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Abstract
Background  Metabolic disorder, malnutrition and inflammation are involved and interplayed in the mechanisms of 
heart failure with preserved ejection fraction (HFpEF). We aimed to construct a Metabolism-malnutrition-inflammation 
score (MIS) to predict the risk of death in patients with HFpEF.

Methods  We included patients diagnosed with HFpEF and without infective or systemic disease. 20 biomarkers were 
filtered by the Least absolute shrinkage and selection operator (Lasso)-Cox regression. 1000 times bootstrapping 
datasets were generated to select biomarkers that appeared above 95% frequency in repetitions to construct the MIS.

Results  Among 1083 patients diagnosed with HFpEF, 342 patients (31.6%) died during a median follow-up period of 
2.5 years. The MIS was finally constructed based on 6 biomarkers, they were albumin (ALB), red blood cell distribution 
width-standard deviation (RDW-SD), high-sensitivity C-reactive protein (hs-CRP), lymphocytes, triiodothyronine (T3) 
and uric acid (UA). Incorporating MIS into the basic predictive model significantly increased both discrimination 
(∆C-index = 0.034, 95% CI 0.013–0.050) and reclassification (IDI, 6.6%, 95% CI 4.0%-9.5%; NRI, 22.2% 95% CI 14.4%-
30.2%) in predicting all-cause mortality. In the time-dependent receiver operating characteristic (ROC) analysis, 
the mean area under the curve (AUC) for the MIS was 0.778, 0.782 and 0.772 at 1, 3, and 5 years after discharge in 
the cross-validation sets. The MIS was independently associated with all-cause mortality (hazard ratio: 1.98, 95% CI 
[1.70–2.31], P < 0.001).

Conclusions  A risk score derived from 6 commonly used inflammatory, nutritional, thyroid and uric acid metabolic 
biomarkers can effectively identify high-risk patients with HFpEF, providing potential individualized management 
strategies for patients with HFpEF.
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Introduction
Heart failure (HF) has conventionally been classified 
based on left ventricular ejection fraction (LVEF) fol-
lowing clinical guidelines. Heart failure with preserved 
ejection fraction (HFpEF), delineated by LVEF ≥ 50%, 
comprising at least half of all HF patients [1].The man-
agement of HFpEF poses challenges because of its diverse 
pathophysiology and epidemiological characteristics [2]. 
Cardiometabolic disorders like obesity, diabetes, and 
hypertension play a crucial role in the onset and devel-
opment of HFpEF. These comorbidities are also linked 
to the severity of HFpEF and personalized treatment 
approaches [3]. However, several recent studies suggested 
that, different from that in general population, some con-
ventional cardiovascular risk factors, such as increased 
serum lipid concentrations or higher blood pressure, are 
related to lower morbidity and mortality in HF patients. 
Such an association between cardiometabolic factors and 
the outcome of HF might be explained by the appearance 

of the malnutrition-inflammation complex syndrome [4]. 
HF patients are highly likely to suffer from malnutrition, 
which can be caused by metabolic derangements and 
associated with decreased immune function and inflam-
mation [5]. As a result, the activation of the inflammatory 
response in the metabolic abnormalities and malnutri-
tion of HFpEF might be the key factor in the develop-
ment and worsening of the condition.

Previous studies have proposed several biomark-
ers that reflected malnutrition-inflammation burden in 
patients with cardiovascular disease, such as high-sen-
sitivity C-reactive protein (hs-CRP), albumin, red blood 
cell distribution width (RDW), neutrophils and lympho-
cytes [6, 7]. In terms of metabolic factors, previous stud-
ies have demonstrated that some parameters from lipid 
and glucose biomarkers were related to impaired sur-
vival in HF patients, such as triglyceride-glucose (TyG) 
index, Lipoprotein(a), and the apolipoprotein B to apo-
lipoprotein A-1 ratio (apoB/apoA-1) [8–10]. In addition 
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to lipid and glucose metabolism, recent studies have also 
revealed that uric acid and thyroid hormone metabo-
lism are also related to the outcome of HF, and chronic 
inflammation may play a role [11, 12]. However, previous 
biomarker risk indexes seldom considered adding uric 
acid and thyroid hormones in the model construction.

In the context of the interplay of multiple mecha-
nisms in HFpEF, we aimed to investigate and select the 
most predictive indicators from a group of biomarkers 
reflecting inflammation, nutritional status, and lipid, glu-
cose, thyroid and uric acid metabolism, and construct a 
Metabolism-malnutrition-inflammation score (MIS) to 
enhance the risk prediction in HFpEF patients.

Methods
Study population
In this retrospective cohort, we enrolled patients hospi-
talized for acute decompensated heart failure and diag-
nosed with HFpEF during the period from 2006 to 2021 
at Fuwai Hospital. HFpEF was defined as symptomatic 
HF with an N-terminal Pro Brain natriuretic peptide 
(NT-proBNP) level ≥ 200 pg/ml for sinus rhythm or ≥ 600 
pg/ml for atrial fibrillation, and with an LVEF ≥ 50%. 
Patients with the following conditions were excluded in 
this study: (1) cardiac amyloidosis, (2) acute pulmonary 
embolism, (3) acute myocarditis, (4) infective endocar-
ditis, (5) malignant tumor, (6) immune disease and (7) 
blood system disease. The ethics committee of Fuwai 
hospital has approved the research protocol (2018 − 1041) 
and this study has therefore been performed in accor-
dance with the ethical standards laid down in the 1964 
Declaration of Helsinki.

Data collection and outcome
We obtained the data about demography, history of the 
disease, laboratory tests, management, and imaging data 
from the electronic medical record system. The informa-
tion about outcomes was obtained through telephone fol-
low-up or outpatient visits. The primary outcome of this 
study was all-cause mortality. The secondary outcomes 
included cardiovascular death and non-cardiovascular 
death.

Biomarkers
Blood samples of hospitalized patients were collected in 
admission, and the samples were placed in EDTA tubes. 
In the central laboratory, all biomarkers were tested 
according to standard protocols. We included 20 bio-
markers which reflected inflammation, nutritional sta-
tus, and lipid, glucose, thyroid and uric acid metabolism 
in this study, including neutrophils, lymphocytes, red 
blood cell distribution width (RDW), RDW-SD, platelet 
(PLT), albumin (ALB), high-sensitivity C-reactive protein 

(hs-CRP), triglyceride (TG), low-density lipoprotein cho-
lesterol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C), free fatty acid (FFA), apolipoprotein B (ApoB), 
apolipoprotein A-1 (ApoA-1), lipoprotein(a), fast blood 
glucose (FBG), glycated haemoglobin A1c (HbA1c), 
uric acid (UA), triiodothyronine (T3), free thyroxine 
(FT4), and thyroid stimulating hormone (TSH). We have 
reported the proportion of dyslipidemia, hyperuricemia 
and thyroid dysfunction in the baseline characteristics. 
The definition of dyslipidemia is total cholesterol ≥ 6.22 
mmol/L, or TG ≥ 2.26 mmol/L, or LDL-C ≥ 4.14 mmol/L, 
or HDL-C < 1.04 mmol/L. The definition of hyperurice-
mia is UA ≥ 6.22 umol/L. The definition of thyroid dys-
function is that the TSH out of 0.45 to 4.5 mIU/L, or FT4 
out of 0.7 to 1.7 ng/dL, or T3 out of 0.8 to 1.59 mg/dL.

Statistical analysis
Risk score construction
For biomarker filtration and the MIS construction, we 
utilized the least absolute shrinkage and selection opera-
tor with Cox proportional hazard model (Lasso-Cox) to 
predict all-cause mortality. Lasso can be utilized for high 
dimensional data such as biomarker data. It can perform 
L1 regularization to select variables, to improve the pre-
diction accuracy and interpretation of model. Lasso-Cox 
model is less variable than other techniques such as the 
stepwise approach and still yields interpretable mod-
els [13]. Firstly, we created 5-fold cross-validation inner 
loops to determine the parameter λ using the R package 
“glmnet”. Secondly, we generated 1000 times bootstrap-
ping datasets, and use the best λ value tuned from the 
inner loop to fit the model in each bootstrapping dataset. 
In order to construct a stable model with the most pre-
dictive biomarkers, we chose the biomarkers that were 
selected above the 95% frequency in 1000 bootstrap-
ping dataset to construct the MIS. All biomarkers were 
transformed to standard normal distribution (mean = 0, 
standard deviation = 1) in the selection and model con-
struction. We got the coefficients of each biomarker 
included in the MIS by inputting them into a new Lasso-
Cox model.

Basic prognostic model construction
A Lasso-Cox regression model was also used to con-
struct the basic model, which incorporated age, gender, 
systolic blood pressure (SBP), body mass index (BMI), 
New York Heart Association (NYHA) Class III/IV, smok-
ing, coronary artery disease (CAD), chronic obstruc-
tive pulmonary disease (COPD), atrial fibrillation (AF), 
diabetes mellitus (DM), LVEF, N-terminal Pro Brain 
natriuretic peptide (NT-proBNP), serum creatine (Scr), 
therapy with renin-angiotensin system (RAS) inhibitors 
and beta-blockers.



Page 4 of 11Feng et al. Nutrition & Metabolism           (2024) 21:77 

Performance of risk score
In order to examine the discrimination of the MIS, we 
assessed the area under the curve (AUC) of time-depen-
dent receiver operating characteristic curves (ROC) over 
a span of 1 to 5 years. This analysis was conducted uti-
lizing the “timeROC” package in R. To construct a stable 
model, we further provided the mean and standard devi-
ation of the time-dependent AUC through 100 iterations 
of 5-fold cross-validation. Additionally, we evaluated the 
enhancement in Harrel’s C-statistic (∆C-index) resulting 
from inclusion the MIS into the basic model. The 95% 
confidence interval for the ∆C-index was determined via 
1000 bootstrap samples. Calibration was assessed using 
the Greenwood-Nam-D’Agostino (GND) test at 3 years, 
with a significance threshold set at p > 0.05 indicating a 
well-calibrated model. Besides, the continuous net reclas-
sification improvement (NRI) and integrated discrimina-
tion improvement (IDI) were carried out at the 3-year 
mark to evaluate the reclassification. These metrics were 
computed using the “survIDINRI” package in R. Finally, 
Cox regressions were employed to explore the prognostic 
significance of the MIS and its constituents, adjusting for 
variables present in the basic model. The performance of 
MIS was tested in predicting all-cause mortality, cardio-
vascular death and non-cardiovascular death. The pro-
portional hazard assumption was tested using Schoenfeld 
residuals via the “coxzph” function in R.

Results
Baseline Characteristics and the results of variable 
selection
We totally enrolled 1083 patients with HFpEF in this 
study. The flowchart of the inclusion and exclusion pro-
cess is shown in Figure S1. The baseline characteristics 
stratified by the tertile of MIS are shown in Table 1. The 
median age of the study population was 66 years (55–74), 
with 487 (45.0%) being female. In terms of the outcomes, 
342 patients (31.6%) died from any causes, 216 patients 
(19.9%) died from cardiovascular causes, and 126 patients 
(11.6%) died from non-cardiovascular causes. 22 patients 
(2.0%) died during the hospitalization. The characteris-
tics of patients according to the outcome are shown in 
Supplementary Table 1.

Through the Lasso-Cox regression in 1000 bootstrap-
ping datasets, ALB, RDW-SD, UA and Lymphocyte 
appeared 100%, besides, T3 and hs-CRP were selected 
99% and 96% times, respectively. Thus, 6 above vari-
ables with a frequency > 95% were used to construct the 
MIS in a Lasso-Cox model to predict all-cause mortality, 
and the formula was: MIS = 0.288* RDW-SD -0.24*ALB-
0.23*Lymphocyte + 0.12*hs-CRP-0.21*T3 + 0.22*UA (per 
SD of each biomarker). For each biomarker, the fre-
quency of selection and its median coefficient are shown 
in Fig. 1.

Predictive performance of the MIS
During a median follow-up duration of 2.5 (1.0-4.1) 
years, 342 patients (31.6%) experienced all-cause mortal-
ity. The AUC of time-dependent ROC for the MIS stood 
at 0.783 after 1 year, 0.786 after 3 years, and 0.777 after 5 
years, in the prediction of all-cause mortality. The cross-
validation revealed mean AUC values of 0.778, 0.782, 
and 0.772 at 1, 3, and 5 years post-discharge, respectively 
(Fig.  2). When adding the MIS to the basic model, the 
AUC significantly increased, from 0.760 to 0.807 at 1 year 
(DeLong test P < 0.001), from 0.766 to 0.814 at 3 years 
(P < 0.001), and from 0.784 to 0.819 at 5 years (p = 0.001, 
Fig. 3). The mean AUC of the MIS, basic model, and basic 
model plus MIS from 1 to 5 years in cross-validation was 
is in Figure S2. Incorporating the MIS into basic model 
significantly enhanced the C-index from 0.741 to 0.775, 
with a ΔC-index of 0.034, 95% CI:0.013–0.050 (Table 2). 
Furthermore, the MIS showed good calibration, with a 
P-value of 0.194 for the Greenwood-Nam D’Agostino 
test (Figure S3). In addition, the model including the 
MIS significantly improved reclassification when com-
pared to the basic model (IDI, 6.6% [4.0-9.5%], P < 0.001; 
NRI, 22.2% [14.4-30.2%], P < 0.001). Besides, the MIS also 
demonstrated good discrimination in predicting cardio-
vascular death (ΔC-index of 0.033, 95% CI: 0.008–0.053) 
and non-cardiovascular death (ΔC-index of 0.037, 95% 
CI:0.003–0.062). The discrimination and reclassification 
of adding the MIS and its components to the basic model 
in predicting secondary outcomes is shown in Supple-
mentary Table 2.

The independent association between the MIS and the 
outcome
The Kaplan-Meier curves showed that patients in the 
highest tertile of the MIS had the worst prognosis (Fig. 4). 
Besides, the Kaplan-Meier curves of the component bio-
markers of MIS are shown in Figure S4. After adjusting 
for confounding factors (variables included in the basic 
model), the MIS remained independently associated 
with the primary outcome (Table 3), the adjusted HR was 
1.98 (95% CI 1.70–2.31, P < 0.001, per 1 score increase). 
For the association between the component biomark-
ers and the primary outcome, the adjusted HR was 1.39 
(95% CI 1.26–1.54, P < 0.001) for RDW-SD, 0.74 (95% CI 
0.67–0.83, P < 0.001) for ALB, 1.21 (95% CI 1.09–1.34, 
P < 0.001) for UA, 0.75 (95% CI 0.65–0.86, P < 0.001) for 
T3, 0.78 (95% CI 0.69–0.88, P < 0.001) for Lymphocyte, 
and 1.24 (95% CI 1.12–1.37, P < 0.001) for hs-CRP. In 
terms of the secondary outcomes, MIS was also inde-
pendently associated with both cardiovascular death and 
non-cardiovascular death (Supplementary Table 3).
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Overall MIS: T1 MIS: T2 MIS: T3 P-Value
N 1083 361 361 361
Clinical characteristics
Age (years) 66 [55, 74] 62 [52, 71] 67 [56, 75] 69 [59, 76] < 0.001
Female (%) 487 (45.0) 161 (44.6) 156 (43.2) 170 (47.1) 0.569
Heart rate (b.p.m) 73 [64, 86] 70 [62, 81] 74 [63, 86] 76 [65, 89] < 0.001
SBP (mmHg) 121.5 [107, 136] 124 [113, 140] 122.1 [106, 136] 118 [102, 131] < 0.001
DBP (mmHg) 70 [61, 80] 72 [64, 80.5] 70 [62, 80] 66 [58, 78] < 0.001
BMI (kg/m2) 24.2 [21.8, 26.6] 24.5 [22.5, 26.7] 24.2 [21.9, 26.7] 23.5 [21.2, 26.0] 0.001
CAD (%) 425 (39.2) 155 (42.9) 155 (42.9) 115 (31.9) 0.002
Hypertension (%) 583 (53.8) 196 (54.3) 211 (58.4) 176 (48.8) 0.032
T2DM (%) 302 (27.9) 83 (23.0) 115 (31.9) 104 (28.8) 0.026
COPD (%) 81 (7.5) 11 (3.0) 32 (8.9) 38 (10.5) < 0.001
Valvular heart disease (%) 219 (20.2) 63 (17.5) 67 (18.6) 89 (24.7) 0.035
AF (%) 527 (48.7) 124 (34.3) 169 (46.8) 234 (64.8) < 0.001
NYHA Class III/IV (%) 732 (67.6) 175 (48.5) 242 (67.0) 315 (87.3) < 0.001
Dyslipidemia (%) 590 (56.2) 186 (52.8) 187 (54.5) 217 (61.3) 0.056
Hyperuricemia (%) 507 (47.6) 85 (23.9) 168 (47.6) 254 (71.1) < 0.001
Thyroid dysfunction (%) 474 (47.1) 102 (30.0) 135 (41.2) 237 (69.9) < 0.001
Smoking (%) 263 (24.3) 98 (27.1) 88 (24.4) 77 (21.3) 0.19
Drinking (%) 161 (14.9) 64 (17.7) 48 (13.3) 49 (13.6) 0.172
Laboratory Test
Neutrophil (10^9/L) 4.1 [3.2, 5.5] 4.2 [3.3, 5.3] 4.0 [3.2, 5.3] 4.2 [3.1, 5.9] 0.24
Lymphocyte (10^9/L) 1.5 [1.1, 2.0] 2.0 [1.6, 2.4] 1.6 [1.2, 2.0] 1.0 [0.7, 1.4] < 0.001
Haemoglobin (g/L) 128.0 [113.0, 143.0] 137.0 [124.0, 148.0] 128.0 [115.8, 142.0] 116.0 [96.0, 134.0] < 0.001
RDW-SD (fl.) 44.9 [41.9, 49.1] 42.0 [39.8, 43.9] 44.9 [42.4, 47.5] 50.8 [46.2, 55.9] < 0.001
RDW (%) 13.5 [12.8, 14.9] 12.9 [12.4, 13.4] 13.5 [12.8, 14.3] 14.9 [13.8, 16.7] < 0.001
Platelet (10^9/L) 179.0 [137.0, 227.5] 195.0 [161.5, 239.0] 179.0 [138.8, 230.0] 155.5 [117.0, 211.2] < 0.001
ALB (g/L) 39.0 [36.0, 42.0] 41.8 [39.3, 44.2] 38.9 [36.9, 41.3] 35.6 [32.4, 38.8] < 0.001
FBG (mmol/L) 5.2 [4.7, 6.1] 5.2 [4.8, 6.0] 5.1 [4.7, 6.1] 5.3 [4.6, 6.4] 0.702
HbA1c (%) 6.1 [5.7, 6.8] 6.1 [5.7, 6.9] 6.2 [5.8, 7.0] 6.1 [5.7, 6.7] 0.077
TG (mmol/L) 1.2 [0.9, 1.7] 1.5 [1.1, 2.0] 1.3 [0.9, 1.7] 1.0 [0.7, 1.3] < 0.001
Lipoprotein(a) (mg/L) 159.1 [78.0, 337.3] 150.2 [78.0, 336.9] 158.7 [79.0, 305.2] 173.7 [77.2, 347.3] 0.645
Apo-A1 (g/L) 1.2 [1.0, 1.4] 1.2 [1.1, 1.4] 1.2 [1.0, 1.4] 1.0 [0.8, 1.2] < 0.001
ApoB (g/L) 0.8 [0.6, 0.9] 0.8 [0.7, 1.0] 0.8 [0.6, 0.9] 0.7 [0.6, 0.9] < 0.001
FFA (mmol/L) 0.5 [0.4, 0.7] 0.5 [0.4, 0.7] 0.5 [0.4, 0.6] 0.6 [0.4, 0.8] < 0.001
LDL_C (mmol/L) 2.3 [1.7, 2.8] 2.4 [1.9, 3.0] 2.4 [1.8, 2.9] 2.0 [1.5, 2.6] < 0.001
HDL_C (mmol/L) 1.0 [0.8, 1.3] 1.1 [0.9, 1.3] 1.1 [0.8, 1.3] 1.0 [0.8, 1.2] < 0.001
UA (umol/L) 409.7 [327.7, 532.2] 351.3 [293.9, 414.2] 409.7 [332.2, 496.0] 533.0 [404.7, 666.1] < 0.001
eGFR 71.6 [51.8, 90.3] 81.4 [65.0, 96.9] 71.6 [53.3, 89.2] 57.4 [40.8, 78.1] < 0.001
T3 (ng/mL) 0.9 [0.8, 1.1] 1.1 [1.0, 1.3] 0.9 [0.8, 1.1] 0.8 [0.6, 0.9] < 0.001
FT4 (ng/dL) 1.2 [1.1, 1.4] 1.2 [1.1, 1.3] 1.2 [1.1, 1.4] 1.2 [1.0, 1.4] 0.511
TSH (IU/L) 2.2 [1.1, 3.6] 2.2 [1.3, 3.4] 2.2 [1.2, 3.6] 2.1 [1.1, 4.1] 0.991
Hs-CRP (mg/L) 3.0 [1.3, 8.9] 1.7 [0.8, 3.1] 2.8 [1.3, 7.9] 8.1 [3.0, 12.2] < 0.001
NT-Pro BNP (pg/ml) 1671.0 [904.6, 2991.9] 1112.2 [675.5, 1931.0] 1565.0 [902.3, 2694.0] 2610.0 [1467.0, 

5826.0]
< 0.001

Echocardiography
LAD (mm) 44 [38, 51] 40.5 [36, 46] 44 [38, 50] 49 [42, 58] < 0.001
LVEDD (mm) 49 [44, 55] 48 [44, 54] 50 [44, 55] 49 [43, 55] 0.284
LVEF (%) 60 [55, 63] 60 [55, 64] 60 [55, 62] 60 [55, 62] 0.221
RVD (mm) 24 [21, 28] 22 [20, 25] 23 [20, 27] 26 [23, 33] < 0.001
Therapy
ACEI/ARB/ARNI (%) 431 (39.8) 182 (50.4) 147 (40.7) 102 (28.3) < 0.001
β-blocker (%) 765 (70.6) 269 (74.5) 268 (74.2) 228 (63.2) 0.001

Table 1  Baseline characteristics for HFpEF patients according to the tertiles of metabolism-malnutrition-inflammation risk score
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Discussion
Main finding
In this study, we utilized a Lasso-Cox regression to select 
predictors from a pool of 20 biomarkers representative 
of metabolism, malnutrition, and inflammation. Subse-
quently, we developed a risk assessment tool termed MIS, 
comprising ALB, RDW-SD, Lymphocyte, hs-CRP, UA, 
and T3. The MIS demonstrated efficacy in the prognostic 
prediction for HFpEF patients and also exhibited consis-
tent predictive performance across cross-validation itera-
tions. These findings underscore the utility of the MIS in 

identifying high-risk individuals and facilitating targeted 
therapeutic interventions.

The role of metabolic inflammation in HFpEF
Systemic proinflammatory states, mostly induced by 
obesity and metabolic stress, have increasingly been 
identified as a predominant determinant of HFpEF 
pathophysiology by recent studies. Metabolic disorders 
often coincide with disruptions in the immune system. 
Indeed, there has been a bidirectional effect between 
metabolic activities and the regulation of immune cells. 

Fig. 1  The frequency of each biomarker selected by Lasso-Cox model and their median coefficients. RDW-SD red blood cell distribution width-standard 
deviation; ALB albumin; UA Uric acid; T3 triiodothyronine; hsCRP high-sensitivity C-reactive protein; FT4 free thyroxine; PLT platelet; LDL-C low-density 
lipoprotein cholesterol; ApoB apolipoprotein B; FFA free fatty acid; HbA1c glycated haemoglobin A1c; TSH thyroid stimulating hormone; FBG fast blood 
glucose; HDL-C high-density lipoprotein cholesterol; ApoA-1 apolipoprotein A-1; TG triglyceride

 

Overall MIS: T1 MIS: T2 MIS: T3 P-Value
N 1083 361 361 361
MRA (%) 450 (41.6) 124 (34.3) 151 (41.8) 175 (48.5) 0.001
Diuretics (%) 822 (75.9) 273 (75.6) 264 (73.1) 285 (78.9) 0.186
SGLT2 inhibitors (%) 35 (3.2) 9 (2.5) 12 (3.3) 14 (3.9) 0.571
Values are shown as median [interquartile range] or as frequencies [percentage]. Characteristics were compared using a χ2 test for categorical variables and Mann-
Whitney U-test for continuous variables

MIS Metabolism-malnutrition-inflammation risk score; SBP systolic blood pressure; DBP diastolic blood pressure; BMI body mass index; CAD coronary artery disease; 
T2DM Type 2 diabetes mellitus; COPD chronic obstructive pulmonary disease; AF atrial fibrillation; NYHA New York Heart Association; RDW-SD red blood cell distribution 
width-standard deviation; ALB albumin; PLT platelet; TG triglyceride; LDL-C low-density lipoprotein cholesterol; HDL-C high-density lipoprotein cholesterol; ApoA-1 
apolipoprotein A-1; ApoB apolipoprotein B; FFA free fatty acid; FBG fast blood glucose; HbA1c glycated haemoglobin A1c; UA Uric acid; T3 triiodothyronine; FT4 free 
thyroxine; TSH thyroid stimulating hormone; hsCRP high-sensitivity C-reactive protein; NT-Pro BNP N-terminal Pro Brain natriuretic peptide; LAD left atrial diameter; 
LVEDD left ventricular end-diastolic diameter; LVEF left ventricular ejection fraction; RVD right ventricular diameter; ACEI Angiotensin converting enzyme inhibitor; ARB 
Angiotensin receptor blocker; ARNI Angiotensin Receptor-Neprilysin Inhibitor; MRA mineralocorticoid receptor antagonists; SGLT2 Sodium-glucose cotransporter 2

Table 1  (continued) 
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This reciprocal interaction is increasingly recognized as 
a pivotal factor in the development of cardiometabolic 
disorders like HFpEF [3]. In this study, we identified the 
prognostic role of biomarkers involved in uric acid (UA) 
and thyroid hormone metabolism, independent of glu-
cose and lipid metabolism. Serum UA is the final product 
of purine metabolism. Beyond its diagnostic utility for 
identifying gout, UA levels have been linked to metabolic 
syndrome and cardiovascular disease [14, 15]. In patients 
with chronic HF, serum UA has shown significant 

associations with outcomes across the whole EF pheno-
types [11]. While systemic inflammation and endothelial 

Table 2  Discrimination and reclassification of adding the MIS 
and its components to the basic model in predicting primary 
outcome

ΔC-index IDI P for 
IDI

NRI P for 
NRI

MIS 0.034 
(0.013–0.050)

0.066 
(0.040–
0.095)

< 0.001 0.222 
(0.144–
0.302)

< 0.001

RDW-SD 0.02 
(0.004–0.031)

0.034 
(0.014–
0.059)

< 0.001 0.209 
(0.114–
0.299)

< 0.001

ALB 0.011 
(-0.001-0.021)

0.022 
(0.005–
0.044)

< 0.001 0.124 
(0.033–
0.205)

0.020

UA 0.005 
(-0.005-0.010)

0.014 
(0.002–
0.031)

0.020 0.162 
(0.034–
0.257)

0.033

T3 0.011 
(0.001–0.019)

0.018 
(0.006–
0.038)

< 0.001 0.099 
(0.027–
0.183)

0.027

Lymphocyte 0.007 
(-0.004-0.013)

0.015 
(0.002–
0.038)

0.007 0.116 
(0.040–
0.206)

0.007

hs-CRP 0.009 
(-0.002-0.017)

0.017 
(0.004–
0.033)

< 0.001 0.202 
(0.083–
0.274)

< 0.001

MIS Metabolism-malnutrition-inflammation risk score; RDW-SD red blood 
cell distribution width-standard deviation; ALB albumin; UA Uric acid; T3 
triiodothyronine; hsCRP high-sensitivity C-reactive protein

The basic model was constructed using Lasso-Cox regression incorporating 
age, gender, SBP systolic blood pressure, BMI body mass index, NYHA New York 
Heart Association III/IV, smoking, CAD coronary artery disease, COPD chronic 
obstructive pulmonary disease, AF atrial fibrillation, DM diabetes mellitus, LVEF, 
NT-proBNP N-terminal Pro Brain natriuretic peptide, Scr serum creatine, RAS 
therapy with renin-angiotensin system inhibitors and beta-blockers

The 95% confidential interval (CI) of the ∆C-index was calculated in 1000 
bootstrap samples. The continuous net reclassification improvement (NRI) and 
integrated discrimination improvement (IDI) analyses at 3 years

Fig. 3  Comparison of the time-dependent ROC curves between the MIS and MIS plus basic model in predicting primary outcome. The basic model was 
constructed using Lasso-Cox regression incorporating age, gender, SBP systolic blood pressure, BMI body mass index, NYHA New York Heart Association 
III/IV, smoking, CAD coronary artery disease, COPD chronic obstructive pulmonary disease, AF atrial fibrillation, DM diabetes mellitus, LVEF, NT-proBNP N-
terminal Pro Brain natriuretic peptide, Scr serum creatine, RAS therapy with renin-angiotensin system inhibitors and beta-blockers

 

Fig. 2  The time-dependent AUC of the Metabolism-malnutrition-inflam-
mation risk score in predicting primary outcome. The time-dependent 
AUC in cross-validation was shown as the mean of the AUC in 100 itera-
tions of 5-fold cross-validation at 1, 3, and 5 years after discharge
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dysfunction, potentially linked to UA, are suggested as 
consequences of HFrEF, they are speculated to act as 
contributors to HFpEF. Recent research also suggests 
that elevated serum UA levels correlate with increased 
cytokine levels and heightened inflammatory responses, 

which may play a more substantial role in HFpEF than 
HFrEF [16, 17].

A thyroid hormone directly affects the myocardium, 
the conduction system, and the peripheral vasculature. 
Hypothyroidism is associated with hyperlipidemia and 
ventricular arrhythmias, hyperthyroidism is associated 

Table 3  The association between the MIS and its components with the primary outcome at univariable and multivariable Cox 
regression

Unadjusted HR Unadjusted
P-value

Adjusted HR Adjusted
P-value

MIS 2.81 (2.47–3.20) < 0.001 1.98 (1.70–2.31) < 0.001
RDW-SD 1.68 (1.55–1.83) < 0.001 1.39 (1.26–1.54) < 0.001
ALB 0.64 (0.58–0.71) < 0.001 0.74 (0.67–0.83) < 0.001
UA 1.52 (1.39–1.66) < 0.001 1.21 (1.09–1.34) < 0.001
T3 0.53 (0.46–0.61) < 0.001 0.75 (0.65–0.86) < 0.001
Lymphocyte 0.58 (0.51–0.65) < 0.001 0.78 (0.69–0.88) < 0.001
hs-CRP 1.44 (1.31–1.59) < 0.001 1.24 (1.12–1.37) < 0.001
MIS Metabolism-malnutrition-inflammation risk score; RDW-SD red blood cell distribution width-standard deviation; ALB albumin; UA Uric acid; T3 triiodothyronine; 
hs-CRP high-sensitivity C-reactive protein

The adjusted hazard ratio (HR) and P-value were calculated from a multi-variable Cox regression adjusting for the variables in the basic model

Fig. 4  The Kaplan-Meier curves of patients stratified by the tertiles of the Metabolism-malnutrition-inflammation risk score for primary outcome. MIS 
Metabolism-malnutrition-inflammation risk score
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with atrial arrhythmias, and both are associated with 
hypertension and HF [18]. Based on our findings, the 
level of triiodothyronine (T3) was negatively correlated 
with HFpEF prognosis. According to previous studies, 
isolated low T3 is associated with more severe HF and 
an over 2-fold risk of adverse outcomes [19]. In the car-
diomyocyte of failure heart, hypoxia and inflammation 
reduce deiodinase activity. This results in reduced plasma 
T3 levels and decreased intracellular bioavailability of T3. 
The effects of thyroid hormones on myocardium include 
upregulation of myosin heavy chain-α and downregu-
lation of myosin heavy chain-β, regulation of calcium 
cycling through SERCA2a, and enhancement of adrener-
gic responsiveness [12]. The activation of the SERCA2a 
could enhance both systolic and diastolic function, and 
the latter is an important therapeutic target in HFpEF.

Malnutrition-inflammation complex in HFpEF and related 
biomarkers
Numerous studies indicate that some of cardiovas-
cular risk factors are associated with elevated risk of 
adverse outcomes in HF patients, such as a lower BMI, 
blood pressure and serum cholesterol concentration. 
These observations are in contrast to that in the general 
population, which have been referred to as “reverse epi-
demiology” [4]. The occurrence of the “malnutrition-
inflammation complex syndrome” in HF patients offers 
a potential explanation for the existence of “reverse epi-
demiology”. A reduction in lipoprotein can compromise 
their endotoxin-scavenging function, making HF patients 
with malnutrition susceptible to inflammatory endo-
toxemia [4]. In this study, the Lasso-Cox model finally 
selected 4 biomarkers, including the RDW-SD, ALB, 
Lymphocyte and hs-CRP, which can reflect the severity 
of malnutrition and inflammation within HFpEF patients.

RDW-SD is a metric that quantifies the diversity in the 
size of circulating red blood cells. A study have proposed 
that is better to use RDW-SD to eliminate the confound-
ing influence of mean corpuscular volume (MCV) on 
RDW [20]. Current evidence suggests that RDW is rec-
ognized as an indicator of chronic inflammation, exhib-
iting a notable correlation with inflammatory markers. 
Additionally, disturbances in iron metabolism, renal dys-
function, and malnutrition have been implicated in the 
mechanism of elevated RDW levels among HF patients 
[21]. Our prior studies have established that RDW had 
an independent association with mortality across diverse 
ejection fraction categories and etiologies among HF 
patients [7, 22]. Furthermore, ALB serves as another 
biomarker reflecting nutritional and inflammatory sta-
tus. Notably, hypoalbuminemia, defined as an ALB level 
below 3.4  mg/dl, is observed in approximately 28% of 
patients with HFpEF [23]. According to Frank-Starling’s 
law, hypoalbuminemia-induced decreases in plasma 

oncotic pressure facilitate fluid shifts from the blood ves-
sels into the tissues, thereby contributing to cardiogenic 
pulmonary edema and exacerbating the severity of condi-
tion in patients [24].

Prior research has established several nutritional and 
inflammatory risk scores, incorporating some of the bio-
markers investigated in our study and validating their 
effectiveness. For instance, the geriatric nutritional risk 
index (GNRI) has been proven to be a reliable screen-
ing tool for malnutrition in the elderly, utilizing objec-
tive measures such as height, weight, and serum ALB. 
This index has been linked to the risk of cardiovascu-
lar and all-cause mortality in patients with HFpEF [5]. 
Another study identified CRP, RDW and neutrophil-to-
lymphocyte ratio (NLR) as components of an inflamma-
tory prognostic score among 538 acute HF patients [25]. 
Additionally, the Pan-Immune-Inflammation Value, cal-
culated using biomarkers of complete blood cell counts, 
has demonstrated superior predictive ability in patients 
with ST-segment elevation myocardial infarctions [26]. 
However, these studies have not comprehensively evalu-
ated the discrimination, calibration, and reclassification 
performance of these scores. Further studies are required 
to construct a comprehensive index that incorporates 
biomarkers related to metabolism, malnutrition, and 
inflammation. Therefore, we specifically focus on HFpEF 
patients, incorporating 20 biomarkers to develop a risk 
score that accurately reflects the underlying pathophysi-
ology of HFpEF.

Targeted therapies for metabolic malnutrition and 
inflammation in HFpEF
Our study has established the prognostic significance 
of serum UA and hs-CRP, and incorporated them into a 
comprehensive risk-scoring system. Prior research ana-
lyzed the data in the SOCRATES-REDUCED study to 
explore the influence of vericiguat on hs-CRP and serum 
UA levels in HFrEF patients. Notably, this study revealed 
that 12-week treatment with vericiguat was associated 
with a notable reduction in both hs-CRP and UA levels 
[27]. These findings suggest a potential anti-inflamma-
tory benefit of vericiguat in HFrEF patients. However, the 
VITALITY-HFpEF study showed that vericiguat failed to 
improve the KCCQ compared with placebo [28]. A post-
hoc analysis of PARAGON-HF also found that Sacu-
bitril–valsartan can reduce the serum UA level and the 
initiation of UA-related therapy. While the effect of Sacu-
bitril–valsartan was not significantly modified by serum 
UA levels, its beneficial effects were more pronounced 
in terms of renal outcomes [29]. To sum up, these data 
suggest that UA may be a relevant therapeutic target in 
HFpEF.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors 
have emerged as a promising therapeutic option for 
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patients with both HFrEF and HFpEF [30]. While the pre-
cise mechanisms underlying the cardiovascular benefits 
of SGLT2 inhibition remain unclear, there is speculation 
that these inhibitors may target metabolic inflammatory 
pathways. A recent study revealed that patients treated 
with SGLT2 inhibitors exhibited lower levels of circu-
lating IL-6, serum UA, and fasting insulin compared to 
those receiving other glucose-lowering drugs [31]. Fur-
thermore, vitro models suggest that SGLT2 inhibitors 
possess a tangible anti-inflammatory activity, potentially 
mediated by their ability to reduce UA and insulin con-
centrations. This effect complements other proposed 
mechanisms that explain the observed benefits of this 
drug on cardiovascular and renal endpoints [31]. Given 
that the components of the Metabolism-malnutrition-
inflammation risk score (MIS) have demonstrated poten-
tial as therapeutic targets in HFpEF patients, this score 
may serve as a useful tool in guiding individualized treat-
ment strategies.

Limitations
Firstly, its retrospective nature may have led to selec-
tion bias and overlooked potential confounding factors, 
limiting the comprehensiveness of our analysis. Sec-
ondly, while the study focused on 20 easily accessible 
biomarkers commonly used in clinical settings, it did 
not include more specialized biomarkers, such as those 
derived from metabolomics or proteomics. Finally, while 
the prognostic risk score model established in this study 
has undergone internal cross-validation, it has not yet 
been validated by an external cohort. Therefore, we must 
emphasize the need for further external-validation.

Conclusions
In this study, we created a Metabolism-malnutrition-
inflammation risk score (MIS), formulated using six bio-
markers: ALB, RDW-SD, Lymphocyte, hs-CRP, UA, and 
T3. The MIS significantly enhanced the prognostic pre-
diction accuracy for patients with HFpEF, complement-
ing traditional risk factors. The MIS could serve as an 
effective index in stratifying patients and screening suit-
able candidates for targeted therapeutic approaches, such 
as nutritional supplementation or anti-inflammatory 
treatments.
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