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Abstract

Background: Determining the parameters of a mathematical model from quantitative measure-
ments is the main bottleneck of modelling biological systems. Parameter values can be estimated from
steady-state data or from dynamic data. The nature of suitable data for these two types of estimation
is rather different. For instance, estimations of parameter values in pathway models, such as kinetic
orders, rate constants, flux control coefficients or elasticities, from steady-state data are generally
based on experiments that measure how a biochemical system responds to small perturbations
around the steady state. In contrast, parameter estimation from dynamic data requires time series
measurements for all dependent variables. Almost no literature has so far discussed the combined
use of both steady-state and transient data for estimating parameter values of biochemical systems.

Results: In this study we introduce a constrained optimization method for estimating parameter
values of biochemical pathway models using steady-state information and transient measurements.
The constraints are derived from the flux connectivity relationships of the system at the steady
state. Two case studies demonstrate the estimation results with and without flux connectivity
constraints. The unconstrained optimal estimates from dynamic data may fit the experiments well,
but they do not necessarily maintain the connectivity relationships. As a consequence, individual
fluxes may be misrepresented, which may cause problems in later extrapolations. By contrast, the
constrained estimation accounting for flux connectivity information reduces this misrepresentation
and thereby yields improved model parameters.

Conclusion: The method combines transient metabolic profiles and steady-state information and
leads to the formulation of an inverse parameter estimation task as a constrained optimization
problem. Parameter estimation and model selection are simultaneously carried out on the
constrained optimization problem and yield realistic model parameters that are more likely to hold
up in extrapolations with the model.

Background
The ultimate goal of biochemical modeling is the
construction of mathematical representations that quanti-
tatively describe the dynamic behaviors of pathway
systems. Toward this goal, metabolic reactions are

formulated as rate laws, and their kinetic parameters are
estimated from experimental data in vitro or in vivo. Various
optimization algorithms, such as gradient-based methods
[1], genetic algorithms [2], branch-and-bound methods
[3], Newton-flow analysis [4], decomposition approaches
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[5], multiple shooting methods [6], alternating regression
techniques [7], decoupling approaches [8,9], collocation
methods [10,11], stochastic optimization [12,13], and
many other approaches [14-16] have been applied to
determine parameters in biochemical systems models. In
all these cases, the optimization approach uses an error
criterion that is evaluated against experimental data to
assess whether the inferred model is able to describe the
dynamic behaviors of the system. If the residual error is
small, the model is accepted as a valid representation of the
system. Theoretically, the more accurate the model, the
smaller the prediction error will be.

Parameter sensitivity analysis is sometimes used as a tool
for assessing model accuracy. This type of analysis can be
described as the study of behaviors of dynamic systems
under small perturbations in system parameters. Specific
experiments have been proposed to obtain sensitivity
measures of the system in order to validate a model. In
this context, Fell [17] reviewed experimental techniques
for estimating elasticities and control coefficients that are
based on changing enzyme activities while only mini-
mally affecting other system properties (see also
[18,19]). The two prominent frameworks for metabolic
analysis, Biochemical Systems Theory (BST) and Meta-
bolic Control Analysis (MCA), use sensitivity coefficients
in the form of logarithmic derivatives to characterize
systemic and local properties [20-23]. The systemic
sensitivity coefficients are known as control and
response coefficients in MCA and as logarithmic gains
in BST, while the local sensitivity coefficients are called
elasticity coefficients in MCA and kinetic orders in BST.
These coefficients are the basis of two important
properties of steady-state metabolic systems, namely
the summation and the connectivity relationships, which
were discovered in MCA and similarly hold in BST for
the majority of practical examples (see [24] for excep-
tions). They are intrinsic features of metabolic systems in
which the enzymes affect reactions in a linear fashion.
The summation relationship is a local property that
states that the sum of all sensitivities of a particular flux
with respect to all rate constants is always equal to one. A
particularly useful and important feature of the con-
nectivity relationship is that it relates the kinetic
properties of the individual reactions (local properties)
to (global) properties of the intact pathway.

In this study, connectivity information of the pathway
system, which is assumed to have been obtained in
separate steady-state experiments, is employed as a
constraint for improved parameter estimation from
dynamic data. This use of experimental connectivity
information as a set of a priori constraints renders the
proposed method distinctly different from a recent
method for lin-log models, which uses connectivity

information for a posteriori tests of the combined
dynamic and steady-state parameter estimation [25].
One might surmise that the connectivity constraints
could simply be computed for each power-law model
during the iterative estimation process. While this is true,
the result would not be informative, because the
summation and connectivity relationships are "automa-
tically" satisfied if both the flux control coefficients and
the elasticity coefficients are obtained from a power-law
model [21,22]. The proof is shown in Additional file 1.
The key here is that the control coefficients are obtained
from independent steady-state experiments and serve as
truly additional constraints, thereby augmenting the top-
down estimation from time series data with bottom-up
information from steady-state data.

Results and discussion
To examine the effectiveness of the proposed method,
we applied the constrained estimation approach to two
case studies.

Case I: Linear pathway
In the first case study, we determined the rate constants
and kinetic orders of the linear steps of the threonine
pathway from aspartate in Escherichia coli. Threonine is
an essential amino acid for birds and mammals, and
there is considerable interest in its economic industrial
production for a variety of uses. The five-step metabolic
pathway for its synthesis from aspartate, as shown in
Figure 1, has been studied extensively [26-29]. Each
kinetic step in the threonine pathway was originally
formulated as a Michaelis-Menten-like model, which is
available on the website http://jjj.biochem.sun.ac.za/
index.html. From this website, six sets of time-series
data were generated using different values for the
independent variables. Furthermore, 5% random noise
was added to each set of time-series data in order to

Figure 1
Linear pathway. Metabolic reaction steps of the threonine
pathway from aspartate in Escherichia coli. The dependent
variables, x1, x2, x3 and x4, respectively denote the
concentrations of aspartyl-P, D, L-aspartic b-semialdehyde,
homoserine and O-phospho-homoserine. The independent
variables, x5, x6, x7, x8, x9 and x10 represent ATP, ADP,
NADPH, NADP, aspartate, threonine and Pi, respectively.
(The model is called chassagnole2 in JWS web site).
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emulate in vivo observations. We reformulated the
pathway as the following S-system

dx
dt
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where the dependent variables, x1, x2, x3 and x4,
respectively denote the concentrations of aspartyl-P, D,
L-aspartic b-semialdehyde, homoserine and O-phospho-
homoserine. The independent variables, x5, x6, x7, x8, x9
and x10, represent ATP, ADP, NADPH, NADP, aspartate,
threonine and inorganic phosphate (Pi), respectively.
The first, second and third rate equations are reversible
so they are aggregated into a single term to represent
influx/efflux. Using the flux connectivity relationships, as
shown in the Methods section, we have three additional
equality constraints, namely:
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For true values of S(vj, ai) and of the kinetic orders gij, the
three r should be equal to 0 (see Eq. 9). However, if the
measured S(vj, ai) are combined with estimated gij, this is
not necessarily the case.

For the linear pathway, five fluxes are identical to v at
steady-state. Twenty-five parameters are included in the
constrained parameter estimation problem, which we
determine by means of hybrid differential evolution
(HDE) [30]. The search range for each rate constant is set
to be [0, 5]. The kinetic orders are chosen from with [0, 2],
except for g1,10, g3,10 and g4,10, which represent inhibition
of the reaction steps v1, v3 and v4 and are therefore negative.

Two computational approaches are applied to determine
the 25 parameters. In the first computation, we do not
consider the flux connectivity constraints (2), so as to
demonstrate a common parameter estimation approach.
In the second computation, we assume that the flux
control coefficients have been obtained in independent
steady-state experiments, as it is typical in MCA
[17,31,32]. These experimental control coefficients are
now provided as additional information so that the
kinetic orders in the parameter estimation problem are
restricted by the flux connectivity relationships in (2).

For this unconstrained HDE approach, the value of the
least-square error criterion was 2.52E-3. The optimal
HDE estimates were then provided as the starting point
for a gradient-based method to yield a refined solution,
which is listed in the first column of Table 1. The least-
squared error value was 2.15E-4 for the refined search. In
order to validate the fitness of the optimal estimates,
additional time-series data were generated. Specifically,
the independent variables for the validation test experi-
ment were set 5% outside the training ranges. Figure 2
shows the predictive dynamic profiles (dashed curves)
and the in silico experimental data. The least-square error
was 5.57E-3 for the validation. The optimal estimates
were also applied to compute each constraint r (Eqs. 2)
with the experimental flux connectivity coefficients.
As shown in Table 2, to the estimated values of r
yielded a sum of the constraint violations (SCV) of
4.28E-1 (see Methods). This relatively high SCV value
indicates that the flux connectivity constraints are
unduly violated.

The second computation minimized the combined
penalty function (10) (see Methods), which includes the
flux connectivity constraints (2) in the objective func-
tion. The HDE algorithm in this case yielded a least-
squared error value of 8.63E-3. The refined optimal
estimates obtained by the subsequent gradient-based
method are listed in the second column of Table 1 and
were also applied to evaluate the additional test
experiment. The predictive profiles are shown as solid
curves of Figure 2. The least-square error was 2.13E-2 for
the validation. The flux connectivity constraints are
shown in Table 2. Each flux connectivity constraint is
smaller than the result obtained from the first computa-
tion. A SCV of 8.11E-4 was obtained for this case. This
result implies that the parameter values estimated by the
constrained optimization approach are more feasible
than the first computed results.

The flux control coefficients were assumed to be perfectly
measured for the above computation. To emulate in vivo
observations, 5% random variation was added to the
true flux control coefficients. Following the same
procedure, the least-square value of 2.57E-2 was
obtained by using the imperfect flux control coefficients.
The optimal estimates, as shown in Table 1, were also
applied to evaluate the additional test experiment with
noise. The predicted profiles (dashed-dot-dot curves) are
nearly identical to the noise-free results. The flux
connectivity constraints are shown in Table 2. Each
flux connectivity constraint is smaller than the result
obtained from the first computation. A SCV of 3.14E-2
was obtained for this case. However, a SCV of 4.36E-1
was obtained with the unconstrained parameter estima-
tion technique.
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Case II: Branched pathway with feedback
The second case study consisted of a five-enzyme branched
pathway with feedback regulation, as shown in Figure 3
http://jjj.biochem.sun.ac.za/index.html. Two feedback sig-
nals inhibit the first reaction. Each rate equation was
originally formulated as a Michaelis-Menten-like model.
From the web site, six sets of time-series data were
generated, and 5% random noise was added to each set
of time-series data in order to emulate in vivo observations.
The material balance equations were modeled as
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Each rate equation was formulated for our analysis as a
power-law model of the following type:
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There are fifteen flux connectivity relationships for this
branched pathway. Following procedures analogous to
those discussed in the previous example, the 23 parameters
were estimated with both computational approaches; the
results are shown in Table 3. The time-series data were
generated from the in silico system with six sets of initial
conditions and independent variables. Both approaches are
able to estimate the parameters for the dependent variables

Table 1: Estimated results for Case I

Parameter Estimation
without

constraints

Estimation with
constraints
(noise-free)

Estimation with
constraints (5%

noise)

a1 4.67E-05 2.42E-04 3.43E-6
a2 3.452 0.079 0.436
a3 3.359 0.733 2.227
a4 1.828 3.660 1.961
a5 0.359 0.434 4.955
g1,1 -0.772 -0.763 -1.437
g1,5 1.710 0.597 1.896
g1,6 -1.110 -0.113 -0.665
g1,9 1.241 0.927 0.868
g1,10 -0.328 -0.005 -0.757
g2,1 0.948 0.857 1.59
g2,2 -0.467 -1.308 -1.996
g2,7 0.963 0.783 0.407
g2,8 -1.002 -0.972 -1.26
g2,11 -0.682 -0.712 -1.235
g3,2 1.121 0.702 0.987
g3,3 -0.002 -0.008 -0.012
g3,7 0.263 0.171 0.515
g3,8 -0.044 -0.153 -0.850
g3,9 -0.185 0.106 -0.384
g3,10 -0.307 -0.607 -0.835
g4,3 0.871 0.900 1.118
g4,5 -0.347 -0.586 0.754
g4,10 -0.819 -1.382 -1.524
g5,4 0.745 0.859 1.392
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Figure 2
Model validation for case I. Model validation using
optimal estimates obtained with different computational
approaches for an experiment with altered independent
variables. Dashed curves represent the predicted profiles
using the optimal estimates obtained from estimation
without including the flux connectivity constraints. Solid
curves represent the predicted profiles using the optimal
estimates obtained from an estimation accounting for
noise-free flux connectivity constraints. Dashed-dot-dot
curves represent the predicted profiles using the optimal
estimates obtained from an estimation accounting for
5% noise in the measured flux connectivity constraints.
Data points are in silico observations. The independent
variables [1.376, 0.179, 0.588, 0.630, 1.340, 3.490, 4.7500]
were set 5% outside the training range.

Table 2: The computed results of the flux connectivity con-
straints for Case I

Without flux connectivity
constraints

With flux connectivity
constraints

No. noise-free 5% noise noise-free 5% noise

1 2.016E-2 2.347E-2 -1.242E-4 1.652E-4
2 4.048E-1 4.093E-1 1.117E-4 -3.088E-2
3 3.454E-3 3.625E-3 5.752E-4 3.100E-4

"Noise-free" indicates that the measured flux control coefficients are
assumed to be perfect. For "5% noise" it is assumed that the measured
flux control coefficients have 5% uncertainty.
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and also to determine the kinetic orders related to
dependent and independent variables.

The first computational approach did not consider the
flux connectivity constraints. After the global-local
search, we obtained a least-squared error of 7.63E-4.
The optimal estimates were then applied to compute
each constraint in Eq. (9) with the true flux connectivity

coefficients, as shown in Table 4; they correspond to an
SCV of 14.71, which indicates severe constraint viola-
tion. The second computational approach was then
applied to solve the parameter estimation problem with
minimization of flux connectivity constraints. The least-
square error was 1.87E-4, which is smaller than that
obtained from the first computation. The 15 constraints
in this case are also shown in Table 4. The SCV of
1.41E-3 is much smaller than that of the first method.
This means that the optimal estimates from the second
approach are more adequate than those obtained from
the estimation without considering the flux connectivity
constraints. Additional sets of initial conditions and
independent variables were used to generate the time-
series data to validate both optimal estimates. Figure 4
shows the predicted dynamic profiles (solid and dashed
curves) and the in silico experimental data. The predicted
profiles are nearly identical, even though the estimated
parameters are quite different, indicating residual "slop-
piness" of the model [33].

As in the previous case, 5% random variation was added to
the perfect flux control coefficients to emulate in vivo
observations. A least-square value of 1.62E-2 was obtained
by using these imperfect flux control coefficients. The
optimal estimates, as shown in Table 3, were applied to
evaluate the additional test experiment. The predicted
profiles (dashed-dot-dot curves) are almost identical to the
noise-free results. The flux connectivity constraints are
shown in Table 4. Each flux connectivity constraint is
smaller than the result obtained from the first computa-
tion. A SCV of 1.61E-2 was obtained for this case. However,
a SCV of 14.6 was obtained with the common parameter
estimation technique. Thus, values obtained through
parameter estimation with connectivity constraints can be
expected to be more realistic than those obtained by
unconstrained techniques.

It is a difficult task to assess the quality of a model if the
model predictions for all tested data are good, as
discussed in the case studies. If it is not feasible to
retain some of the original data for cross-validation,
other types of data must be used. For instance, steady-
state related experimental information, such as flux
control coefficients, may be applied to validate the
model through testing connectivity relationship [25]. In
our case, these cannot be used for validation, since we
are using them as constraints. This leaves additional
time-series experiments as the best feasible alternative
for mode validation, as we showed above.

Conclusion
Parameter estimation for biological models is the bridge
connecting the wet and the dry labs. There are still many
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Figure 3
Branched pathway with feedback. Metabolic map for
branched pathway with five enzymes and feedback. (The
model is called feedbackmoi in JWS web site.) x1,..., x5 are
dependent variables, x6, x7 and x8 are independent variables.
Each product is fed back to regulate its corresponding
pathway. Both x1 and x2 are also fed back to regulate the
first reaction pathway.

Table 3: Estimated results for Case II

Parameter Estimation
without

constraints

Estimation with
constraints
(noise-free)

Estimation with
constraints
(5% noise)

a1 0.6294 2.0096 5.0
a2 0.3618 1.0826 1.3442
a3 0.2680 0.9776 3.9705
a4 0.0654 0.7542 3.7875
a5 0.1327 0.9763 1.3159
g11 1.5285 0.0987 0.0226
g12 -2.0000 -0.4603 -0.0362
g13 0.9963 0.1534 0.0635
g14 0.5945 0.3144 0.0332
g15 -2.0 -0.1296 -0.0483
g16 0.0916 0.0396 0.0268
g21 1.8490 0.1834 0.0458
g23 0.2849 -0.0720 -0.0299
g31 1.6939 0.2020 0.0481
g32 -0.4312 -0.1026 -8.5364E-3
g42 -1.2477 0.1276 9.456E-3
g44 1.1855 -0.1892 -0.0209
g45 0.7681 0.0778 0.0304
g47 -0.4538 -0.0541 -0.0149
g53 2.0 0.1082 0.0462
g54 -1.4214 -0.2074 -0.0275
g55 1.6615 0.0847 0.0401
g58 -0.8134 -0.0669 -0.0260
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challenges in using time-series data to solve parameter
estimation problems for nonlinear biological systems. In
many cases, this estimation is a cyclic task. Rate
constants and kinetic orders of the differential equations
are estimated from time-series data. Some new experi-
ments should then be carried out to validate the
estimated model. Inconsistencies may lead to improved
second-round estimates, which are again to be validated.

A common problem in parameter estimation is the
observation that distinctly different solutions may lead
to model fits with very similar residual errors [34]. One
reason for this situation is the compensation of error
among the terms and/or equations of the model [35].
The problem with different solutions becomes most
apparent in extrapolations to new conditions, were
misestimated models fail. A complex question is thus
which of the estimated models is best. While a general
answer cannot be given, our results here show that the
prudent consideration of constraints limits the variety of
different models with similar residual fit.

Specifically, we use relationships between parameters and
parameter sensitivities, which were developed in the
modelling framework of MCA. While it is widely known
that parameter sensitivity analysis may be used to
investigate which parameter in the system is most
sensitive, we have shown here that sensitivity analysis
may also serve as a valuable set of upfront constraints for
improved parameter estimation strategies. We showed
with two representative case studies that the considera-
tion of flux connectivity relationships can help constrain
the parameter estimation problem and lead to signifi-
cantly improved model parameters. While we did not use
true experimental data for the illustration of the method,
we created artificial data from Michaelis-Menten type
pathway model representations that were different from
the BST models we used for the estimation analyses.
Furthermore, we allowed for experimental error, so that
the resulting artificial data were as different from the BST
models as is reasonably possible in a purely computa-
tional setting. The result showed that the consideration of
connectivity constraints was computationally cheap and,
yet, greatly improved the estimated solutions.

Methods
Model formulation
The dynamics of a biochemical reaction system can be
represented generically using a set of nonlinear ordinary
differential equations with the following structure:

dxi
dt

n v i nij j

j

r

= =
=

∑
1

1, ,..., (5)

Table 4: The computed results of the flux connectivity con-
straints for Case II

Without flux connectivity
constraints

With flux connectivity
constraints

No. noise-free 5% noise noise-free 5% noise

1 4.735E-1 5.392E-1 5.499E-5 3.573E-3
2 -1.742 -1.785 -3.055E-5 -8.999E-4
3 1.231E-1 1.375E-1 6.428E-5 -2.474E-4
4 1.720 1.745 -2.078E-6 1.351E-3
5 -4.973E-1 -5.237E-1 1.404E-5 -1.694E-3
6 5.514E-1 4.366E-1 1.852E-4 -2.283E-3
7 -1.394 -1.336 -4.564E-5 6.405E-4
8 5.378E-1 5.177E-1 -2.719E-5 1.319E-4
9 1.241 1.209 1.303E-4 -8.199E-4
10 -3.540E-1 -3.401E-1 -1.360E-4 1.042E-3
11 3.681E-1 3.208E-1 -1.211E-4 -1.929E-3
12 -2.213 -2.267 -9.843E-6 3.888E-4
13 -4.378E-1 -4.162E-1 1.878E-4 -6.744E-5
14 2.367 2.411 -1.812E-4 -4.822E-4
15 -6.911E-1 -6.132E-1 2.170E-4 5.719E-4

"Noise-free" indicates that the measured flux control coefficients are
perfect, while "5% noise" is based on measured flux control coefficients
with 5% uncertainty.
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Figure 4
Model validation for case II. Model validation using
optimal estimates obtained with different computational
approaches. Dashed curves represent the predicted profiles
using optimal estimates obtained from estimation without
accounting for flux connectivity constraints. Solid curves
represent the predicted profiles using the optimal estimates
obtained from an estimation accounting for noise-free flux
connectivity constraints. Dashed-dot-dot curves represent
the predicted profiles using the optimal estimates obtained
from an estimation accounting for 5% noise in the measured
flux connectivity constraints. Data points are in silico
observations. The independent variables are set 5% outside
the training range.

BMC Bioinformatics 2009, 10:140 http://www.biomedcentral.com/1471-2105/10/140

Page 6 of 10
(page number not for citation purposes)



Here, xi is the metabolite concentration for the ith

component or pool, nij are the stoichiometric coefficients
and vj is the reaction rate for the jth pathway. For most
traditional formulations, such rates are represented as
constant flux rates, mass action functions or Michaelis-
Menten like models. As an alternative, BST employs
power-law models to express each rate. BST formulations
can thus be represented as:

v xj j k
g

k

n
jk=

=
∏a

1

(6)

where aj is the rate constant for the j
th rate-law equation,

and gjk are kinetic orders. Yet a different alternative is the
use of lin-log models, which are extensions of MCA [25].

Both rate constants and kinetic orders in Eq. (6) can, in
general, be estimated from steady-state data or from
dynamical data. The nature of suitable data for these two
types of estimations is rather different, and so are the
methods of analysis. Estimations of parameter values
from steady-state data are generally based on experi-
ments that measure how biochemical system responds to
small perturbations around the steady state (as a very
detailed example, see [36]). Two approaches may be
taken. The first tries to measure directly how the variable
xk affects the influx into or efflux out of the pool xj, (this
effect, by definition, is represented by the kinetic order
parameters or elasticities). The second measures loga-
rithmic gains, which describe the influence of an
independent variable on a dependent variable. Because
gains are closely related to kinetic orders, they provide an
indirect measure of relevant system properties as well as
the topological structure of the model [37,38]. Estima-
tion from dynamic data is based on quite a different type
of experimentation. In this case, time-series measure-
ments are needed for all metabolites of the system [39].
The temporal data may stem from transient responses
after a perturbation from steady state [40], but they are
more often found in the analysis of systems that exhibit
growth, decay, or some other long-term dynamics (e.g.,
[41]). In this study, we combine both dynamic and
steady-state approaches in order to obtain more exact
models.

Error function
Time series based parameter estimation is used to
determine rate constants and kinetic orders so that the
dynamic profiles satisfactorily fit the measured observa-
tions. This task is formulated as an optimization
problem to minimize an objective function that mea-
sures the goodness of fit of the model with respect to a
given experimental time-series dataset. The sum of least-

squared errors criterion is a commonly used as the
objective function, which is expressed as

J
nN s

xei t s xi t s

xeis

N

i

n s

=
−( )

==
∑∑1

2

2
11

( ) ( )

max

(7)

where x te si
( ) is the measurement of the ith component

at t = ts, xi(ts) is the computed concentration for the ith

component at t = ts, and xei max is the maximum
measured concentration of the ith component, which is
used for normalization purposes so that variables with
different scales have a similar impact. Ns is the number
of sampled data points. The dynamic profiles xi(ts) are
typically obtained by applying a numerical integration
method to solve the differential equations (5).

Connectivity constraints
In this study, the power-law model in (6) is employed to
formulate each process in a biochemical system. Para-
meter estimation is then carried out with time-series data
to determine the rate constants and kinetic orders of the
model that give the best fit to a set of experimental data.
The Fisher information matrix is a popular measure for
model validation. An alternative approach is parameter
sensitivity analysis, which permits the determination of
which parameters in the system are most sensitive. Such
a parameter sensitivity analysis can be used to validate
the model's response and to design experiments that
support the estimation of parameters [25].

Within the context of sensitivity analysis, the hallmark
results of MCA are the summation and connectivity
relationships [42-44]. While they are not applicable in
all situations [24], they hold for most typical pathway
systems and in these cases can also be derived directly
from the mathematical structure of systems formulated
within BST [21-23]. The summation and connectivity
relationships have been used to provide valuable
insights into the behavior of metabolic pathways.
Mathematically, they amount to descriptions of sensi-
tivity invariants, and they are consequences of the
stoichiometric nature of the system. For a typical
pathway system at steady-state, the summation property
indicates that the sum of all sensitivities of a particular
flux with respect to all rate constants is equal to one:

S v j nj i

i

r

, , , ...,a( ) = =
=
∑

1

1 1 (8)

The local properties are thus expressed as relationships
between all rate constants (which are proportional to
enzyme activities) and an individual reaction.
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Flux connectivity relationships address global properties.
They are expressed as

C S v g j r k ne
v

x
v

i

r

j i

i

r

iki

j

j

ie a
= =
∑ ∑= ( ) = = =

1 1

0 1 1, , ,..., ; , ...,

(9)

where Ce
v

i

j and e x
v

j

i are respectively described in MCA as
flux control coefficients and elasticity coefficients. As we
demonstrate in this study, these flux connectivity
relationships can be used as constraints to assist in the
estimation of more accurate and realizable model
parameters. Many approaches have been proposed for
measuring flux control coefficients (e.g., [17,31,32]).
Such measurements along with the estimated kinetic
orders obtained from parameter estimation can be
applied to compute the connectivity relationships to
validate the model.

Optimization with constraints
Many methods could be used as the optimization engine
for estimating parameters [39]. Here we decided to use a
fast hybrid differential evolution (HDE) for the evalua-
tion of the differential equations, followed by a refining
gradient method. The HDE algorithm [30] is a simple,
population-based, stochastic method and has been
extended from the original algorithm of differential
evolution (DE) as described by Storn and Price [45]. The
basic operations of DE are similar to conventional
evolutionary algorithms. However, HDE includes two
additional operations, namely acceleration and migra-
tion. Both operations serve as trade-off operators for
balancing convergent rate and population diversity in
the evolutionary computation. Acceleration is used to
speed up the convergent rate. However, faster descent
usually results in yielding a premature solution. Thus,
migration is used to increase the population diversity to
prevent the algorithm from reaching a premature
solution. Accordingly, HDE enables a smaller popula-
tion to be used for finding a global solution and has
succeeded in solving several biochemical optimization
problems. Details of the HDE algorithm are provided in
Additional file 2.

Most nonlinear regressions are performed with gradient-
based optimization methods so that the solution quality
strongly depends on the provided initial starting point.
Moreover, gradient-based methods may yield a local
minimum, rather than a global solution. Evolutionary
algorithms can be applied to overcome such drawbacks.
However, numerical integration failure is the major
problem during the evolutionary search progress. In
addition, numerical integration is time-consuming.
Slope approximation [8,46], decomposition strategies

[47] and modified collocation methods [10] can be
applied to alleviate the computation burden. Indeed,
HDE with modified collocation method has been shown
to achieve global estimates quickly. While the solution
obtained by a modified collocation method may not
always be smooth due to measurement noise, a global-
local optimization technique may be applied to over-
come this drawback. Tsai and Wang [10] introduced
HDE as a global search method to determine a coarse
solution and then used the optimal HDE estimates as the
starting point for a gradient-based optimization method
that employed numerical integration to obtain a refined
solution.

In this study, the HDE algorithm is applied to minimize
the least error criterion (7) subject to the connectivity
constraints (9). As a result, the parameter estimation
problem becomes a multivariable minimization pro-
blem with equality constraints. Penalty function meth-
ods are some of the most popular techniques for
handling constraints. The penalty function is defined
here as

min
( ) ( )

max
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where ljk are positive penalty parameters, and the
parameters θ denote all rate constants ai, and kinetic
orders gik that are to be determined. In this
constrained parameter estimation, we use the sum of
the constraint violations (SCV) to inspect the
feasibility of the estimated optimal solution. SCV is
defined as

SCV = ( )
===
∑∑∑ S v gj i

i

r

ik

k

n

j

r

,a
111

(11)

Thus, SCV can be seen as a global measure of the
accuracy of connectivity in the model. If all S(vj, ai) and
gik were taken from a given pathway model, SCV would
be zero. However, if the S(vj, ai) are obtained from
independent steady-state experiments, this is not neces-
sarily the case, and SCV can be used as a constraint that
should be as close to zero as possible.

Computational settings
All computations were carried out on a Pentium IV
computer using Microsoft Windows XP. The HDE
algorithm was implemented in Compaq Visual Fortran.
Four settings require provisions for HDE and are given as
follows: the crossover factor was set to 0.5; two
tolerances used in the migration were set to 0.05; and
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a population size of 5 was used in the computation.
These settings served as the default values for all
computations in the case studies. In HDE, the mutation
factor is taken as a random number within [0, 1]. In
order to yield smoother profiles, optimal estimates
obtained by HDE are then provided as the initial starting
point for the gradient-based method, a subroutine
BCONF in the IMSL Math/Library, to solve the parameter
estimation problem. The gradient-based method
employs Runge-Kutta techniques of various orders,
along with the subroutine IVMRK in IMSL Math/Library,
to solve differential equations towards obtaining time-
series profiles of the system.
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