
ORIGINAL RESEARCH
published: 10 March 2022

doi: 10.3389/fneur.2022.791547

Frontiers in Neurology | www.frontiersin.org 1 March 2022 | Volume 13 | Article 791547

Edited by:

Adriano Pinto,

University of Minho, Portugal

Reviewed by:

Zhengbing Yan,

Wenzhou University, China

Alex Jung,

Aalto University, Finland

Lorenzo Camponovo,

University of Applied Sciences and

Arts of Southern Switzerland

(SUPSI), Switzerland

*Correspondence:

Hongbo Zhang

hongbozhang99@163.com

Qianxue Chen

chenqx666@whu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

Received: 08 October 2021

Accepted: 31 January 2022

Published: 10 March 2022

Citation:

Hu P, Liu Y, Li Y, Guo G, Su Z, Gao X,

Chen J, Qi Y, Xu Y, Yan T, Ye L, Sun Q,

Deng G, Zhang H and Chen Q (2022)

A Comparison of LASSO Regression

and Tree-Based Models for Delayed

Cerebral Ischemia in Elderly Patients

With Subarachnoid Hemorrhage.

Front. Neurol. 13:791547.

doi: 10.3389/fneur.2022.791547

A Comparison of LASSO Regression
and Tree-Based Models for Delayed
Cerebral Ischemia in Elderly Patients
With Subarachnoid Hemorrhage

Ping Hu 1†, Yangfan Liu 2†, Yuntao Li 1,3†, Geng Guo 4, Zhongzhou Su 3, Xu Gao 5,

Junhui Chen 1, Yangzhi Qi 1, Yang Xu 1, Tengfeng Yan 1, Liguo Ye 1, Qian Sun 1, Gang Deng 1,

Hongbo Zhang 6* and Qianxue Chen 1*

1Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China, 2Department of Neurosurgery, Affiliated

Hospital of Panzhihua University, Panzhihua, China, 3Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China,
4Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China, 5Department of Neurosurgery,

General Hospital of Northern Theater Command, Shenyang, China, 6Department of Neurosurgery, The Second Affiliated

Hospital of Nanchang University, Nanchang, China

Backgrounds: As a most widely used machine learning method, tree-based algorithms

have not been applied to predict delayed cerebral ischemia (DCI) in elderly patients with

aneurysmal subarachnoid hemorrhage (aSAH). Hence, this study aims to develop the

conventional regression and tree-based models and determine which model has better

prediction performance for DCI development in hospitalized elderly patients after aSAH.

Methods: This was a multicenter, retrospective, observational cohort study analyzing

elderly patients with aSAH aged 60 years and older. We randomly divided the multicentral

data into model training and validation cohort in a ratio of 70–30%. One conventional

regression and tree-based model, such as least absolute shrinkage and selection

operator (LASSO), decision tree (DT), random forest (RF), and eXtreme Gradient

Boosting (XGBoost), was developed. Accuracy, sensitivity, specificity, area under the

precision-recall curve (AUC-PR), and area under the receiver operating characteristic

curve (AUC-ROC) with 95% CI were employed to evaluate the model prediction

performance. A DeLong test was conducted to calculate the statistical differences

among models. Finally, we figured the importance weight of each feature to visualize

the contribution on DCI.

Results: There were 111 and 42 patients in the model training and validation cohorts,

and 53 cases developed DCI. According to AUC-ROC value in the model internal

validation, DT of 0.836 (95%CI: 0.747–0.926, p= 0.15), RF of 1 (95%CI: 1–1, p< 0.05),

and XGBoost of 0.931 (95% CI: 0.885–0.978, p = 0.01) outperformed LASSO of 0.793

(95% CI: 0.692–0.893). However, the LASSO scored a highest AUC-ROC value of 0.894

(95% CI: 0.8–0.989) than DT of 0.764 (95% CI: 0.6–0.928, p = 0.05), RF of 0.821 (95%

CI: 0.683–0.959, p = 0.27), and XGBoost of 0.865 (95% CI: 0.751–0.979, p = 0.69)

in independent external validation. Moreover, the LASSO had a highest AUC-PR value

of 0.681 than DT of 0.615, RF of 0.667, and XGBoost of 0.622 in external validation. In

addition, we found that CT values of subarachnoid clots, aneurysm therapy, and white

blood cell counts were the most important features for DCI in elderly patients with aSAH.
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Conclusions: The LASSO had a superior prediction power than tree-based models

in external validation. As a result, we recommend the conventional LASSO regression

model to predict DCI in elderly patients with aSAH.

Keywords: delayed cerebral ischemia, subarachnoid hemorrhage, aneurysm, LASSO, tree model

INTRODUCTION

Subarachnoid hemorrhage (SAH) secondary to the ruptured
aneurysm is a potentially fatal cerebrovascular disease that
mainly occurs in middle-aged patients<60 years (1, 2). However,
the number of elderly patients with SAH has been increasing
due to improved life expectancy (3). It was reported that
the annual incidence of SAH in persons over 70 years of
age was estimated to exceed 25/100,000 (4). Delayed cerebral
ischemia (DCI) is the most frequent complication after SAH,
affecting approximately 30% of patients and often leading to
poor neurology outcomes or deterioration of patients’ conditions
(5, 6). Nevertheless, the prognostic effect maybe worse when DCI
occurs in elderly patients during hospitalization (7). The timely
accurate prediction of DCI development is critical for the clinical
management and prognosis of elderly patients with SAH; hence,
a reliable, precise prediction model for early identifying DCI is
urgently needed.

The conventional logistic regression (LR) is still the primary
method for developing prediction models for clinical disease.
Such as the previous studies revealed that independent risk
factors were identified via LR to further construct models
for predicting DCI in patients with SAH (8–12). Yet, the
conventional LR method could not fully utilize the clinical data
during the developing model process, may contributing to a
low prediction power. Machine learning (ML) as a domain of
artificial intelligence can solve this limitation, and recent research
showed that ML algorithms outperformed traditional statistic
modeling approaches (13–15). Meanwhile, tree-based methods
have been considered one of the best and most extensively
used statistical ML methods for analyzing the complex clinical
data. Tree-based models produce high accuracy and ease of
interpretation of results (16). For instance, predicting long-
term prognostic outcomes after SAH (17–19), mortality analysis
after SAH (20), and utility analysis of management strategies
after SAH (21). However, after carefully reviewing the literature,
we did not find any research using tree-based methods to
predict DCI development in the elderly patient population after
aneurysmal SAH (aSAH).

Therefore, the purpose of this study is to develop conventional
regression and tree-based models and compare which model
had better prediction performance for the DCI development in
hospitalized elderly patients after aSAH.

MATERIALS AND METHODS

Study Design and Patient Enrollment
This was a multicenter, retrospective, observational cohort study
that utilized admission clinical information from the electronic

health record system. This study participant consisted of all
elderly patients with aSAH within 24 h of onset who were
admitted in the department of neurosurgery of several medical
centers from April 2019 to June 2021, such as Renmin Hospital
ofWuhanUniversity, Huizhou Third People’s Hospital, Affiliated
Hospital of Panzhihua University, First Hospital of Shanxi
Medical University, and General Hospital of Northern Theater
Command. The elderly patients were defined as those aged
60 years and older. Out of all consecutive 215 patients, 153
eligible elderly patients with aSAH were eventually enrolled in
our study. Figure 1 was a flowchart that showed exclusion details
and the procedure of this study. Head CT, head and neck CT
angiography, or intracerebral digital subtraction angiography
was used for the diagnosis of aSAH.

The inclusion criteria were as follows: elderly patients aged
over 60 years, admission within 24 h after onset, spontaneous
SAH caused by aneurysm, head CT scan and blood laboratory
tests within 24 h after admission, surgical treatment within 3 days
after onset, and DCI after SAH occurred within 4–30 days.

The exclusion criteria included aSAH patients complicated
with vascular malformation or intracerebral hemorrhage,
postoperative state on admission, cases complicated by acute
infection, permanent brain injuries or bilateral mydriasis,
nonsurgical treatment, and larger missing data.

Clinical Information Collection
The patient clinical information that included sex, age, past
medical history (hypertension, diabetes mellitus, coronary heart
disease, smoking, and alcohol consumption), and admission state
(World Federation of Neurosurgical Societies [WFNS], Hunt
and Hess grade [HH], and modified Fisher scale [mFS]) was
collected. In addition, aneurysmal details that included aneurysm
location, number, length size, neck size, and surgical treatment
method were recorded. Admission blood laboratory tests (D-
dimer, glucose, white blood cell [WBC], neutrophil, lymphocyte,
and monocyte counts) and CT value of subarachnoid clots
and cerebral edema were also utilized in this study. The CT
value evaluation method is provided in the Methods in the
Data Supplement.

All hospitalized patients received standardized postoperative
treatment based on the SAH guidelines (22), such as nimodipine
to prevent vasospasms, anti-inflammatory drugs, hemostasis,
and analgesic. A postoperative head CT scan was performed
to determine the presence of intracranial rebleeding or
cerebral infarction.

Delayed Cerebral Ischemia Definitions
The definition of DCI is consistent with Vergouwen et al. (23). (1)
No other cause could have led to the occurrence of a permanent
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FIGURE 1 | The flowchart that showed exclusion details and the procedure of this study.

or temporary focal neurological impairment (such as aphasia,
apraxia, hemianopia, or neglect) between 4 and 14 days after
aSAH; (2) the Glasgow Coma Scale score decreased by at least
two points (either on one of its components [eye opening, verbal
response, and motor response] or on total score); and (3) head
CT scans revealed a low-density area that was not noticeable
on admission or immediately after the operation, and there
were no other causes except vasospasms between 4 and 30 days
after aSAH.

Sample Size Evaluation
Events per variable with a value of 10 was used to determine the
effective sample size in our study (24). A total of six variables were
entered into a multivariable regression model in our preliminary
analysis. Hence, there should be at least 60 patients with DCI.
In addition, according to the incidence rate of 30% of DCI
occurrence after SAH worldwide, at least 200 patients should
be enrolled in the model training cohort. Based on the limited
effective sample size, the least absolute shrinkage and selection
operator (LASSO) regression analysis was used to develop a
conventional regression model.

Missing Data Processing
A total of five elderly patients had missing data, which accounted
for <5% of the patient population. Therefore, a direct deletion
method was applied to process the data (25).

Prediction Model Development
In this study, each patients with aSAH in the dataset was
regarded as a single data point, clinical information measured
at admission (demographic data, past medical history, WFNS
grade, HH grade, mFS, aneurysm information, treatment
methods, serum laboratory test, and image CT value) was used
as feature input, and DCI occurred was used as the label of
the algorithm. We randomly divided the multicentral data into
the model development cohort and model validation cohort in
a ratio of 70–30%. The training cohort of 111 patients was
used to construct the conventional LASSO regression model
and tree models, such as decision tree (DT), random forest
(RF), eXtreme Gradient Boosting (XGBoost). We used grid
search to find optimal parameters. Since the computational
resource is limited, only some critical parameters are taken
into account for each model. The searching range and steps
of the chosen parameters for all investigated modes are
listed below.

The LASSO Model
The LASSO regression, suitable for small sample size and high-
dimensional data, was used to select the most informative
prediction variables to construct the model. We used
the “glmnet, corrplot, caret” packages of R and five-fold
cross-validation to obtain the optimal λ and the variables
selecting results.
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The DT Model
Decision tree algorithms partition the sample data by splitting
prediction features at discrete cut-points and are usually
presented in the form of a tree. The DT algorithm uses the Gini
index to determine each split’s optimal variable and location in
this study. The cost complexity parameter that penalizes more
complex trees is used to control the size of the final tree. Several
important parameters, such as max_depth, min_samples_split,
min_samples_leaf, and max_leaf_nodes were adjusted by the
10-fold cross-validation and “rpart, partykit, caret” packages of R.

The RF Model
Random forest generates multiple DTs by sampling objects
and variables, and then classifies the objects in turn to build
a predictive model. Finally, to summarize the classification
results of each DT, the mode category in all prediction
categories is the category of the RF model prediction object.
The important parameters, such as n-estimators, min_sample
split, and min_sample_leaf, were determined using the 10-fold
cross-validation and “randomForest” package.

An XGBoostmodel
The XGBoost is an optimized distributed gradient enhancement
library whose design is efficient, flexible, and portable. An ML
algorithm is implemented under the framework of gradient
enhancement. XGBoost provides the promotion of parallel trees,
such as gradient boosting decision trees, which can solve many
data science problems quickly and accurately. The important
parameters, such as gamma, subsample, nrounds, max_depth,
eta, colsample_bytree, and min_child_weight were evaluated by
“xgboost” package and a 10-fold cross-validation.

Evaluation of Prediction Model
Performances
The area under the receiver operating characteristic (ROC)
curve (AUC) with 95% CIs, a precision-recall curve, accuracy,
sensitivity, and specificity were used to evaluate the model
performance. Additionally, we calculated precision and recall
indicators using a validation cohort. We used the optimalCutoff
function to obtain the optimal threshold of the model outputs
to evaluate the model performance. To better demonstrate the
generalization of the above-mentioned models, we calculated
those indices on both model training and validation cohorts.
Furthermore, we compared the errors of the two cohorts to assess
the considered models. Finally, to visualize the contribution
of each clinical feature, feature importance calculated via the
XGBoost method was generated to rank their relative influence
on the risk of DCI development.

Statistical Analysis
The Kolmogorov–Smirnov test was used to determine the
distribution type of the data before formally analyzing the
dataset. Continuous variables analyzed using theMann–Whitney
U-test, or independent t-test, is presented as a median with
interquartile range (IQR) or mean ± SD. Categorical variables
analyzed using the chi-square test, or Fisher’s exact test are
expressed as numbers (percentages). All statistical analyses were

two-tailed, and the values of p lower than 0.05 were considered
statistically significant. All statistical analyses in this study were
completed using IBM SPSS Statistics for Windows, version 26.0
(IBM Corp., Armonk NY, USA) and R software (https://www.r-
project.org/).

RESULTS

Baseline Characteristics
The mean age of elderly patients in the model training and
validation cohorts was 67 years (IQR: 63, 71) and 66 years (IQR:
63, 69), respectively.We observed that elderly patients with aSAH
were more likely to be women, and there were no significant
distinctions in past medical history among the two cohorts.
In addition, the admission state, aneurysmal information,
admission laboratory results, CT value in subarachnoid clots,
and cerebral edema had no significant differences between the
two groups. The number of patients with DCI in the two
groups was 31 (28%) and 11 (26%). Table 1 shows the baseline
characteristics in training and validation cohorts. Moreover,
we analyzed the baseline information of elderly patients with
or without DCI in the training cohorts. Details are placed
in Table 2.

LASSO and Tree Models Development
The training process and optimal parameters of the LASSO
and tree-based models are demonstrated in Figure 2. In the
regression model, we used the LASSO method to select
the optimal predictors. An optimal λ of 0.1356784 and
log (λ) of −1.997 were adopted in LASSO, and Figure 2A

demonstrates that 23 features finally decreased to two features
when using the above parameters. The independent predictors
were CT value in subarachnoid clots (adjusted odds ration
[aOR]: 1.115, 95% CI: 1.028–1.220, p = 0.011) and aneurysm
treatment method (aOR: 0.196, 95% CI: 0.067–0.522, p = 0.001)
after the multivariable regression analysis. Min_samples_split,
min_samples_leaf, and max_leaf_nodes were set to 2, 2, 0,
respectively, and Figure 2B shows that the optimal decision
nodes were CT values of subarachnoid clot and WBC count
during the training process of DT. When n_estimators,
min_sample_leaf, and min_sample_split indiceswere set to 63, 4,
2, respectively, and Figure 2C demonstrates that the minimum
error was 0.05 corresponding to the optimal tree number of
63 during the training process of RF. Figure 2D displays the
training process of XGBoost, and we can obtain the best
prediction power when gamma of 0.25, subsample of 0.5,
nrounds of 100, max_depth of 2, eta of 0.01, colsample_bytree
of 1, and min_child_weight of 1. In addition, the optimal
thresholds of LASSO, DT, RF, and XGBoost were 0.3, 0.13, 0.48,
and 0.43, respectively.

LASSO and Tree Models Performance and
Validation
When using the training cohort to evaluate the model
performance, the LASSO model had a lowest AUC-ROC value of
0.793 (0.692, 0.893) than the single DT of 0.836 (95% CI: 0.747–
0.926, p= 0.15), RF of 1 (95% CI: 1–1, p< 0.05), and XGBoost of
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TABLE 1 | Baseline characteristics of the elderly patients in model training and validation cohorts.

Characteristics Training cohort

(n = 111)

Validation cohort

(n = 42)

P-

value

Demographics

Age (years) 67 (63, 71) 66 (63, 69) 0.607

Gender (Female) 77 (69) 29 (69) 1.000

Medical history

Hypertension 65 (59) 19 (45) 0.195

Diabetes 5 (5) 2 (5) 1.000

CHD 6 (5) 2 (5) 1.000

Smoking 20 (18) 7 (17) 1.000

Drinking 16 (14) 4 (10) 0.595

WFNS grade 0.500

I–II 76 (69) 28 (66)

III 19 (17) 5 (12)

IV 8 (7) 7 (17)

V 8 (7) 2 (5)

Hunt and Hess grade 0.191

I–II 63 (57) 29 (69)

III 34 (31) 7 (17)

IV 7 (6) 3 (7)

V 7 (6) 3 (7)

Modified Fisher scale 0.925

1–2 47 (42) 17 (41)

3 33 (30) 11 (26)

4 31 (28) 14 (33)

Aneurysm location 0.240

ACA 98 (88) 40 (95)

PCA 13 (12) 2 (5)

Aneurysm number 1.000

Single 98 (88) 38 (90)

Multiple 13 (12) 4 (10)

Mean aneurysm size

Neck (mm) 3.2 (2.5, 4.25) 3.2 (2.5, 3.98) 0.530

Length (mm) 4.5 (3.5, 5.95) 4.14 (3, 5.8) 0.293

Aneurysm treatment 0.156

Clipping 50 (45) 25 (60)

Coiling 61 (55) 17 (40)

Admission laboratory results

Glucose (mmol/L) 7.3 (6.24, 8.55) 6.94 (5.97, 8.17) 0.506

D-dimer (mg/L) 1.48 (0.78, 3.43) 1.42 (0.88, 3.06) 0.917

WBC (10∧9/L) 11.3 (8.7, 13.73) 11.25 (9.69, 13.97) 0.606

Neutrophil (10∧9 /L) 9.67 (7.33, 12.22) 9.1 (7.56, 11.53) 0.731

Lymphocyte (10∧9 /L) 0.85 (0.66, 1.19) 0.94 (0.69, 1.25) 0.778

Monocytes (10∧9 /L) 0.47 (0.33, 0.68) 0.39 (0.32, 0.66) 0.629

Admission CT value (HU)

ClotCT 57.88 (53, 62.24) 59.41 (52.82, 62) 0.806

EdemaCT 26.4 (24.3, 28.8) 26.22 (22.33, 29.08) 0.589

DCI 31 (28) 11 (26) 0.990

DCI indicates delayed cerebral ischemia; ACA aneurysm includes anterior cerebral artery, middle cerebral artery, internal cerebral artery, anterior communicating artery; posterior

communicating artery; PCA aneurysm includes posterior cerebral artery, basilar artery, anterior inferior cerebellar artery, posterior inferior cerebellar artery, vertebral artery; ACA, anterior

circulation aneurysm; PCA, posterior circulation aneurysm; WBC, White blood cell; CT, computer tomography; HU, Hounsfield Unit; WFNS, World Federation of Neurosurgical Surgeons;

CHD, Coronary heart disease.
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TABLE 2 | Baseline characteristics of model training cohort based on delayed cerebral ischemia.

Characteristics Total (n = 111) Non-DCI (n = 80) DCI (n = 31) P-value

Demographics

Age (years) 67 (63, 71) 67 (63.75, 70.25) 65 (62, 71) 0.571

Gender (Female) 77 (69) 59 (74) 18 (58) 0.168

Medical history

Hypertension 65 (59) 50 (62) 15 (48) 0.255

Diabetes 5 (5) 5 (6) 0 (0) 0.319

CHD 6 (5) 2 (2) 4 (13) 0.05

Smoking 20 (18) 12 (15) 8 (26) 0.292

Drinking 16 (14) 10 (12) 6 (19) 0.376

WFNS grade <0.001

I-II 76 (68) 62 (78) 14 (45)

III 19 (17) 13 (16) 6 (19)

IV 8 (7) 3 (4) 5 (16)

V 8 (7) 2 (2) 6 (19)

Hunt and Hess grade 0.009

I–II 63 (57) 52 (65) 11 (35)

III 34 (31) 23 (29) 11 (35)

IV 7 (6) 3 (4) 4 (13)

V 7 (6) 2 (2) 5 (16)

Modified Fisher scale 0.623

1–2 47 (42) 35 (44) 12 (39)

3 33 (30) 25 (31) 8 (26)

4 31 (28) 20 (25) 11 (35)

Aneurysm location 1.000

ACA 98 (88) 70 (88) 28 (90)

PCA 13 (12) 10 (12) 3 (10)

Aneurysm number 0.754

Single 98 (88) 71 (89) 27 (87)

Multiple (≥2) 13 (12) 9 (11) 4 (13)

Mean aneurysm size

Neck (mm) 3.2 (2.5, 4.25) 3.2 (2.54, 4.12) 3.4 (2.35, 4.3) 0.95

Length (mm) 4.5 (3.5, 5.95) 4.25 (3.44, 5.53) 4.9 (3.85, 6.25) 0.207

Aneurysm treatment <0.001

Clipping 50 (45) 26 (32) 24 (77)

Coiling 61 (55) 54 (68) 7 (23)

Admission laboratory results

Glucose (mmol/L) 7.3 (6.24, 8.55) 7.28 (6.15, 8.48) 7.4 (6.36, 8.7) 0.696

D-dimer (mg/L) 1.48 (0.78, 3.43) 1.35 (0.76, 3.08) 2.21 (0.86, 4.39) 0.064

WBC (10∧9/L) 11.3 (8.7, 13.73) 10.13 (8.57, 12.7) 13.7 (11.11, 15.2) 0.002

Neutrophil (10∧9 /L) 9.67 (7.33, 12.22) 8.34 (7, 11.17) 12.22 (9.37, 13.86) 0.003

Lymphocyte (10∧9 /L) 0.85 (0.66, 1.19) 0.92 (0.68, 1.28) 0.77 (0.65, 1.05) 0.293

Monocytes (10∧9 /L) 0.47 (0.33, 0.68) 0.46 (0.31, 0.64) 0.5 (0.38, 0.76) 0.206

Admission CT value (HU)

ClotCT 57.88 (53, 62.24) 56.39 (52.23, 60) 62.59 (57.09, 65.85) <0.001

EdemaCT 26.4 (24.3, 28.8) 26.66 (24.96, 29) 26 (23.6, 27.08) 0.175

ACA, anterior circulation aneurysm; PCA, posterior circulation aneurysm; WBC, White blood cell; CT, computer tomography; HU, Hounsfield Unit; WFNS, World Federation of

Neurosurgical Surgeons; CHD, Coronary heart disease. ACA aneurysm includes anterior cerebral artery, middle cerebral artery, internal cerebral artery, anterior communicating artery;

posterior communicating artery; PCA aneurysm includes posterior cerebral artery, basilar artery, anterior inferior cerebellar artery, posterior inferior cerebellar artery, vertebral artery.

0.931 (95% CI: 0.885–0.978, p = 0.01). Moreover, the accuracy
of 80.9% of the LASSO was lower than the RF of 85.7% and
the XGBoost of 83.3%. However, the LASSO scored a highest

AUC value of 0.894 (95% CI: 0.8–0.989) in external verification
than DT of 0.764 (95% CI: 0.6–0.928, p = 0.05), RF of 0.821
(95% CI: 0.683–0.959, p = 0.27), and XGBoost of 0.865 (95%
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FIGURE 2 | The training process and optimal parameters of the LASSO and tree ML models were demonstrated. (A) Demonstrates that 23 features finally decreased

to two features when using an optimal λ of 0.1356784 and log(λ) of −1.997 parameters. (B) Shows that the optimal decision nodes were CT value of subarachnoid

clot and WBC count during the training process of DT. The minimum error was obtained when the optima tree number was 63, the training process of RF is shown in

(C). (D) Displays the training process of XGBoost, and we can obtain the best prediction power when gamma of 0.25, maximum depth of 2, and nrounds value of 100.

FIGURE 3 | The performance and evaluation of the LASSO regression and tree-based models. (A) ROC and AUC value of LASSO and tree-based modes in training

cohort; (B) the ROC and AUC value of LASSO and tree-based modes in validation cohort. ROC, receiver operating characteristic curve; AUC, area under the curve;

LASSO, least absolute shrinkage and selection operator; DT, decision tree; RF, random forest; XGBoost, extreme gradient boosting.

CI: 0.751–0.979, p = 0.69). Figure 3 shows the performance and
evaluation of the LASSO regression model and tree ML models.

Table 3 illustrates the accuracy, specificity, sensitivity,
precision, and recall indicators of the above models. As we
can see, the RF model with an accuracy of 100% (100%) is
higher than other models using the training cohort. However,
its accuracy value decreased to 85.7% (83.7, 100%) in external

validation cohort. On the contrary, the XGBoost model with an
accuracy value of 87.4 and 83.3% had a stable performance in
the two cohorts, and the DT model with an accuracy value of
81.1 and 78.5% performed the worst among all tree models. In
the regression model, the LASSO model’s accuracy improved by
3.5% from training to the external validation cohort. Moreover,
the LASSO model had a higher precision and recall value of

Frontiers in Neurology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 791547

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Hu et al. Delayed Cerebral Ischemia Prediction

TABLE 3 | LASSO and tree-based model performance and validation.

Validation Model Accuracy (%) Sensitivity (%) Specificity (%) Precision Recall

Internal LASSO 77.4 48.3 88.7 NA NA

DT 81.1 77.7 81.7 NA NA

RF 100 100 100 NA NA

XGBoost 87.4 97.5 61.3 NA NA

External LASSO 80.9 54.5 73.8 62% 90%

DT 78.5 66.6 80.5 57% 36%

RF 85.7 100 83.7 62% 45%

XGBoost 83.3 96.7 45.4 57% 36%

LASSO indicates least absolute shrinkage and selection operator; DT, decision tree model; RF, random forest; XGBoost, extreme gradient boosting.

FIGURE 4 | Area under the precision-recall curve (AUC-PR) of all prediction models. (A) the AUC-PR of LASSO; (B) the AUC-PR of DT; (C) the AUC-PR of RF; (D) the

AUC-PR of XGBoost. LASSO, least absolute shrinkage and selection operator; DT, decision tree; RF, random forest; XGBoost, extreme gradient boosting.

62 and 90% than tree-based models in external validation.
When evaluating the model performance using area under the
precision-recall curve (AUC-PR), LASSO model scored a highest
AUC-PR value of 0.681 than DT of 0.615, RF of 0.667, and XGB

of 0.622 in external validation. Figure 4 shows the P–R curve and
AUC value of all models.

As shown in the Supplementary Table 1, the errors of LASSO,
DT, RF, and XGBoost in model training were 18.1, 20.5, 21.6,
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FIGURE 5 | All admission clinical feature importance. ClotCT, CT value of subarachnoid blood clot; WBC, white blood cell; LC, lymphocyte; NC, neutrophil; edemaCT,

CT value of cerebral edema; HH, Hunt and Hess grade; MC, monocyte.

and 19.8%, respectively, while in the model validation cohort, the
error percentage were 23.7, 26.9, 26.1, and 21.2%, respectively.

Feature Importance
The feature importance was scaled so that the sum added up to
1, with a higher importance score indicating a stronger impact
on the occurrence of DCI. The most important three features for
DCI prediction in elderly patients were CT value pf subarachnoid
clots (0.239), aneurysm therapy methods (0.184), and admission
WBC counts (0.132). Figure 5 shows all admission clinical
feature importance.

DISCUSSION

In this study, we enrolled the eligible elderly patients with aSAH
from five medical centers and randomly divided them into model
training and external validation cohorts, and discussed whether
tree-based models can improve the DCI prediction power
compared with the regression model during hospitalization.
Due to our limited effective sample size, the LASSO method
was applied to construct one conventional regression model,
and compared with three tree models. To our knowledge, this
study is the first to develop tree-based models using complete
admission clinical information and to systematically compare the
performances of the LASSO regression model for DCI prediction
in elderly patients.

The LASSO regression as a special method performs well
when reducing data dimensions and multicollinearity among
features. For instance, our previous study (26) used the LASSO
method to select three optimal variables for establishing a
dynamic nomogram for predicting an unfavorable prognosis
after aSAH in the case of limited effective sample size. In this
study, the optimal independent risk factor for DCI prediction
in elderly patients were CT value of subarachnoid clots and
aneurysmal treatment method. Previous studies have shown
that a CT value of SAH more than 49.95 HU is correlated
with DCI. The CT values in SAH are generally considered to
represent the density of subarachnoid clots (27). It can reflect the
neural inflammatory response after SAH, while the neurovascular
inflammation would be a potential mechanism of early brain
injury and delay cerebral vasospasm (28, 29). In our study, a CT
value > 61.24 HU would be an independent predictor for DCI
in elderly patients with aSAH. In addition, our study suggests
that an aneurysm endovascular therapy is a vital factor for DCI
prevention in elderly patients compared with the neurosurgical
treatment. Montalverne et al. (30) reported that endovascular
treatment should be considered as a first option for the ruptured
aneurysm in elderly patients since an overall favorable prognosis
can be achieved in most persons. Yue et al. (31) considered that
an interventional treatment presented a better outcome than the
surgical treatment for elderly patients. By fitting the above two
variables, the AUC and accuracy index of the LASSO regression
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model demonstrated a good predictive performance, which is
generally better than the tree models.

Tree learning algorithms are the most widely used supervised
learning methods in clinical making-decision at present (16).
In this research, we, respectively, constructed single tree, RF,
and XGBoost models for DCI prediction in elderly patients,
and the results indicated that classification power of the DT
model was worse than other tree models. Although there were
no previous research utilizing DT for predicting DCI in elderly
patient population; however, Churpek et al. (32) argued that the
DT model was still less capable of predicting ward deterioration
than the RF and XGBoost models. We know that single tree
models, while easy to construct and interpret, do not have
much prediction power necessary for our attempts to solve this
particular kind of outcome classification problem (33). As we can
see, the RF and XGBoost models both improved the prediction
ability for DCI based on a single tree model. On the whole,
the XGBoost model was even better and stable when applying
to training and validation cohorts. The possible explanation is
that the expected result of the XGB technology is to build a
series of trees, the latter trees can improve the shortcomings
of the previous trees, and ultimately reduce the deviation and
classification to achieve the best prediction performance (34).

In the field of predicting DCI in hospitalized elderly patients,
no research has been performed comparing conventional
regression and tree-based methods. Most previous studies aimed
to predict the occurrence of unfavorable prognoses among the
population of SAH based on the DT method. For example, a
prospective cohort study of negative outcomes after aSAH by
Liu et al. (11) compared the conventional regression model
to the DT model. They found that the DT model had a
similar predictive performance to the regression model since
both achieved a high accuracy of 0.895 in the validation
dataset. In addition, similar literature has been reported the
field (17, 19, 35). In our study, although the prediction power
of tree models is generally superior to the LASSO in the
training cohort; however, the AUC value of LASSO regression
was higher than tree models in external validation. Since the
prediction ability of the LASSOmodel varies greatly between two
datasets, the small sample size of the validation set may explain
this phenomenon.

To visualize the contribution of each feature to the occurrence
of DCI, we also calculated the importance of each feature. We
can see the CT value of subarachnoid clots, aneurysm therapy
methods, and WBC counts that were the three most critical
features for DCI prediction in hospitalized elderly patients
with aSAH. Why the first two features are most important in
predicting the occurrence of DCI in elderly patients has been
explained above. The number of WBCs in the peripheral blood
is well-known to directly reflect the level of inflammation in the
body. A large prospective observational cohort study by Al-Mufti
et al. (36) considered that WBCs of more than 12.1 × 109/L
were the most important predictor for DCI prediction in patients
with good-grade after aSAH. In our study, the WBCs >12.8 ×

109/L in the peripheral blood, similar to the previous study’s
result, was deemed as an important factor for DCI prediction
in hospitalized elderly patients. Ruptured aneurysms events in
elderly patients often result in poor-grade at admission. Clinical

signs of the early pro-inflammatory cytokine cascade caused by
aSAH are almost double in poor-grade patients (36, 37). This may
interpret the difference in WBC counts between our results and
the previous study.

Our research has several points of clinical value. For
elderly patients with aSAH as a particular cohort, there is
currently no literature on the early prediction of DCI in elderly
patients during hospitalization. Based on this, we created and
compared the regression and tree models to predict the DCI
performance of elderly patients with aSAH. Although DT, RF,
and XGBoost had a better prediction performance than the
LASSO regression in the training cohort. However, the LASSO
model demonstrated a superior generalization ability than all
tree-based models in external validation cohort. These results
need to be further validated in the future. Second, we found
the three most important clinical predictive features: CT value
of subarachnoid clots, WBCs in the peripheral blood, and
aneurysmal therapy method.

However, the limitation of this study deserves attention. The
object of this research was a special elderly population with
aSAH, and the time of primary SAH must be guaranteed within
24 h. This has led to the fact that although we have carried out a
multi-center study, the sample size was relatively limited. In the
future, large-sample prospective clinical studies are still needed
to verify our results. Second, the CT value of the subarachnoid
blood clot is measured by manually drawing on the ROI, and we
should pay attention to the measurement error. Therefore, after
agreeing with the radiologist, the CT value was obtained by two
clinicians without knowing the patient’s clinical information to
reduce errors.

CONCLUSIONS

For the early prediction of DCI in elderly patients with aSAH, the
LASSO model had a superior prediction power than tree-based
models in external validation. As a result, we recommend the
conventional LASSO regression model to predict DCI in elderly
patients with aSAH. However, these results need to be further
validated in the future.
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