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Abstract

I present here an overview of research on the biology of neuromuscular sensory and motor endings that was

inspired and influenced partly by my educational experience in the Department of Zoology at the University of

Durham, from 1971 to 1974. I allude briefly to neuromuscular synaptic structure and function in dystrophic

mice, influences of activity on synapse elimination in development and regeneration, and activity-dependent

protection and degeneration of neuromuscular junctions in WldS mice.
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It was extremely gratifying to return to Durham, at the invi-

tation of Bob Banks and Guy Bewick, to present at this cele-

bratory Symposium some of the research that has occupied

me since I left Durham University in the mid-1970s, where I

had been an undergraduate (BSc with Joint Honours in

Chemistry and Zoology, 1974).

Early days

I was profoundly influenced by my teachers in the Zoology

Department, especially David Barker, and by his colleagues

Ken Bowler, David Hyde, Mike Stacey, David Harker and

Alice Milburn. In particular, we learned in our lectures and

laboratory practical classes all about the controversial

debate that prevailed during the late 1960s and throughout

the 1970s (largely at odds with IA Boyd and his colleagues

in Glasgow) over the question of segregation of the gamma

motor innervation of the intrafusal nuclear bag and nuclear

chain muscle fibres of muscle spindles in the cat, illustrated

eloquently but dispassionately by some of the elegant

experiments co-ordinated by Barker, that attempted to

resolve this issue (Barker et al. 1977; Boyd et al. 1977). Bar-

ker’s lectures were among the most exciting, for me, of my

time at Durham because they were patiently delivered with

a great deal of thought, in a wholly engaging way, and

founded on a balanced view of the evidence, including

accounts and arguments based on ongoing and unpub-

lished research. At the same time, I learned all about the

ultrastructure of motor neurons, axons and neuromuscular

junctions (NMJs) under Mike Stacey’s tutelage at the helm

of the department’s electron microscope, and about mecha-

nisms of neuromuscular transmission under David Hyde’s

calm and insightful tutorial supervisions. From David Harker

and Alice Milburn, I learned how to stain intramuscular

nerves, using the silver chloride method so adroitly applied

by the Barker lab, and to stain NMJs for cholinesterase activ-

ity, then to make teased preparations of this stained neuro-

muscular material for conventional light microscopy. I also

carried out an undergraduate research project, on oxidative

phosphorylation in blowfly flight muscle mitochondria,

encouraged by the infectious enthusiasm and rigorous

direction of Ken Bowler. Indeed, were it not for the lure of

the bright lights (literally) of electrophysiological apparatus

at the Muscular Dystrophy Laboratories in Newcastle, and a

fortuitous series of circumstances that led me there, I would

have stayed on with Bowler for my PhD training.

Neuromuscular synaptic structure and
function in dystrophic mice

As it turned out, however, I migrated a few miles up the

road and took up post as an MRC PhD student at the Muscu-

lar Dystrophy Laboratories, under John B Harris’ expert

supervision, in the autumn of 1974. However, I renewed my

connections with Durham shortly afterwards. By that time,
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Barker’s group had been joined by Bob Banks, who brought

and meticulously applied an approach that combined physi-

ological recording and microanatomical description (Banks

et al. 1978, 1998, 2009; Banks & Barker, 1989; Banks, 1994,

2006). Meanwhile, I honed the skills I had learned at Dur-

ham in single-fibre teasing, together with electrophysiologi-

cal analysis of neuromuscular synaptic transmission that I

learned from John Harris, and I subsequently brought them

to bear on an experimental investigation that related to

another controversy around that time, namely whether the

signs and symptoms of muscular dystrophy were due to a

significant amount of ‘functional denervation’ (Harris & Rib-

chester, 1979a). I also adapted a technique I first heard

about during Barker’s lectures at Durham: intracellular

staining of muscle fibres by microinjection of Procion dyes,

in order to correlate microanatomy with electrophysiology

(Barker et al. 1978). I put all these techniques and my

acquired skills together, which enabled us to report with

confidence that functional denervation was not a sufficient

explanation for pathology in the signs and symptoms of

murine muscular dystrophy in the dy/dymouse mutant (Har-

ris & Ribchester, 1978, 1979b).

Neuromuscular synapse elimination in
development and regeneration

An important lesson that I learned from Barker and his col-

leagues was to be ever vigilant and skeptical of tidy biologi-

cal explanations: and that the prettiest explanation is not

always the correct one. In the words of a guru from a quite

different field of research (theoretical quantum electrody-

namics), ‘the thing that doesn’t fit is the thing that is the

most interesting’ (Feynman, 2001). This notion came to the

fore again during my research a few years later, when –

after postdoctoral fellowships abroad, mentored by Bill

Betz in Denver (Betz et al. 1979, 1980a,b) and Jan Jansen in

Oslo (Eide et al. 1982) – I was exploring the relationship

between use and disuse (i.e. activity) of neuromuscular syn-

apses during postnatal synapse elimination, a competitive

process that occurs in rodents both during normal develop-

ment (Brown et al. 1976; Betz et al. 1979, 1980a), and after

nerve injury and regeneration in adults (McArdle, 1975; Rib-

chester & Taxt, 1983; Taxt, 1983). The prevailing view in the

1990s was that the outcome of synapse elimination was lar-

gely determined by differences in the activity of the axons

converging and disposing their terminals at polyneuronally

innervated NMJs (Ribchester & Taxt, 1983, 1984; Ridge &

Betz, 1984; Ribchester, 1988; Betz et al. 1990; Balice-Gordon

& Lichtman, 1994; Ribchester & Barry, 1994). However, I and

my colleagues Jacqueline Barry and Ellen Costanzo showed

that on the one hand, in reinnervated but experimentally

paralysed muscle polyneuronal innervation may persist after

activity has resumed; and conversely that synapse elimina-

tion and synaptic remodelling can still occur when muscles

are completely paralysed, via a combined nerve conduction

and neuromuscular transmission block. Together, these

findings suggested that activity, though strongly influential

on synapse elimination, is not decisive (Barry & Ribchester,

1995; Costanzo et al. 1999, 2000).

Some intriguing aspects of neuromuscular
synaptic protection in WldS mice

In the early-1990s, I began to turn my attention to the ser-

endipitous discovery by Hugh Perry, Michael Brown and

their colleagues of the mouse mutant now known as WldS

(Lunn et al. 1989; Lyon et al. 1993; Coleman et al. 1998). In

this strain, which turns out to have a tandem triplication of

an 85-kb segment of genomic DNA, there is overexpression

and cytoplasmic localization of a chimeric variant of the

enzyme Nmnat-1. This enzyme catalyses synthesis of nicotin-

amide adenenine dinucleotide from its substrate nicotin-

amide mononucleotide (NMN). The chimeric WldS protein

confers exceptionally strong protection on axons and their

terminals from axotomy-induced Wallerian degeneration

(Mack et al. 2001; Coleman & Freeman, 2010). The chimeric

protein, which has a longer half-life than the axonal iso-

form Nmnat-2, substitutes for the precipitous loss of the lat-

ter isoform following axotomy (Gilley & Coleman, 2010;

Conforti et al. 2014; Di Stefano et al. 2015).

Neuromuscular sensory and motor axons and their termi-

nals are especially well visualized in the F1 generation of

WldS mice (which have no overt behavioural phenotype)

cross-bred with transgenic mice expressing Yellow Fluores-

cent Protein (YFP) in sensory and motor neurons (Fig. 1).

We backcrossed these mice to make double homozygotes

expressing the mutant WldS gene and the YFP transgene

(Feng et al. 2000; Wong et al. 2009; Oyebode et al. 2012;

Hirst & Ribchester, 2013). In the case of motor nerve termi-

nals, onset of degeneration after axotomy in the double ho-

mozygotes, as in young (1–2 months old) homozygous WldS

mice without the YFP transgene, is delayed by about 3 days.

Degeneration occurs by progressive retraction of motor

nerve terminals from motor endplates over the following 7

days, instead of the 12–24 h that is normally all that is

required for complete degeneration in motor terminals in

wild-type mice (Miledi & Slater, 1970; Winlow & Usher-

wood, 1975; Ribchester et al. 1995; Gillingwater et al. 2002;

Bridge et al. 2009; Wong et al. 2009). Severed distal axons

in WldS mice are protected for even longer: up to 3 weeks

or more (Mack et al. 2001; Beirowski et al. 2005, 2009). WldS

protein does not protect against cell death by apoptosis

and, conversely, overexpression of anti-apoptotic genes

does not protect axons from Wallerian degeneration (Sagot

et al. 1995; Adalbert et al. 2006). This differential protection

of neuronal compartments suggests that neuronal mainte-

nance itself is compartmentalized, and that different but

perhaps overlapping molecular processes regulate degener-

ation in somatic, axonal and terminal regions of a projec-

tion neurone (Gillingwater & Ribchester, 2001, 2003). This
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notion is supported by the discovery of novel point muta-

tions, induced by ethylnitrosurea, that confer additive pro-

tection of axotomized neuromuscular synapses (Wong et al.

2009), although protection of axotomized motor terminals

can also be extended by increasing the proportion of WldS

protein that is retained in a motor neurone’s cytoplasm (Bei-

rowski et al. 2009; Wong et al. 2009; Babetto et al. 2010).

Recent studies have implicated both accumulation of NMN,

the normal substrate for Nmnat-2, and Sterile Alpha And

HEAT/Armadillo Motif Protein-1 (Sarm1) as upstream and

downstream components of axons that may be toxic to

them following nerve injury (Osterloh et al. 2012; Di Stef-

ano et al. 2015).

Interestingly, the WldS phenotype is modifiable by several

genetic, intrinsic and environmental determinants, most

notably age, gene-copy number and the localization of the

protective protein (Gillingwater et al. 2002; Beirowski et al.

2009; Wong et al. 2009; Babetto et al. 2010). However,

another important phenotypic difference is observed in

substantially greater protection of the annulospiral sensory

axons and their endings on muscle spindles, compared with

alpha motor axons and their terminals on extrafusal muscle

fibres (Brown et al. 1994; Oyebode et al. 2012). The primary

afferent endings of muscle spindles in hindfoot lumbrical

muscles are especially well preserved up to 20 days after ax-

otomy (Fig. 2a), even in heterozygous WldS mice, or in aged

mice, in which the protection of motor nerve terminals (but

not axons) is lost within 24–48 h (Oyebode et al. 2012).

Neuromuscular synaptic degeneration is
sensitive to activity

The cause of the selective, enhanced protection of the Ia

afferent endings compared with motor axons is unknown

but could be related, at least partly, to differences in the

level of expression or cytoplasmic localization of the WldS

protective protein, as forced retention of this protein in the

cytoplasm enhances protection (Beirowski et al. 2009; Bab-

etto et al. 2010). However, an additional, notable and phys-

iological difference between isolated sensory and motor

endings in axotomized WldS mice is that axotomized sen-

sory endings continue to respond, generating and propa-

gating action potentials in the severed distal axons

(Fig. 2b), for as long as the sensory endings remain intact

(Oyebode et al. 2012); whereas, of course, orthodromic

activity in the case of motor neurons is propagated from

cell body to axon terminal, and this pathway is broken

when the axons are cut.

To test whether differences in activity might influence or

determine the sensorimotor differences in rate of terminal

degeneration, we recently conducted experiments utilizing

Fig. 1 Confocal microscopic z-projection of annulospiral sensory and

motor innervation (arrows) of a teased muscle spindle from transgenic

mouse expressing Yellow Fluorescent Protein (YFP) in sensory and motor

neurones (thy1.2YFP16; Feng et al. 2000; Oyebode et al. 2012). Acetyl-

choline receptors at the myoneural junctions were counterstained with

a tetramethylrhodamine conjugate of alpha-bungarotoxin (BTX).

a

b

Fig. 2 (a) Confocal microscopic z-projections

at �6 ° and +6 °, through a transgenic/

mutant thy1.2YFP16/WldS mouse lumbrical

muscle, 5 days after sectioning the tibial

nerve. Motor endplates were counterstained

with TRITC-a-BTX. The two images may be

viewed as a stereo pair using standard

viewing methods. (b) Extracellular recording

from the tibial nerve, 5 days after sciatic

nerve section, during manipulation of the

hindfoot and ankles. The sensory discharges

indicate functional persistence of the

axotomized distal sensory endings and axons

residually innervating the limb.
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isolated flexor digitorum brevis and lumbrical muscle prepa-

rations from WldS mice. We found that these preparations,

in contrast to those from wild-type mice, survive and con-

tinue to function for at least 48 h when maintained in oxy-

genated physiological saline at a constant temperature of

32 °C (Brown et al. 2015). This allowed us to test for a modi-

fying affect of activity. Thus, if activity were protective, this

should extend the survival time of NMJ’s ex vivo. However,

we found only liminally discernible benefits of moderate

levels of activity in this preparation but, by contrast, pat-

terned intense high-frequency stimulation (100 Hz) ex vivo

accelerated synaptic degeneration. Thus, the sensorimotor

differences in protection conferred by WldS protein expres-

sion cannot be explained by differences in the ongoing

endogenous activity of their severed distal axons. Moreover,

we also found that preconditioning axons, either with

chronic disuse or by voluntary exercise, also rendered motor

nerve terminals more sensitive to the effects of axotomy

(Brown et al. 2015).

Intensive activity was shown many years ago, in the con-

text of a different and natural degenerative phenomenon,

to accelerate the withdrawal of synapses that occurs during

developmental synapse elimination (O’Brien et al. 1978;

Thompson, 1983). Similar effects are suggested indirectly by

some experiments on the effects of electrical stimulation or

stressful activity on the onset and progression of disease

signs in a mouse model of amyotrophic lateral sclerosis

(ALS; Lepore et al. 2010; Alvarez et al. 2013). These observa-

tions further support conjecture about the mechanistic simi-

larities between synaptic remodeling in development,

synaptic degeneration in models of neurodegenerative

disease, and axotomy-induced Wallerian degeneration

(Gillingwater & Ribchester, 2003; Conforti et al. 2014).

Age need not weary us . . .

It will be interesting to find out whether insights into

the gene-dose dependence age-sensitivity, and apparent

activity-dependence of the protection by WldS might be

obtained utilizing the advantages of ex vivo preparations

as well as other animal models, such as Drosophila, which

lend themselves to analysis using powerful molecular

genetic, anatomical, electrophysiological and optical tech-

niques (Eaton et al. 2002; Peled & Isacoff, 2011; Avery

et al. 2012; Osterloh et al. 2012; Melom et al. 2013; Rib-

chester et al. 2013; Ford & Davis, 2014; Peled et al. 2014;

Robinson et al. 2014). These preparations also provide

opportunities for screening the efficacy and benefits of

potentially neuroprotective compounds (Di Stefano et al.

2015) or investigating the mechanism of action of environ-

mental toxins, including pesticides (Dissanayake et al.

2012).

Ageing is the most important risk factor for several

neurodegenerative diseases, including Alzheimer’s disease

and ALS; and several mechanistic similarities and thera-

peutic targets to the end stages of axotomy-induced,

Wallerian degeneration have been identified. This is

perhaps not surprising in light of the view that these

diseases are likely to be primary axonopathies (Confor-

ti et al. 2014). But, as the modus operandi for

investigation of mechanosensory and neuromuscular

structure and function, epitomized historically by the

Durham School in general and by Bob Banks’ research

in particular attests, nature is full of surprises (Bewick

et al. 2005; Simon et al. 2010; Shenton et al. 2014), and

astonishing natural phenomena of both structure and

function will no doubt continue to inform and delight

neurobiologists for many years beyond Bob’s well-earned

retirement.
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