
molecules

Review

Photosensitizing Antivirals

Kseniya A. Mariewskaya 1,2, Anton P. Tyurin 1,3 , Alexey A. Chistov 1, Vladimir A. Korshun 1 ,
Vera A. Alferova 1,3,* and Alexey V. Ustinov 1,*

����������
�������

Citation: Mariewskaya, K.A.; Tyurin,

A.P.; Chistov, A.A.; Korshun, V.A.;

Alferova, V.A.; Ustinov, A.V.

Photosensitizing Antivirals. Molecules

2021, 26, 3971. https://doi.org/

10.3390/molecules26133971

Academic Editor: Luděk Eyer
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Abstract: Antiviral action of various photosensitizers is already summarized in several comprehen-
sive reviews, and various mechanisms have been proposed for it. However, a critical consideration
of the matter of the area is complicated, since the exact mechanisms are very difficult to explore
and clarify, and most publications are of an empirical and “phenomenological” nature, reporting a
dependence of the antiviral action on illumination, or a correlation of activity with the photophysical
properties of the substances. Of particular interest is substance-assisted photogeneration of highly
reactive singlet oxygen (1O2). The damaging action of 1O2 on the lipids of the viral envelope can
probably lead to a loss of the ability of the lipid bilayer of enveloped viruses to fuse with the lipid
membrane of the host cell. Thus, lipid bilayer-affine 1O2 photosensitizers have prospects as broad-
spectrum antivirals against enveloped viruses. In this short review, we want to point out the main
types of antiviral photosensitizers with potential affinity to the lipid bilayer and summarize the
data on new compounds over the past three years. Further understanding of the data in the field
will spur a targeted search for substances with antiviral activity against enveloped viruses among
photosensitizers able to bind to the lipid membranes.

Keywords: broad-spectrum antivirals; photosensitization; lipid bilayer; singlet oxygen; hypericin;
perylene derivatives; BODIPY dyes

1. Introduction

Outbreaks of diseases caused by coronaviruses SARS-CoV (2002–2004), MERS-CoV
(2012, 2014, 2015), filovirus Ebola (2014–2015, 2018–2019), as well as the current pan-
demic caused by coronavirus SARS-CoV-2 (2019–to date), has stimulated extensive re-
search on antiviral compounds [1–6] and has shown the importance of the availability
of approved broad-spectrum antiviral drugs suitable for rapid repurposing or reposi-
tioning [7–12] to combat emerging threats. The need for such drugs was postulated in
2015 [13,14]. The importance of the problem pushed the search for active antivirals among
nanomaterials [15–20] and photosensitizers [21–25]. Although photosensitizing antivirals
are, in principle, suitable for disinfection purposes (e.g., rooms and vehicles), in this account
we are focusing on inhibition of viral reproduction in host cells.

Many dangerous and widespread viruses are enveloped, for example, respiratory
viruses, viruses of hemorrhagic fevers and encephalitis, herpes, hepatitis, HIV, etc. En-
veloped viruses possess a supercapsid based on a lipid bilayer, which they acquire from
membranes of the host cell upon maturation and egress. Origination of the lipids from
the host cell provides for considerable similarity of the lipid part of envelope of various
viruses (although the exact lipid composition may differ significantly [26]). The lipid
bilayer of the virion is as an excellent target for broad-spectrum antivirals [27,28]. Since
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oxidation of unsaturated lipids by singlet oxygen is well known [29,30], it is assumed that
lipid oxidation in the virion envelope disrupts its ability to fuse with the lipid membrane
of the host cell, thus preventing the penetration of the viral genetic material inside [28].
Lipid-directed antiviral drugs could be attractive because there is no obvious mechanism
for the emergence of virus resistance by mutations, since lipid biosynthesis is not encoded
in the viral genome [28]. Unlike the virion, the cell is capable of synthesizing lipids and
has repair systems that restore the function of the membrane after oxidative damage to its
components, which provides greater cell resistance to oxidants.

Photosensitizers are substances that can exhibit biological activity under electromag-
netic irradiation (UV, visible, IR). Upon absorption of a light quantum, the photosensitizer
forms the singlet excited state (S1) and is then capable of either reacting with biomolecules
itself, or, as a result of intersystem crossing (ISC), transform into a triplet state (T1). In-
activation of a triplet excited state is possible through the transfer of an electron to a
substrate (type I photoreaction) or through energy exchange with a triplet oxygen molecule
(3O2), resulting in formation of singlet oxygen (type II photoreaction) [31–33]. Type I
photoreaction yields intermediate formation of ion-radicals, subsequently forming various
reactive oxygen species (ROS). Either way, 1O2 or other generated ROS can cause damage
to biomolecules [29].

There are many reports of photosensitized antiviral action of various compounds [31,34–39].
However, investigation of the mechanism of action and identification of targets for such
compounds is a complicated task due to the multidisciplinarity of the problem itself.
Often, only observations of an increase of the antiviral effect under light exposure are
reported. However, for an unambiguous clarification of the mechanism, a cooperation of
photophysics, photochemistry, molecular biology and virology is necessary. All hypotheses
about photo-damage to certain molecules (membrane lipids, proteins or nucleic acids), as
a result of which certain stages of viral replication are inhibited, are still awaiting careful
experimental proof. The presence of a dual (alternative) mechanism of antiviral action
for a single compound may an important problem. In addition, photosensitization has a
damaging effect on cells, which should be taken into account upon the interpretation of
experimental results.

Data on antiviral photosensitizers are summarized in several, including some recent,
reviews [31,34–39]. The most prominent is a comprehensive review [31] containing more
than 600 references on photo-dependent antiviral action. However, it is possible that, on
the one hand, for some substances, their ability to photogenerate singlet oxygen or induce
oxidative stress under electromagnetic irradiation may be known, and on the other hand,
in some reports, the activity of these substances against enveloped viruses can be described
without any study of its photo-dependence. Despite the fact that direct evidence of a causal
relationship between antiviral activity and generation of singlet oxygen is relatively rare,
correlations between these types of bioactivity suggest that this approach is promising for
the development of broad-spectrum drugs.

Apparently, the possibilities of photodynamic therapy are limited due to the need for
irradiation. However, external viral infections and respiratory viral diseases of the upper
respiratory tract treatable by this type of therapy also pose a serious threat. Moreover,
rapidly progressing medical techniques allow us to expect the development of methods of
exposure to electromagnetic radiation for invasive viral infections (via both instrumental
and biophotonic approaches) in the future. Therefore, the identification of patterns in
the antiviral activity of photosensitizers for certain types of compounds can spur the
development of valuable drugs.

Thus, in this review, we set out to (1) recall the main photoactive antiviral scaffolds
with a possible affinity to the lipid bilayer; (2) give data on the antiviral activity of photoac-
tive compounds; and (3) consider the data that have appeared since the last comprehensive
account [31]. The review contains sections devoted to some structural types of photosensi-
tizers with antiviral activity (Figure 1).
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2. Hypericin and Related Compounds

Hypericin (1) and its congener pseudohypericin (2) are pigments found in the flow-
ers, leaves and stems of Saint John’s wort, Hypericum perforatum (Guttiferae), and most
species of the same genus [40]. 1 can also be synthesized by endophytic fungus Thielavia
subthermophila INFU/Hp/KF/34B [41,42] and mushrooms of subgenus Dermocybe (Cortinar-
ius) [43]. These polyketides contain condensed naphtodianthrone (or phenanthroperylene
quinone) scaffold, which is extremely rare in natural products [44]. Hypericin and related
monocarboxylic acid (3) have also been found in insects [45]. Similar octahydroxylated
compounds have been described for protozoa (stentorin, 4, from Stentor coeruleus) [46,47]
and fossil sea lily (fringelite D, 5, from Apiocrinus sp.) [48,49]. Living sea lilies Gymnocrinus
richeri [50] and Holopus rangii [51] produce a series of brominated naphtodianthrones—
gymnochromes (gymnochrome A, 6). Nonbrominated analogs of gymnochromes have
also been found in crinoids Lamprometra palmata gyges (7a) and Himerometra robustipinna
(7b) [52]. Corresponding pigments with secondary amino groups have been identified in
the buckwheat flowers (fagopyrin F, 8, from Fagopyrum esculentum) [53,54] (Figure 2).

Hypericin has been intensively studied as the active compound of Saint John’s wort—
a well-known traditional medicine. Due to monoamine oxidase inhibition activity of
hypericin [55], the extract of Hypericum perforatum is used as an antidepressant drug. On
the other hand, the fact that 1 has photosensitizing properties and could cause phototoxic
reactions was discovered about a century ago [44].

Antiviral activity of hypericins (1,2) were described in 1988 for the first time by
Meruelo et al. [56] on Friend leukemia virus (FV) and radiation leukemia virus (RadLV).
In the next few years, activities of 1 against human immunodeficiency virus type 1
(HIV-1) [57], Moloney murine leukemia virus (Mo-MuLV) [58], equine infectious ane-
mia virus (EIAV) [59], vesicular stomatitis virus (VSV), herpes simplex virus (HSV) types
1 and 2, parainfluenza virus, vaccinia virus [60], murine cytomegalovirus (MCMV), and
Sindbis virus [61] were reported. Through extensive testing, two important patterns of
hypericin’s action have been identified: first, the activity was manifested (or significantly
increased) under the influence of light [59,61,62]; second, it was active against enveloped
viruses [58]. There is a number of studies utilizing the broad spectrum of hypericin’s an-



Molecules 2021, 26, 3971 4 of 14

tiviral activity for the development of potent agents for virus inactivation [31], for example,
against a novel duck reovirus [63].
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It was found that hypericin inactivates the viral fusion function by singlet oxygen
produced upon illumination [64]. Photoinactivation of viral fusion was observed with
hypericin concentrations of 20–50 nm (for VSV) [64]. It is worth noting that hypericin itself
is rather inert to singlet oxygen [44]. In some cases, activity was registered in the absence
of light and at low levels of oxygen [65]. It indicates that antiviral pathways independent
of oxygen photoactivation may exist, but are not predominant. However, a significant
reduction of light-induced antiviral activity of hypericin under hypoxic conditions was
reported [65]. To illustrate the difficulties in photodynamic studies of antivirals, we would
like to give an extensive quotation of a peculiar statement from authors of the paper [65]:
“We had previously reported that hypericin does not require oxygen for its antiviral activity . . .
In those studies, however, we were not able to estimate accurately low oxygen levels in our virus
samples. In the present study, we reexamine the importance of oxygen using experimental conditions
where the effect of oxygen depletion could be quantified. The results indicate that while antiviral
pathways independent of oxygen may exist, the role of oxygen in this activity is significant”.

Other hypericin analogues also exhibit similar antiviral properties. Natural perylene
quinone hypocrellin A (9), isolated from fungus Hypocrella bambusae [66], is phototoxic to
HIV-1 [67], HSV-1, Sindbis virus [68], and VSV [69]. 7,7′-Dichlorohypericin (10), isolated
from lichens Nephroma Iaevigatum [70] and Heterodermia obscurata [71], exhibited strong
inhibitory activity against HSV-1 [72]. Sulphated gymnochromes—gymnochrome D (11)
and its atropisomer—are highly potent dengue antiviral agents [73]. Gymnochrome B (12)
is active against HSV-1, influenza virus, type A [74], dengue viruses, Japanese encephalitis
virus [75] (Figure 3). In the last case, ED50 activity level was reported as 29 nM with light
and 560 nM without light [75].
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Thus, hypericin and congeners are capable of photogenerating singlet oxygen. How-
ever, do they penetrate the lipid membranes of cells and enveloped viruses? There is no
unambiguous answer to this question, although the interaction of hypericin with lipid
membranes has been extensively studied [76–78]. Convincing evidence in favor of such a
mechanism of antiviral activity of hypericin and its structural analogs is the lack of antivi-
ral activity against non-enveloped viruses and an obvious connection between antiviral
properties and the generation of singlet oxygen [38].

3. Porphyrins, Phtalocyanins and Related Compounds

Porphyrins and porphyrinoids are tetrapyrrole compounds (13,14) (Figure 4), some of
which occur naturally in the human body. The valuable photophysical characteristics of
these compounds have attracted considerable interest from researchers due to their use
as photosensitizers. Indeed, many drugs used for antitumor photodynamic therapy are
based on a porphyrin core [79]. Recently, these compounds have attracted interest for other
areas of application, including photodynamic therapy (PDT) of skin infections, including
viral [80] and other infectious diseases [81] and in the development of porphyrin nanomate-
rials in diagnostics and imaging [82]. The properties of porphyrins and phthalocyanines as
antiviral sensitizers are mentioned in a review [31]; moreover, data on porphyrin analogs
as antiviral agents are summarized in a recent focused account [39]. Most porphyrins act
via type II photoinctivation through the generation of singlet oxygen, while the generation
of ROS according to type I photoreactions is rather uncommon for these compounds [39].
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Most papers on photosensitization are devoted to meso-aryl-substituted porphyrins
and their metal complexes. Porphyrins are capable of photoinactivation of both enveloped
and non-enveloped viruses and damage both lipids and proteins and nucleic acids [83].
Therefore, the structural motifs and structure-activity relationship (SAR) in a series of
these compounds differ significantly depending on the specific model and target [39].
It has recently been shown that, depending on the concentration of the photosensitizer,
its mechanism of action can change: irradiation with a relatively low concentration of
the photosensitizer (octacationic octakis (cholinyl) zinc phthalocyanine) inactivated viral
particles, but did not destroy them. Transmission electron microscopy (TEM) revealed that
virion membranes kept their structural integrity but lost their surface glycoproteins [84].

Porphyrins and related compounds continue to attract the attention of researchers
as a source of viral photoinactivation agents. Recently, an in vitro photoinhibitory ef-
fect of Radachlorin in combination with methylene blue against SARS-CoV-2 has been
reported [85]. Moreover, water-soluble tetra-cationic porphyrins were found to display
light-dependent virucidal activity against Bovine adenovirus (non-enveloped) and Bovine
alphaherpesvirus 1 (enveloped) at rather high concentrations, 1.0–5.0 µM, thus illustrating
the less selective photodynamic action of porphyrin derivatives [86].

It should be noted that the antiviral action of porphyrins and related compounds can
be mediated by a variety of mechanisms, in addition to photoinactivation. For example,
cationic meso-arylporphyrins, which were previously widely studied as photoinactivators,
are also capable of exhibiting antiviral activity in the dark [87]. Recently, the attention of
researchers has been attracted by such applications of porphyrinsas inhibition of fusion [88]
and binding to G-quadruplex [89]. Nevertheless, even in the case of an unclear mechanism
of action, porphyrin-like compounds are still prospective for drug development, because
they often have low toxicity levels. For example, a series of synthetic nitrocorroles were
found to be excellent candidates for human cytomegalovirus hCMV inactivation (at con-
centrations as low as 220 nM), exhibiting low toxicity and high therapeutic indices (up to
200) [90].

Thus, porphyrins are exhibiting a wide range of viral inactivation mechanisms, which,
on the one hand, makes them promising compounds for the development of disinfectants
and drugs, and, on the other hand, complicates rational design of bioactive derivatives,
since it often does not allow determining how exactly the observed activity is achieved.

4. Perylene-Based Rigid Amphipathic Photosensitizers

The so-called nucleoside mechanism of antiviral action consists of sequential phospho-
rylation of nucleoside analogs at the 5′-hydroxyl by intracellular kinases into mono→di→
triphosphates, followed by inhibition of DNA polymerases. Increasing the size of the sub-
stituent at the 5-position of pyrimidine nucleosides impairs their substrate properties with
respect to kinases. Indeed, while 5-ethynyl-2′-deoxyuridine 15 shows antiviral properties
against HSV, 5-phenylethynyl-2′-deoxyuridine 16 is already completely inactive [91]. Of
course, increasing the size of the aromatic substituent from phenyl (in compound 15) to
tetracyclic pyrenyl or pentacyclic perylenyl (compounds 17 and 18, respectively) should
make phosphorylation even more difficult (Figure 5). Therefore, the discovery of pro-
nounced anti-HSV activity for compounds 17 and 18 might seem surprising [92]. However,
everything falls into place if we assume an alternative, non-nucleoside mechanism of action
for compounds 17 and 18.

It was later found that if the rigidity of the molecule in nucleoside derivative 18 is
violated by inserting a flexibility element between the ethynyl group and the aromatic
residue, the anti-HSV activity of the resulting substance 19 is dramatically reduced [93].
Then it turned out that compounds 18, 20 and 21 (Figure 6) possess the highest antiviral
activity (IC50 5–130 nM, selectivity indices > 3000) compared to their analogues, i.e., those
in which a) a perylene residue is present; b) it is linked to uracil by a rigid ethynyl linker,
with activity to several envelope viruses—HSV, VSV, HCV, SIN [94], mCMV, IVA [95]—
being observed.
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This allowed us to hypothesize that the target for such compounds is the virion
lipid membrane, which is the common structural element for enveloped viruses, and the
mechanism consists of a mechanical incorporation of a hydrophobic perylene fragment into
the virion lipid bilayer, which disrupts the rheology of the virion membrane and makes its
fusion with the host cell membrane dramatically harder [94]. Therefore, such compounds
were named rigid amphipathic fusion inhibitors (RAFIs).

However, a different group of researchers later confirmed the high antiviral activity of
compound 18 against HSV-1, VSV, as well as Newcastle disease virus (NDV), Sendai virus
(SeV); its antiviral effect was found to be light-dependent, and efficient photogeneration of
singlet oxygen by 18 was demonstrated [96]. When HSV-1 virions were preincubated with
various concentrations of 18 (dUY11) for 30 min in the absence of light and then exposed
to a white-light source for an additional 10 min and applied to cells, IC50 0.2 nM was
observed. In the presence of sodium azide as a singlet oxygen quencher, the antiviral effect
was reduced. Unsaturated virion membrane lipids are postulated to be the target, and the
mechanism is considered to be similar to the antiviral action of Broad-SAVE compounds
(LJ001 and others, see Section 6).

Since the perylenethynyl chromophore is the same in compounds 18, 20, and 21, one
can assume that they all are capable of photoproducing singlet oxygen. It is interesting to
note that in typical virological experiments, only mixing of the components—cells, virions,
and the antiviral compound—occurs in the light (which usually takes less than an hour),
and then virus replication takes place in the dark. It turns out that even a brief exposure of
virions to singlet oxygen is enough to damage their lipids and strongly inhibit their fusion
with the cell membrane. However, some contribution of a non-photophysical mechanism
to the activity cannot be ruled out.

Compounds 18 and 21 showed high activity (EC50 20–25 nM) against tick-borne
encephalitis virus (TBEV) [97]. Subsequently, numerous perylene derivatives (e.g., 22–30)
(Figure 7) were synthesized [98–101], showing high activity against TBEV (EC50 up to < 1 nM)
and HSV, as well as African swine fever virus [102] and respiratory viruses [103]. The
structural diversity of antiviral perylene compounds and their action exclusively against
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enveloped viruses with little cytotoxicity is obvious evidence in favor of the fact that the
targets of such substances are the lipids of the virion envelope.
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The ability of perylene compounds to photogenerate singlet oxygen is well known.
Both perylene itself [104], and perylene-3,4,9,10-tetracarboxylic acid diimides, are efficient
in this process [105,106]. The BODIPY-perylene dyad is an effective photosensitizer of
1O2 formation [107]. Therefore, it can be assumed that photogeneration of singlet oxygen
should also be characteristic for perylene derivatives like 22–30.

5. BODIPY Compounds

BODIPY dyes are widely used in bioimaging due to their outstanding photophysical
properties, so their possible application in photodynamic therapy is of considerable interest
to researchers [108–110]. However, photoinactivation of the virus has been described for
only one BODIPY derivative 31 (Figure 8) [111]. Recently, a self-disinfecting material on
the basis of this compound showed a complete inactivation of model vesicular stomatitis
virus (VSV) [112].
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In our opinion, the BODIPY scaffold has great potential as a source of antiviral agents,
since its photophysical properties and the ability to generate singlet oxygen have been widely
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studied, including in the context of photodynamic therapy of microorganisms [107,113–116].
The applicability of this structural class for virus photoinactivation has already been
demonstrated, and the extensive opportunities in fine tuning the photophysical properties
of BODIPY derivatives provides a solid foundation for the design of new molecules with
valuable properties.

6. Other Structural Types

The other structural type of compounds is discussed in detail in previous literature
reviews [31]. Here we mention the most prominent types of compounds, prospective for
further investigation as antiviral agents.

There were some advances in the field of well-known photosensitizers, fused aromatic
dyes based on phenothiazine (32) and rhodamine (33) scaffolds (Figure 9). One of the most
widely used phenothiazine photosensitizers is methylene blue, used for blood product dis-
infection. Recently, this treatment was applied to inactivation of SARS-CoV-2 [85,117]. Pro-
duction of biocidal reactive oxygen species by rose Bengal was applied for self-disinfecting
fabric development in offensive personal protection [118].
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The aryl methyldiene rhodanine derivatives (34,35) (Figure 9) were described as broad-
spectrum antivirals [31,119–122]. Studies of this class of compound have recently advanced
significantly, as extensive in vitro and in vivo studies of the mechanism of action for a
representative of this family, LJ002 (36), have been conducted, showing its high efficacy
and low toxicity, which may be a significant advance in the development of drugs based
on compounds capable of generating 1O2 [123].

Another promising scaffold for viral photoinactivation was recently proposed. SARS-
CoV-2-RBD was selected as a novel target for indocyanine green (ICG, 37) (Figure 9)
as a photosensitizer in PDT to exploit its molecular modeling, the hierarchical nature
of protein structure, and physico-chemical properties using several bioinformatics tools.
The binding mode of the RBD to ICG was assessed via protein-ligand docking [124].
Indocyanines are attractive molecules for drug design due to their low toxicity and tunable
photophysical properties.

7. Conclusions

Although photosensitized antiviral action is known for many classes of substances, a
detailed study of the mechanisms and targets seems rather difficult due to the multidisci-
plinary nature of the area (photochemistry, photophysics, virology) and the need to control
many factors (light intensity and time, oxygen diffusion, wavelength of photosensitizer
absorption, etc.) Additional difficulties for data comparison arise from the use of different
methods for measuring antiviral activity for various viral strains and cell lines. At present,
the aggregate of data scattered in numerous articles suggests that the most interesting
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and promising for the development of broad-spectrum drugs is the type II mechanism—
photogeneration of singlet oxygen followed by oxidation of unsaturated lipids of the virion
membrane. The mechanism may not be the only one, since some membrane-active sub-
stances not absorbing visible/cnear UV light also exhibit antiviral activity. The virion lipid
membrane as the target of fusion inhibitor drugs requires the development of new sensitive
methods for lipid analysis, as well as methods for computer modeling of drug–lipid mem-
brane interaction. New ideas for the delivery of drugs and illumination to sites of viral
replication in the body may also prove fruitful for the development of effective antiviral
therapies. The ongoing threat of viral disease epidemics should stimulate research in this
challenging area.
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