mutations to glycine that dramatically enhance the basal backbone fluctuations 

(~4 kJ mol–1 destabilization at 310 K from merely single-site backbone entropy 

considerations [33]) and could manifest as nontrivial effects on the folding-functional 

landscape.

Population redistribution, partial unfolding and shifts in the native 

ensemble

Protein native states are accurately defined as ensembles of multiple conformations or 

substates that are critical for function. Thermodynamic fluctuations are a feature intrinsic to 

polymeric protein chains arising from the finite size of protein molecules and the weak 

nature of the non-covalent interactions [34]. From a statistical mechanical perspective, it can 

therefore be immediately recognized that upon mutation the statistical weights and hence the 

probabilities of all the conformations in which the residue is structured would be modulated. 

This in turn would manifest as shifts in the distribution of conformations in the native 

ensemble and enhanced population of intermediate or excited states apart from higher 

unfolded state populations (Figure 2a). This immediately explains why mutational 

approaches to enhancing excited state populations or intermediates have been immensely 

successful as in the studies involving T4 lysozyme and Fyn-SH3 domains [15,35]. Similar 

mutation-induced population redistributions have also been reported in GPCRs [36,37], CAP 

[38], Ubiquitin [39•], U1A [40], Cyclophilin [22•] and Adenylate kinase [41], with distinct 

effects on function in each case.

Redistribution of populations in the native ensemble tune functions and downstream 

signaling responses revealing avenues by which molecular responses to environmental 

variables could be acquired, the molecular mechanisms of drug-resistance and onset of 

disease conditions. Work on p97 ATPase and NAD(P)H: quinone oxidoreductase 1 (NQO1) 

highlight that disease causing mutations shift the conformational substates in a graded 

manner thus compromising innate activity [42•,43]. Similarly, distal mutations on 

tryptophan synthase shift the conformational ensemble to the extent of modulating the rate-

limiting catalytic step [44]. Recently, destabilizing distal and surface glycine mutations on 

Adenylate Kinase (AK) have been shown to influence both enzyme activity and substrate 

affinity [45•]; these mutations destabilize the native ensemble through partial unfolding of 
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AK domains shedding light on how enzymes from psychrophilic organisms could tune their 

basal activity to compensate for lower thermal energy.

Note that such population redistributions upon mutations need not be restricted to folded 

proteins but even intrinsically disordered proteins. The outcome of such mutations in 

disordered proteins is expected to be non-trivial due to the heterogeneous nature of IDP 

ensembles manifesting as large signal changes in equilibrium [46,47] (Figure 2b), binding 

affinity [46–49], association and dissociation rate constants [48–51], altered binding 

transition-state ensembles [50] and even induce liquid-to-solid phase transition [52].

Allosteric mechanisms and paths from mutational perturbations?

It is well established that protein residues are coupled to each other through both the 

hydrogen-bond network and packing interactions leading to correlated motions or 

fluctuations in equilibrium that are critical for function. Such intra-molecular interaction-

networks serve as channels for signal transmission playing a prominent role in dynamic 

allostery [53–55] (modulation of activity without changes in the overall structure upon distal 

perturbations). Since mutational effects are not localized it is natural to expect that they also 

modulate the communication network and hence influence function. In fact, a wide range of 

mutational tolerance and non-trivial functional outcomes has been observed in ubiquitin [56] 

and light-oxygen-voltage domain 2 [57]. Mutational studies on PDZ report that nearly the 

entire protein interaction network has evolved towards optimizing activity and potentially to 

minimize cross-reactivity while uncovering allosteric singling paths [58,59]. Similarly, 

extensive alanine-scanning mutagenesis has revealed that a significant fraction of residues 

(~30%) in the human liver pyruvate kinase can influence the binding to its substrate, PEP, in 

the presence of the activator Fru-1, 6-BP [60•].

Since the precise mechanistic details of allostery are yet to be completely established with 

the possibility of large context dependence, a whole-protein mutagenesis (alanine-scanning, 

for example) might be a way forward to test mechanistic models without preconceived 

notions or biases in the analysis, as also argued for in a recent work [61]. An in silico 
version of this is the structural perturbation approach (SPA; [62•]) wherein every residue is 

mutated to alanine or glycine (perturbation) and the immediate environment is probed for 

the presence of strong packing (also see [63,64] for similar methods). Following this, two 

parameters are extracted for every residue — the coupling distance (dC) and the total 

perturbation (ΣΔQ) — that provide information on the extent to which the perturbed residue 

is coupled to its neighbors (Figure 3a, b). Interestingly, the SPA reproduces the results of 

statistical coupling analysis (SCA [65]) with just a single structure as input and from mere 

distance considerations (Figure 3c, d) while revealing additional allosteric sites that could be 

experimentally tested [62•].

Deducing allosteric communication paths is almost entirely the purview of computational 

methods [66–71]. Since signal transmission should occur through the network of non-

covalent interactions in the protein interior (any surface propagation would be quickly 

damped by solvent collisions) it is necessary that such methods also reproduce mutational 

destabilization thermodynamics. This would provide an independent test for the relative 
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strengths of non-covalent interactions at different regions of the protein structure required to 

model signal propagation as put forth by Ernesto Freire [72]: “ … the propagation of binding 

signals should obey precise thermodynamic rules, and the location of allosteric sites should 

be dictated by thermodynamic stability criteria within the protein.” The overall features of 

the signaling paths should not only be consistent with the available chemical shift 

perturbations upon mutations (at least at the level of relative trends) but also the mutation-

induced destabilization providing a sound equilibrium-thermodynamic framework for 

modeling allosteric communication networks.

On folding mechanisms and cooperativity

Putative transition state structures and hence protein folding mechanisms are generally 

inferred from Φ-value analysis that involves measuring the changes in stability and 

(un)folding rates upon point mutations [73]. One of the primary assumptions of this 

approach is that the recommended truncation mutations in the protein interior [73] influence 

only the nearest neighbors (or the first-shell) providing an intimate view of the degree of 

structure in the transition state. Given that mutational effects consistently propagate beyond 

the first shell of interactions and modulate both packing and dynamics of distant residues, it 

is likely that Φ-values represent an effective average of multiple energetic and entropic terms 

and not just the extent of local structure. The frequently observed folding Φ-value of ~0.3 

(independent of protein type, structure or mutation [74]) could therefore represent the 

fraction of stabilization free energy gained during folding [75,76]. It remains to be seen if it 

is possible to disentangle the energetic and structural contributions to Φ-values from 

computational studies. Moreover, a two-state-like treatment does not account for altered 

dynamics or population redistributions within the native well, necessitating a shift towards 

the use of more detailed thermodynamic models that could potentially provide exciting 

insights.

Cooperativity is feature intrinsic to systems held together by weak non-covalent interactions, 

and in proteins it is quantified in terms of the slope of the unfolding curve, folding barrier 

heights or other extent of similarity of atomic-level unfolding curves [77–79]. Cooperativity 

features are thus intrinsically related to the contact environment of residues in the protein. 

Therefore, it should be possible to perform a series of alanine-scanning experiments and 

iteratively identify the extent to which the interaction shell radius (or the coupling distance 

[11•,25•,62•]; Figure 3a) needs to be modified to account for the destabilization 

thermodynamics. In fact, the structural perturbation approach (SPA) can be extended to 

generate a ΔQ-map (similar to the contact map, or Q-map; Figure 3e) that highlights the 

degree of coupling of every residue with its neighbors [62•]; such maps emphasize that 

second-shell interactions around a residue should be formed to consider the residue to be 

‘folded’ (Figure 3e). It remains to be seen if such perturbation-based approaches alone are 

sufficient to generate cooperativity indices or regions of structure that are more coupled (or 

more locally stable and hence more cooperative) than others.
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Concluding remarks

Recent experiments and computational works highlight that mutations in the protein interior 

manifest as altered chemical-shifts, order parameters (dynamics), HX protection factors, and 

modulation of packing interactions involving a significant fraction of protein residues. 

Accordingly, mutational perturbations are better understood in terms of their impact on the 

underlying interaction network or correlated motions and likely serve as the evolutionary 

first-step towards altered protein activity, diseased states, functional promiscuity and fold-

switching. Given the robustness of the interaction network to mutations, successful 

engineering of enzymatic activity might require multiple perturbations [80–82] while in 

some cases single or double-mutations alone have been successful highlighting a certain 

degree of context-dependence. Deciphering this context dependence could be the way 

forward to engineer protein function at will.

Surface mutations also contribute to complex alteration of folded and unfolded ensembles 

apart from folding mechanisms [83–86]. It is therefore possible that even apparently neutral 

mutations modulate specific features of the native conformational ensemble which is 

however invisible or challenging to identify in the absence of a functional output. These 

observations underline the need to expand the outlook on mutational outcomes to include 

perturbation of native conformational ensembles, populated intermediate- and excited-states 

and redistribution of dynamics. Since mutations alter the evolutionarily constrained intra-

molecular network of interactions, they are also expected to reshape the folding funnel and 

hence tune folding mechanisms, aspects that could be explored with advanced computational 

protocols and experiments. However, there is still a distance to travel in understanding the 

impact of mutations at a distal site in more functional terms — will a specific mutation at a 

distant site enhance or diminish binding affinity to the substrate? Detailed and intimate 

characterization of mutational effects supplemented with quantitative modeling could thus 

open up new vistas with implications in protein design, function and allostery.
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Figure 1. 
Mutational effects are consistently felt over long distances with evidence available from 

varied approaches. (a) Average changes in network connectivity, quantified by betweenness 

centrality (CB), plotted as a function of mean Cα-Cα distance from the mutated site from a 

‘toy’ model of Ubiquitin that treats protein residues as nodes and their interactions as edges 

[11•]. (b) Experimental chemical shift perturbations on mutations mapped on to the structure 

of SNase (L125A; [17•]) and Ubiquitin (L43A; [14]), respectively. (c) Residues whose NMR 

order parameters are affected (green) on core mutations of residues shown in yellow in CI2 

[13]. Reprinted with permission from Ref. [13], Copyright (2008), American Chemical 

Society. (d) Experimental chemical shift perturbations as a function of distance from the 

mutated site for specific ubiquitin mutations [11•,25•]. (e) Mean absolute changes in van der 

Waals packing interactions (ordinate in kJ mol–1) for seven core substitutions in ubiquitin 

plotted as a function of distance from the mutated site from all-atom MD simulations 

(circles) together with an exponential fit (red) [11•]. (f) A cartoon representation of how 

perturbation of a residue (red) affects not only its first-shell neighbors (blue and interactions 

as black arrows) but also the neighbors of neighbors (green and interactions as white 

arrows).
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Figure 2. 
Stability changes and modulation of the folding-function landscape. (a) Projection of 

conformations onto a two-dimensional landscape generated from the WSME model for WT 

ubiquitin and its mutant L43A. nN-term and nC-term represent the number of residues 

structured in the N- and C-terminii, respectively. The arrow points to intermediate-like states 

in the landscape that are stabilized on mutations (N stands for native and U for unfolded 

macrostates). (b) (Left Panel) Changes in the secondary-structure upon mutating a proline to 

alanine (P33A) in a disordered protein CytR. Note that the proline is present in the loop 

region connecting two helices and not nucleating a helix. (Right Panel) One-dimensional 

free energy profiles as a function of the number of structured residues as the reaction 

coordinate (RC). The landscape is non-trivially modified with the population of a folded-like 

excited state decreasing on proline substitution [46].
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Figure 3. 
A structural perturbation approach (SPA), an in silico version of alanine-scanning 

mutagenesis, towards understanding allosteric coupling [62•]. (a) Changes in packing 

density (∆Q) as a function of distance upon L56A substitution in ubiquitin extracted through 

the SPA. The red curve is a single-exponential fit highlighting a coupling distance (dC) of 

4.8 Å. (b) The coupling distance is approximately linearly related (red line) to the overall 

perturbation magnitude (abscissa). This indicates that larger residues that are located in the 

protein interior are extensively coupled, the perturbation of which can contribute to 

significant changes in packing density and hence dynamics-folding-function behaviors. The 

gray circles are from a perturbation analysis of all residues in six different proteins while the 

green circles are block averages. (c) Perturbation of the residues in red in PDZ3 reveals 

strong coupling to several residues (blue) that can potentially modulate the binding of the 

peptide (yellow). Note that Y92, a PTM site, is located in vicinity of the perturbed residues 

indicating how information on PTM could be transmitted to the binding site. (d) An SPA of 

the three residues shown in red again results in an exponential dependence of ∆Q (blue 

circles). The coupled residues identified using the statistical coupling analysis (SCA) is 

shown as filled circles are in good agreement with that predicted from the SPA. (e) A 

schematic of how longrange coupling can be extracted from the SPA. The perturbed residue 

is shown in red, unperturbed residues in gray, the contact map as the upper left triangular 

matrix and the ∆Q-map as the lower right triangular matrix. On perturbing a residue in red, 

apart from the first-shell neighbors (dark blue), the second shell is also affected (dark green) 

that constitutes a significant fraction in a small single-domain protein. The effective number 

of interactions that are lost are shown in the ∆Q-map (a uniform coloring code is employed 

for the sake of clarity).
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