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Abstract: Electroencephalogram (EEG) based motor imagery brain–computer interface (BCI) requires
large number of subject specific training trials to calibrate the system for a new subject. This results
in long calibration time that limits the BCI usage in practice. One major challenge in the development
of a brain–computer interface is to reduce calibration time or completely eliminate it. To address
this problem, existing approaches use covariance matrices of electroencephalography (EEG) trials as
descriptors for decoding BCI but do not consider the geometry of the covariance matrices, which lies
in the space of Symmetric Positive Definite (SPD) matrices. This inevitably limits their performance.
We focus on reducing calibration time by introducing SPD based classification approach. However,
SPD-based classification has limited applicability in small training sets because the dimensionality of
covariance matrices is large in proportion to the number of trials. To overcome this drawback, our
paper proposes a new framework that transforms SPD matrices in lower dimension through spatial
filter regularized by prior information of EEG channels. The efficacy of the proposed approach was
validated on the small sample scenario through Dataset IVa from BCI Competition III. The proposed
approach achieved mean accuracy of 86.13% and mean kappa of 0.72 on Dataset IVa. The proposed
method outperformed other approaches in existing studies on Dataset IVa. Finally, to ensure the
robustness of the proposed method, we evaluated it on Dataset IIIa from BCI Competition III and
Dataset IIa from BCI Competition IV. The proposed method achieved mean accuracy 92.22% and
81.21% on Dataset IIIa and Dataset IIa, respectively.

Keywords: motor imagery; symmetric positives definite matrices; brain-computer interface (BCI);
electroencephalography (EEG); Riemannian manifold

1. Introduction

Electroencephalogram (EEG) based brain–computer interfaces (BCI) detect neural activity from
brain scalp and translate them into control commands for external devices [1]. EEG based BCI systems
can be categorized as exogenous or endogenous, according to paradigm used to generate neural
activity [2]. An exogenous BCI derives its output from neural activity (EEG signals) generated due to
attentional selection of an external stimulus among many [3]. An endogenous BCI derives its outputs
from oscillatory neural activity, which is spontaneously controlled by the user [3]. Endogenous BCI
does not require external stimulus to generate specific neural pattern for BCI, in fact the user can
control BCI system voluntarily. Motor imagery (MI) is one such endogenous BCI paradigm where
neural activity is generated at the sensorimotor cortex due to the kinaesthetic imagination of a body
part (left/right hand) movement [4].

During MI, there is a rhythmic power decrease or increase in measured EEG signals from the
sensorimotor cortex. These phenomena are also known as event related desynchronization (ERD)
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and event related synchronization (ERS), respectively [5]. BCIs distinguish different MI tasks through
spatial and temporal properties of measured EEG signals [6]. Therefore, to increase the spatial and
temporal resolution, electroencephalogram (EEG) signals are recorded with multi-channel electrodes
system with high sampling rate. This results in high-dimensional signals.

MI-based BCIs are indeed very promising for people suffering from neuromuscular disorder,
but still lack adoption as access modalities outside laboratories. The main reason that prevents
MI-based BCIs from widely being used is high performance variations among and within subjects.
These performance variations are due to change in the external (user’s muscle movements, recording
condition and machine related causes) and internal (user’s cognitive state of mind) state of the user [7].
Therefore, it requires extensive training compared to exogenous BCI systems. During training and
calibration phase, new subjects learn to voluntarily regulate oscillatory EEG pattern and training trials
are collected to obtain discriminative features that are fed into machine learning algorithms for MI
classification [8].

The standard feature extraction techniques for motor imagery use covariance matrices of trials.
One such technique is common spatial pattern (CSP) that aims to determine optimal spatial filters that
discriminate two MI task (left/right) [9]. CSP requires large number of subject specific calibration trial
sessions to achieve good MI classification. These calibration sessions are very time consuming and not
user-friendly. Thus, it is desirable to reduce or remove the calibration entirely.

However, in the case of a small EEG calibration trials set, these covariance matrices poorly estimate
MI and therefore lead to poor performance of CSP. To address this, Lu et al. [10] proposed Regularized CSP,
which uses other subjects’ trials to construct MI classes spatial covariance matrices for new target subjects
that will be used to extract CSP features. In the same vein, Dai et al. [11] also employed transfer learning
technique to learn domain invariant CSP features from source and target subjects. Both approaches rely
on other subjects (source) to subject (target) transfer learning, which, in the worst case, might hurt the
performance of the target subject. This situation is often called negative transfer [12].

Unlike the above methods, Arvaneh et al. [13] suggested a technique that does not rely on source
subjects trials. Rather, this approach optimizes obtained CSP filters by using channels from brain
regions that have high variances between MI classes, and attenuates the noisy channels from regions
with low and irregular variances. Similarly, Lotte et al. [14] used spatial information of electrodes as
prior knowledge to regularize objective function of the CSP algorithm to obtain spatial filters. In similar
manner, Park and Chung [15] used electrodes from certain brain regions to extracted diverse CSP
features and obtain high accuracy compared to standard CSP under small training samples (trials).

The efficiency of spatial filter is sensitive to individual’s temporal and frequency characteristics.
To address subject specific frequency characteristics issue, Ang et al. [9] proposed filter bank CSP
(FBCSP) that uses multiple bandpass filters to extract CSP features. FBCSP may lose important
frequency information, as it uses fixed partition of the frequency (frequency width of 4 Hz, varying
from 4 Hz to 30 Hz). To address this problem, Yang et al. [16] proposed CSP feature extraction based
on varying partition of the frequency bands with different bandwidth to cover as many bands as
possible. In a similar way, Park and Lee [17] extended FBCSP by regularizing CSP features obtained
from multiple filter banks. They used other subjects’ trials covariance matrices to regularize filter
bank CSP features. Zhang et al. [18] proposed a method that simultaneously optimizes filter bands
and time window used to obtain CSP features to further boost classification accuracy of MI. Filter
bank-based methods result in a high dimensional CSP feature set, therefore requires a feature selection
algorithm to select discriminative CSP features for MI classification. To address the feature selection
problem, Selim et al. [19] used bio-inspired optimization algorithm for feature selection. They also
selected optimal time interval for each subject to extract CSP features. Unlike the above methods,
Tang et al. [20] used a convolutional neural network model to classify MI tasks based on spatiotemporal
characteristics of EEG. Furthermore, Tabar and Halici [21] combined convolutional neural network
and stacked autoencoders to classify EEG Motor Imagery signals.
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All methods discussed above use covariance matrices of trials to extract CSP features (log variance)
into a vector in Euclidean space. Furthermore, pattern recognition metrics used to classify features also
lies in Euclidean space. As covariance matrices lie in the symmetrical positive definite (SPD) matrices
manifold, these methods fail to notice distinct characteristic of EEG data such as their interrelation
across the manifold dimensions [22].

The effectiveness of data treatment based on the concept of geometrical properties was proved by
Barachant et al. [23]. They proposed minimum distance to Riemannian mean (MDRM) classification
technique that adopts Riemannian distance as pattern recognition metric to classify test trials. MDRM
outperforms standard CSP approach, but performance of MDRM declines as the size of covariance
matrices grows. Under small training set, the size of covariance matrices are larger than the number of
trials. Therefore, MDRM algorithms encounter the curse of dimensionality problem [24].

To address dimensionality problem, Horev et al. [25] adapted PCA to the space of SPD matrices,
which conserves more data variance and maps covariance matrices to a lower-dimensional SPD
manifold. In a similar manner, Harandi et al. [26] learned mapping that maximizes the geodesic
distances between inter-class samples and simultaneously minimizes the distances between intra-class
samples. This was done via optimization on Grassmann manifolds. This algorithm tries to preserve
the local structure of the data by preserving distance to local means, considers the geometry of SPD
matrices, provides an implicit mapping and applies the supervised information for embedding to
lower-dimensional space. Furthermore, Davoudi et al. [24] extended Harandi’s work by proposing
another dimensionality reduction algorithm for the manifold of SPD matrices which preserves the
local structure of data by preserving distance to local mean (DPLM). This algorithm can work in a
supervised (sDPLM) or unsupervised (uDPLM) manner and projects a high-dimensional SPD manifold
to a lower-dimensional one. In the same vein, Kumar et al. [27] also addressed dimensionality issue
of covariance matrices by using spatial filtering. The drawback of this method is that it requires
many subject-specific trials to optimize spatial filter performance. In this paper, we propose a method
that uses the best of both Euclidean and SPD space. We use prior information of EEG electrodes to
obtain spatial filter that transform sample covariance matrices (SCM) into lower dimension. Then,
Riemannian distance is used as pattern recognition metric for classification as it is invariant to any
linear invertible transformation [28].

The rest of the paper is organized as follows. In Section 2, we review the space of SPD matrices and
MDRM classification approach. Section 3 presents our proposed SR-MDRM classification approach.
Section 4 describes the experiment as well as datasets. In Section 5, we discuss and compare results of
the experiment with existing studies. Section 6 draws the conclusions regarding proposed approach.

2. Geometry of SPD Matrices

An n × n square matrix C falls in the space of symmetric positive definite SPD(n) if C = CT ,
uTCu > 0 and ∀u 6= 0. Equivalently, SPD matrices have the following properties:

1. ∀C ∈ SPD(n), C−1 ∈ SPD(n) i.e., SPD matrices are invertible.
2. ∀C ∈ SPD(n), eigenvalues are positive i.e., λ(C) > 0.

Ck, log(C) and exp(C) operation on C ∈ {SPD(n),Rn×n} are defined by its eigenvalues (λi) and
eigenvector U as:

Ck = Udiag([λk
1, ..., λk

n])U
T (1)

log(C) = Udiag([log(λ1), ..., log(λn)])UT (2)

exp(C) = Udiag([exp(λ1), ..., exp(λn)])UT (3)

Covariance matrices of EEG trial lies in symmetric positive definite matrices manifold [29].
Covariance matrices hold spatial information for EEG trial and can directly be used for classification.
SPD matrices lie on a differentiable Riemannian manifold. Therefore, all properties of the Riemannian
manifold are applicable to SPD matrices.
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2.1. Riemannian Natural Manifold

A Riemannian manifold is the topological space [22] where each point C’s derivative lies in a
Euclidean vector space T (N) that is tangent at that point, as shown in Figure 1.

In the case of Riemannian manifold R(N), the tangent space T (N) is a space of symmetric
matrices (S(n), ST = S).

A point (matrix) Ci is projected to tangent space T (N) using logarithmic mapping LogC(Ci) as

Si∈ T (N) = LogC(Ci) = C1/2logm(C−1/2CiC−1/2)C1/2 (4)

where C is a reference point in the manifoldR(N) where the tangent plane is mapped and logm(.) is
logarithm of SPD matrix given in Equation (2). Furthermore, the tangent vector Si from tangent space
T (N) is projected back to manifoldR(N) using exponential mapping ExpC(Si) given by

Ci∈ R(N) = ExpC(Si) = C1/2expm(C−1/2SiC1/2)C1/2 (5)

where expm(.) is exponential of SPD matrix, as shown in Equation (3).

Figure 1. Illustration of Tangent space at point C. Tangent vector Si is the projection of Ci and Rd is the
geodesic between C and Ci [4].

2.2. Riemannian Distance

Riemannian distance is a unique and shortest (geodesic) curve connecting two points C1 and C2
in the Riemannian manifoldR(N). It is given by

Rd(C1, C2) = ‖ log(C−1/2
1 C2C−1/2

1 )‖F = (
n

∑
i=1

log2 λi)
1/2 (6)

where ‖.‖F is the Frobenius norm and λi’s are the positive eigenvalues of C−1/2
1 C2C−1/2

1 . The
Riemannian distance Rd(C1, C2) is invariant to any linear invertible transformation [28]:

Rd(ATC1 A, ATC2 A) = Rd(C1, C2) (7)

where A is an invertible matrix. The Riemannian distance between two points in manifoldR(N) can be
approximated in tangent space T (N) by approximating the distance between projected tangent vectors
through a reference point C. To obtain a good approximation of the Riemannian (geodesic) distance,
reference point C needs to be close to two points in the manifoldR(N). Usually, the Riemannian mean
ΠR is the most suitable choice for the reference point.
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2.3. Riemannian Mean (Choice of Reference Point)

The Riemannian mean is a unique point in the manifold R(N) that gives better local
approximation of the manifold when it is mapped to the tangent space [4]. It minimizes the sum of
squared Riemannian distances. It is also referred to as the geometric mean of SPD matrices and is
given by

ΠR(C1, ..., CN) = arg min
C∈SPD(N)

N

∑
i=1

Rd
2(Ci, C) (8)

The mean of N SPD matrices such as EEG trials covariance matrices keeps shifting due to the
non-stationarity of EEG signals. Therefore, it needs to be iteratively computed whenever any new
trials are collected. The computation of the Riemannian mean ΠR goes through the following steps
until it converges. Firstly, covariance matrices are projected in the tangent space using a Riemannian
log map. Secondly, the tangent space of Riemannian manifold is Euclidean, therefore arithmetic mean
ΠT can be easily computed. The arithmetic mean ΠT is a point C that minimizes the sum of squared
Euclidian distances Td between projected SPD matrices and is given by

ΠT (C1, ..., CN) = arg min
C∈SPD(N)

N

∑
i=1

Td
2(Ci, C) (9)

Finally, the arithmetic mean is projected back to the manifold using exponential mapping.

2.4. Minimum Distance to Riemannian Mean (MDRM)

MDRM is a classification approach that uses the Riemannian mean of each class and its
Riemannian distance to test covariance matrix of the trial to predict a label for it. In this approach,
the Riemannian mean is calculated for each class using its labeled training trials, and then the
Riemannian distance of each class is calculated with respect to test trial’s covariance matrix. The class
mean that is closest to test trial covariance becomes the trial’s label.

pred(Cx) = arg min
ϕ=1,2..C

Rd(Cx, Cµ) (10)

where Cx is the covariance matrix of the test trial, Cµ is the Riemannian mean of Class ϕ and pred(Cx) is
the prediction of its class label. The MDRM approach is not robust to noise [24], therefore, some filtering
over SPD matrices is required. Barachant et al. [30] suggested geodesic filtered MDM (FGMDM)
approach, which computes set of filters by applying a supervised Fisher geodesic discriminant analysis
(FGDA) to the tangent (Euclidean) space projection of covariance matrices. The obtained filters
are applied through geodesic filtering approach [30] over SPD matrices. This filtering operation
do not change any dimension of the SPD matrices. Finally, the filtered SPD matrices are used for
MDRM classification.

3. Methodology

The conceptual framework of our proposed methodology is shown in Figure 2. EEG signals
are often divided into trials based on the label given during training phase. Let Xi ∈ (RN×T) be a
bandpassed EEG trial where N is number of electrodes and T is sampled time points in the trials
and trial labels ϕi ∈ (1, 2). Therefore, the training set can be given as {Xi, ϕi}M

i=1 where M is the total
number of training trials. The covariance matrix Ci for trial Xi is calculated as follows:

Ci =
XiXT

i
tr(XiXT

i )
(11)
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where tr(.) denotes the trace operator of the matrix, and the superscript T denotes the transpose of the
matrix. The sample covariance matrix for class can be obtained by taking sum of sample covariance
matrices for M trials that belong to it. It is calculated as follows:

Cϕ =
M

∑
m=1

C(ϕ,m) (12)

where M is the total trial number of each class, and m is the index of the trial (m ≤ M). ϕ denotes the
class index, and we consider only two classes (ϕ ∈ {1, 2}) in this paper. Spatial filters w through CSP
are obtained by extremizing the following function:

J(w) =
wTC1w
wTC2w

(13)

This is an optimization problem that can be solved by Lagrange multiplier method using
Equation (14):

L(λ, w) = wTC1w− λ(wTC2w− 1) (14)

The filters w extremizing L are such that the derivative of L with respect to w equals 0:

∂L
∂w

= 2wTC1 − 2λwTC2 = 0

⇔ C1w = λC2w

⇔ C−1
2 C1w = λw (15)

Equation (15) is a standard eigenvalue problem. To get optimal results, first and last k eigenvectors
of C−1

2 C1 are used as the spatial filters w. From a neuro-physiological point of view, neighboring
brain cells tend to function similarly, so neighboring electrodes should measure similar brain activity
signals [31]. Thus, we can expect that neighboring channels of the spatial filter should have similar
weights (i.e., smooth spatial filter). To obtain smooth spatial filter, we use the spatial information of
electrodes as a prior knowledge [14] to penalize objective function of CSP algorithm. Smooth spatial
filters w can be obtained by extremizing the following functions:

JP1(w) =
wTC1w

wTC2w + αP(w)
and JP2(w) =

wTC2w
wTC1w + αP(w)

(16)
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Figure 2. Framework for proposed approach.
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The penalty term P(w) measures the spatial smoothness of the spatial filters w, where P(w) =

wTKw with K = D − G. G is a Gaussian Kernel such that Gij = exp− 1
2 (
||vi−vj ||2

r2 ), with vi a vector
containing 3D coordinates of the ith electrode. D is a diagonal matrix such as Dii = ∑j Gij. Therefore,
wTKw = wT(D − G)w = ∑i,j Gij(wi − wj)

2. There are two hyperparameters (r, α) in regularized
objective function. The first hyperparameter r defines how far two electrodes can be to be still
considered as close to each other and the second hyperparameter α defines the level of spatial
smoothness the filters should reach. Equation (16) becomes:

JP1(w) =
wTC1w

wTC2w + αwTKw
and JP2(w) =

wTC2w
wTC1w + αwTKw

(17)

using Lagrangian multiplier method, the solution is obtained as,

M1 = (C2 + αK)−1C1 and M2 = (C1 + αK)−1C2 (18)

We construct the projection matrix Wp ∈ R2N×N using Equation (19)

Wp = [M1M2] (19)

The EEG signal trial is transformed with Wspatial made from the first and last k columns of Wp by
using Equation (20)

Zi = WspatialXi (20)

where Zi ∈ R2k×T is transformed signal corresponding to Xi. Sample covariance matrices Ctrain
i of

filtered EEG trials Zi from the target’s training set are calculated using Equation (11). These SCMs
Ctrain

i are used to obtain FGDA filter for geodesic filtering by using an algorithm, as mentioned in [30].
After geodesic filtering, filtered SCMs (STrain

i and STest
i ) for target subject’s training and test trials

are obtained. Finally, filtered SCMs of the target subject’s training set (STrain
i ) are used in calculating

Riemannian mean CΠR ϕ for both motor imagery classes. These Riemannian means are used for MDRM
classification [30] of test trials STest

i .

4. Data and Experiment

To assess the performance of our method for small training setting, we used the EEG Dataset
IVa from BCI Competition III. Furthermore, we compared it with existing methods designed for
small training set scenario. To confirm the robustness of proposed approach, we evaluated it over two
publicly available datasets with a different number of EEG channels from BCI competition. A summary
of the three datasets is given in Table 1.

4.1. Dataset IVa, BCI Competition III

Dataset IVa [32] contains EEG signals of binary (right hand and foot) motor imagery tasks from
five healthy subjects. EEG signals were recorded using 118 electrodes at 100 Hz sampling rate. There
are a total 280 trials per subject that are unevenly divided into training and testing set for each subjects,
as shown in Table 1.

4.2. Dataset IIIa, BCI Competition III

Dataset IIIa [32] comprises of EEG signals of multi-class (right hand, left hand, tongue and foot)
motor imagery (MI) tasks from three subjects (“k3b”, “k6b” and “l1b”). EEG signals were sampled
at 250 Hz rate and recorded using 60 electrodes. In this study, we used EEG signals from trials
corresponding to binary MI class (left/right). There are total 180 trials for subject “k3b” and 120 trials
for subjects “k6b” and “lib”, respectively.
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4.3. Dataset IIa, BCI Competition IV

Dataset IIa [33] contains of data recorded from 22 EEG channels and 3 EOG channels at sampling
rate of 250 Hz. Dataset IIa contains multi class EEG signals from nine subjects, namely A01–A09.
In this experiment, we considered data collected from 22 EEG electrodes corresponding to left and
right MI class from each of nine subjects. Table 1 shows number of training and testing trials for
all subjects.

Table 1. Summary of Dataset IVa, Dataset IIIa and Dataset IIa from BCI competitions (BCIC).

BCI Competition (BCI-C)
Dataset

BCI-C III BCI-C IV
Dataset IVa Dataset IIIa Dataset IIa

Electrodes 118 60 22
Sampling Rate 100 Hz 250 Hz 250 Hz
Subject aa al av aw ay k3b k6b l1b A01–A09
Train 168 224 84 56 28 90 60 60 144
Test 112 56 196 224 252 90 60 60 144

4.4. Experimental Setup

This study was carried out using a Windows 10 computer with specification Intel (R) Core TM

i5–6500 CPU @3.20 GHz with 8 GB RAM. All conventional methods (CSP and MDRM) and proposed
algorithm were designed and tested in Matlab R2018a.

The study comprised six steps. Firstly, we used a time segment from 0.5 s to 2.5 s after the visual
cue for all the datasets considered for this study [34,35]. Thus, trials respective to Dataset IVa, Dataset
IIIa and Dataset IIa comprised 200, 500 and 500 sampled time points. Secondly, all trials were filtered in
frequency range within 7–30 Hz through fifth order Butterworth bandpass filter. This frequency band
was selected as it comprises the alpha and beta frequency bands, which have been shown to be most
important for MI task classification [36,37]. Thirdly, spatial filters were learned using regularization
parameters α ∈ [10−10, 10−9, ..., 10−1] and r ∈ [0.01, 0.02, ..., 0.09, 0.1]. In the fourth step, the EEG signals
were transformed into lower dimension using regularized spatial filter. In the fifth step, covariance
matrices for training trials were employed to obtain FGDA filters. Lastly, after geodesic filtering,
Riemannian mean for each MI class was calculated using training trials covariance matrices and labels
were assigned to test trials based on their distance from the Riemannian mean of MI classes. For CSP
and MDRM, we used the same time-segment, filter order and frequency band as described for the
proposed method.

4.5. Evaluation Metrics

To evaluate the performance of proposed method, we used classification accuracy and kappa
coefficient as evaluation metrics. In binary classification case, accuracy can be calculated as described
in Equation (21).

Accuracy =
a + b

a + b + c + d
(21)

where a is the number of positive samples correctly identified, b is the number of negative samples
correctly identified, c is the number of negative cases incorrectly identified, and d is the number of
positive cases incorrectly identified. Kappa coefficient compares the accuracy of the system to the
accuracy of a random system. It is defined as

kappa =
observeredAccuracy− randomAccuracy

1− randomAccuracy
(22)
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where random accuracy is given by

randomAccuracy =
(b + c) ∗ (b + d) + (d + a) ∗ (c + a)

(a + b + c + d)2 (23)

5. Results and Discussion

We evaluated the performance of the proposed approach (SR-MDRM) on the three datasets, and
compared it with conventional (CSP and MDRM) methods as well as benchmark results reported in
the literature. Table 2 shows regularization parameters used in SR-MDRM classification for all subjects
belonging to different datasets.

Table 2. Regularization Parameters α,r of SR-MDRM for all subjects belonging to different datasets.

PARAMETERS
Dataset IVa Dataset IIIa Dataset IIa

AA AL AV AW AY K3B K6B L1B A01 A02 A03 A04 A05 A06 A07 A08 A09

α 10−1 10−4 10−5 10−5 10−1 10−4 10−3 10−10 10−4 10−2 10−3 10−3 10−4 10−2 10−3 10−10 10−10

r 0.06 all r
values

0.07 0.07 0.08 0.1 0.08 0.01 0.06 0.07 0.05 0.09 0.07 0.04 0.06 0.01 0.01

5.1. Dataset IVa, BCI Competition III

Table 3 shows the classification accuracy proposed method, winner of BCI Competition III on
Dataset IVa, CSP method and other benchmark results reported in the literature on Dataset IVa.

Table 3. Classification accuracy (Mean and Standard deviation in percent) of the proposed approach
and other MI classification approaches on Dataset IVa, BCI Competition III.

STUDIES METHODS Year AA AL AV AW AY MEAN STD

Conventional Method CSP 66.07 96.43 47.45 71.88 49.6 66.28 19.83
Belwafi et al. [38] WOLA-CSP 2018 66.07 96.07 52.14 71.43 50 67.29 18.54
Arvaneh et al. [13] SSCSP 2011 72.32 96.42 54.10 70.53 73.41 73.35 15.09
Lotte and Guan [14] SRCSP 2010 72.32 96.43 60.20 77.68 86.51 78.63 13.77
Selim et al. [39] RMS/LDA 2016 69.64 89.29 59.18 88.84 86.90 78.77 13.65
Dai et al. [11] TKCSP 2018 68.10 93.88 68.47 88.40 74.93 79.17 11.78
Park and Lee [17] SBRCSP 2017 86.61 98.21 63.78 89.05 73.81 82.69 13.53
Park and Chung [15] SSS-CSP 2018 74.11 100 67.78 90.07 89.29 84.46 13.05
Selim et al. [19] CSP/AM-BA-SVM 2018 86.61 100 66.84 90.63 80.95 85.00 12.30
Proposed Method SR-MDRM 79.46 100 73.46 89.28 88.49 86.13 10.15
Wang et al. [32] Winner 96.00 100 81.00 100 98.00 94.20 8

As shown in Table 3, our method outperformed the existing studies in the literature, except for the
winner. In this study, we used same approach for all subjects; on the contrary, winner [32] did not use
the same approach for all subjects. Wang et al. (winner) [32] used an ensemble classifier based on CSP,
autoregressive (AR) and Temporal waves of readiness potential (RP). Only CSP method was applied
for subject AL, AW and AY but for subject AA and AV combination of all three methods (CSP–AR–RP)
was used. Moreover, for subjects with fewer training data (AW and AY), they used former classified
test sample as extended training samples, whereas our proposed approach used only training samples
even for subjects with limited training trials. Therefore, it is unfair to compare our simple methods
with the first winner.

Selim et al. [19] used subject specific optimal time interval for CSP feature extraction.
Furthermore, they used hybrid bio-inspired algorithms for feature selection and classifier optimization.
They achieved 85% classification accuracy, which is slightly ( 1.13% ) less than the proposed approach.
One drawback of this approach is that the classifier optimization takes a very long time. Park and
Chung [15] used a set of various local channels region to extract CSP features. They used eigenvalue
disparity score to select CSP features from the local channel region and support vector machine (SVM)
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classifier to classify extracted features. They obtained 84.46% accuracy, which is less than the proposed
approach by 1.67%. Park and Lee [17] (SBRCSP) focused on regularizing CSP features from filter
bank using other subjects training trials. Their results were less than the proposed approach by 3.44%.
In the same vein, Dai et al. [11] implemented a “Transfer Kernel CSP” (TKCSP) approach to learn
a domain-invariant kernel by directly matching distributions of source subjects and target subjects.
Similar to our approach, they employed all 118 channels to obtain 82.69% which is less than our
approach by 6.96. Both TKCSP and SBRCSP have the same drawback, as they rely on other subjects’
(source) training trials.

Selim et al. [39] used root mean square (RMS) features for LDA classifier to obtain 78.77% accuracy
with 7.36% less than that of proposed approach. Lotte and Guan [14] penalized CSP objective function
to obtain smooth filters to extract features and achieved 78.63%, which is less than proposed approach
by 7.50%. Similarly, Arvaneh et al. [13] implemented “Spatially Sparsed CSP” (SSCSP) filters to extract
CSP features. Their results were less than the proposed approach by 12.63%. Belwafi et al. [38] used
weighted overlap-add (WOLA) algorithm to perform dynamic filtering of EEG-signals for filter bank
CSP method. Their method achieved 67.29% classification accuracy, which is less than our approach by
18.85%. Our method improved the mean classification accuracy by 19.85% compared to CSP method.

Our proposed method shows the highest classification accuracy for subject AL. Lotte and
Guan [14] identified subject AV as BCI illiterate with CSP method because their performance was below
55% (close to random). However, with SR-MDRM, subject AV achieved 73.46% classification accuracy.
Subject AV would no longer be identified as illiterate. Subject AY’s accuracy improved drastically with
only 28 training trials. Thus, we might hypothesize that adding spatial prior along with geometry
based classification increases accuracy despite the limited amount of training data.

The regularization parameter r controls the trade off between accuracy and filters sparsity.
Therefore, the optimal r value must be selected to increase the accuracy. Figure 3 shows the effect
of r values on the classification accuracy values of all subjects with fixed (best) α value. Subject AL

reached maximum accuracy independent from value of r parameter. This is because AL had sufficient
training data. Other subjects performance showed dependence on the value of r and reached maximum
accuracy for particular r and α value.
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Figure 3. Classification accuracy of all subjects from Dataset IVa with respect to parameter r and best
value of α.

Table 4 shows performance of SPD manifold based classification methods for all the subjects
in kappa values. As shown in Table 4, our method outperformed all existing methods. In addition,
SR-MDRM obtained highest kappa value for subjects AL, AV and AW. As Dataset IVa represents a small
sample setting, results obtained on it signify that SR-MDRM is suitable for small sample scenarios.
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Table 4. The performance of proposed approach and existing Riemannian geometry based approaches
on Dataset IVa of BCI Competition III in terms of kappa values.

Studies Year aa al av aw ay Mean

Barachant et al. [23] Mdrm 0.22 0.86 0.25 0.13 0 0.29
Harandi et al. [26] Mdrm 2014 0.23 1.00 0.40 0.53 0.82 0.59
Horev et al. [25] Mdrm 2017 0.62 0.96 0.42 0.68 0.60 0.65
Davoudi et al. [24]-uDplm 2017 0.57 1.00 0.39 0.64 0.72 0.66
Davoudi et al. [24]-sDplm 2017 0.63 1.00 0.46 0.66 0.78 0.70
sr-Mdrm 0.58 1 0.47 0.79 0.77 0.72

5.2. Dataset IIIa, BCI Competition III

Dataset IIIa is also a good test environment for proposed approach, as it also has limited training
samples and high EEG signals dimensionality. Table 5 presents classification accuracy of proposed
method and other existing methods on Dataset IIIa. As shown in Table 5, SR-MDRM method on average
improved performance by 4.59%, 7.97%, 8.70%, 9.26%, 10.56%, and 11.11% compared to TGCSP [18],
WOLA-CSP [38], CSP, HOREV-MDRM [25], MDRM [23] and SRCSP [35] methods, respectively.

Table 5. Classification accuracy (Mean and Standard deviation in percent)of the proposed approach
and other MI classification approaches on Dataset IIIa, BCI Competition III.

STUDIES METHODS YEAR K3B K6B L1B MEAN STD

Proposed Method SR-MDRM 100 76.67 100 92.22 13.46
Zhang et al. [18] TSGSP 2018 99.2 67.2 96.5 87.63 17.74
Belwafi et al. [38] WOLA-CSP 2018 97.77 61.66 93.33 84.25 19.69
Conventional Method CSP 95.56 61.67 93.33 83.52 18.95
Horev et al. [25] HOREV-MDRM 2017 95.56 68.33 85 82.96 13.72
Barachant et al. [23] MDRM 96.66 60 88.33 81.66 19.21
Lotte and Guan [35] SRCSP 2011 96.67 53.33 93.33 81.11 24.11

In Figure 4, the SR-MDRM method shows a higher mean classification accuracy than the six other
methods. In addition, the SR-MDRM method shows the highest classification accuracy for individual
subjects. That is, Figure 4 clearly shows that the SR-MDRM method is more efficient for binary motor
imagery classification than the other six methods.

Zhang et al. [18] proposed temporally constrained sparse group spatial pattern (TSGSP) method;
their performance was slightly less than our method. In their study, they simultaneous optimized filter
bands and time window to extract CSP features for classification to obtain mean accuracy of 87.63%.
Dataset IIIa is recorded with (60) electrodes, thus covariance matrices dimensionality is less compared
to Dataset IVa (118× 118). MDRM method’s performance improved due to small size of covariance
matrices. As shown in Figure 4, it is marginally less (1.3%) than Horev’s MDRM [25] method, which
adapted PCA to map covariance matrices to a lower-dimensional SPD manifold. Interestingly, standard
CSP performed better than spatially regularized CSP method proposed [35] on Dataset IIIa.

Subject K6B’s performance improved drastically with our proposed approach. Subject K6B gained
9.47% classification accuracy more then the state-of-the-art method TGCSP [18]. Figure 5 shows the
classification accuracy values of subject K6B according to the parameter r and α, respectively. Subject
K6B reached maximum accuracy at α = (10−3) and r = 0.08 values. It proves our hypothesis that
spatial prior and geometry based treatment of data helps achieve the highest classification accuracy
under small training sample.
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Figure 4. Classification accuracy of the proposed approach and other MI classification approaches on
Dataset IIIa, BCI Competition III.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Parameter (r)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1
0
*L

o
g
1
0
(

)

55

60

65

70

75

76.67

Figure 5. Classification accuracy according to parameter r and 10 log10(α) of the proposed approach
on subject K6B from Dataset IIIa, BCI Competition III.

5.3. Dataset IIa, BCI Competition IV

Dataset IIa has sufficient training trails per subjects and EEG signals are low dimensional (22
channels), as shown in Table 1. It is a good test environment to check for the robustness of our proposed
approach under low dimensional and sufficient training samples.

Table 6 shows the classification accuracy of existing methods and proposed method (SR-MDRM)
on Dataset IVa. For subjects A02, A03, A04 and A07, the proposed method achieved highest accuracy
compared to existing methods in the literature. Similar to our proposed approach, Gaur et al. [40] used
Riemannian geometry to classify features obtained through subject specific multivariate empirical
mode decomposition method (SS-MEMD). They achieved higher accuracy for subject A09 and mean
accuracy was slightly less than proposed approach. Due to lower dimensionality of covariance matrices
in Dataset IIa, MDRM method outperformed other methods for subjects A01 and A05.

As shown in Table 6 the SR-MDRM method improves the mean classification accuracy by 1.29%,
1.77%, 2.37%, 2.44%, 3.21%, 7.38% and 6.30% in comparison with SS-MEMDBF, MDRM, WOLA-CSP,
SRCSP, CSP, TLCSP1, and TLCSP2, respectively.



Sensors 2019, 19, 379 14 of 16

Table 6. Classification accuracy (mean and standard deviation in percent) of the proposed approach
and other approaches on Dataset IIa, BCIC IV.

STUDIES Methods Year A01 A02 A03 A04 A05 A06 A07 A08 A09 MEAN STD

Proposed Method SR-MDRM 90.21 63.28 96.55 76.38 65.49 69.01 81.94 95.14 93.01 81.22 12.43
Gaur et al. [40] SS-MEMDBF 2018 91.49 60.56 94.16 76.16 58.52 68.52 78.57 97.01 93.85 79.93 14.14
Barachant et al. [23] MDRM 91.61 57.03 90.21 73.61 73.94 68.31 75 95.14 90.21 79.45 12.92
Belwafi et al. [38] WOLA-CSP 2018 86.81 63.19 94.44 68.75 56.25 69.44 78.47 97.91 93.75 78.85 15.15
Lotte and Guan. [35] SRCSP 2011 88.89 63.19 96.53 66.67 63.19 63.89 78.47 95.83 92.36 78.78 14.77
standard Method CSP 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.75 78.01 17.01
Raza et al. [41] TLCSP1 2016 90.28 54.17 93.75 64.58 57.64 65.28 62.5 90.97 85.42 73.84 15.93
Raza et al. [41] TLCSP2 2016 90.28 57.64 95.14 65.97 61.11 65.28 61.11 91.67 86.11 74.92 15.42

6. Conclusions

We propose spatially regularized Symmetric positive definite (SPD) matrices based motor imagery
classification method. This method incorporates prior information of EEG electrodes to obtain spatial
filters that transform sample covariance matrices into lower dimension and maximize the variance
between two motor imagery task in small sample setting. The proposed method takes advantage of
geometrical properties of covariance matrices by employing Riemannian distance as pattern recognition
metric for classification as it is invariant to any linear invertible transformation. The efficacy of the
proposed approach was validated on three public datasets from BCI competition. Our proposed
method transcends other approaches in existing studies on all three datasets.
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