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Abstract

The increase in the expectations of artificial intelligence (AI) technology has led to machine learning technology being actively used
in the medical field. Non-negative matrix factorization (NMF) is a machine learning technique used for image analysis, speech
recognition, and language processing; recently, it is being applied to medical research. Precision medicine, wherein important
information is extracted from large-scale medical data to provide optimal medical care for every individual, is considered important
in medical policies globally, and the application of machine learning techniques to this end is being handled in several ways. NMF
is also introduced differently because of the characteristics of its algorithms. In this review, the importance of NMF in the field of
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medicine, with a focus on the field of oncology, is described by explaining the mathematical science of NMF and the characteristics
of the algorithm, providing examples of how NMF can be used to establish precision medicine, and presenting the challenges of NMF.
Finally, the direction regarding the effective use of NMF in the field of oncology is also discussed.
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Introduction
In recent years, machine learning has gained consider-
able research interest with the advent of deep learning
technology, and it is now widely recognized as a core
technology in the field of artificial intelligence (AI) [1, 2].
Machine learning has a long history; it is believed that the
concept was created by Arthur Samuel in 1959 and came
to be used as an academic term [3]. Machine learning
is currently used in a variety of fields, such as image
recognition, natural language processing, data analysis
and prediction, and is widely implemented in society [4–
12]. The medical field is no exception, and machine learn-
ing technology is actively used in medical research, espe-
cially in medical image analysis [13–20]; further, there
have been considerable research studies on the clinical
applications [21–23]. Many medical papers that utilize
machine learning technology have been published in
recent years [24–28], and the technology is beginning to
be introduced to omics analysis such as genome and
epigenome [29–32]. Judging by recent developments, we
expect machine learning technology to gain considerable
importance in medical research in the future.

Non-negative matrix factorization (NMF) is a machine
learning technique that analyzes matrices with zero or
positive values. It has a wide range of applications and
is used in various fields such as image analysis [33–
35], speech recognition [36–38], astronomy [39–42], audio
signal processing [43], and natural language processing
[44–46]; recently, it has been applied to medical research
[47–52]. In the real world, there is a large amount of data
that is represented by non-negative values, e.g. power
spectra, pixel values, and frequencies. In multivariate
analysis, such as Principal Component Analysis (PCA)
and Independent Component Analysis (ICA), the goal
is to decompose the given data into multiple additive
components; there are many scenarios where it is useful
to extract components from non-negative data in the
same manner. For example, if the power spectrum of an
individual sound source can be successfully extracted
from that of a multiplex sound, it can be used for noise
removal and sound source separation; further, if face
image data can be successfully decomposed into image
data corresponding to facial parts such as the eyes and
nose, it can be used for face recognition and face image
synthesis. NMF has also been used in bioinformatics
to cluster gene expression and identify the genes that
are the most representative of the cluster [53, 54]. In
addition, NMF has been used in the analysis of can-
cer mutations to identify common mutation patterns
that occur in many cancers and probably have different
causes [55]. NMF technology can also be used to identify

sources of variation, such as cell type, disease subtype,
population stratification, tissue composition, and tumor
clonality [56].

In recent years, the importance of machine learning
has been recognized in the medical field, and NMF tech-
nique has been actively applied in medical research. In
this review, we focus on the recent status of the appli-
cation of NMF technology in cancer research and its
potential for the establishment of precision medicine.

History of NMF and its understanding in
mathematical science
The concept of NMF has a long history in the field of
chemometrics under the name ‘self-modeling curve
resolution’ [57]. In this framework, the right matrix vector
is not a discrete vector but a continuous curve. Early
work on NMF was performed by Paatero and Tapper
under the term positive matrix factorization [58, 59].
Later, in 1999, Lee and Seung investigated the properties
of the algorithm and presented some simple and useful
algorithms for two types of factorizations, which became
more widely known as NMF [60].

Mathematically, we consider N non-negative data vec-
tors x1, . . . , xN∈R≥0,M called observation vectors. Mean-
while,R≥0,M represents the set of all non-negative vectors
of dimension M. The goal of NMF is to estimate the K
basis vectors and weight coefficients that best explain all
observation vectors assuming each vector is represented
by an appropriately weighted sum of K basis vectors.
Thus, NMF targets only quantities for which additivity
holds. Additivity is assumed in scenarios where NMF is
applied. In addition to the additivity assumption, another
important assumption is that both the basis vectors
and weight coefficients are non-negative. In other words,
NMF can be approximated by

xn ≈
K∑

k=1

wkhkn (n = 1, . . . , N) (1)

where the observation vector xn is a non-negative com-
bination of the basis vector w1, . . . , wK∈R≥0,M (a linear
combination with a non-negative value for the coupling
coefficient h1n, . . . , hKn).

If the matrices of observation vectors, basis vectors,
and coupling coefficients hkn with k rows and n columns
of element are X = [x1, . . . , xN] = (xmn)M×N, W =
[w1, . . . , wK] = (wmk)M×K, and H = (hkn)K×N, respectively,
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Figure 1. Conceptual diagram of NMF. (A) If the matrix with the observation vectors is X = [x1, . . . , xN] = (xmn)M×N, the matrix with the basis vectors is
W = [w1, . . . , wK] = (wmk)M×K, and the matrix with the coupling coefficients hk,n as elements in k rows and n columns is H = (hkn)K×N, then X ≈ WH. (B)
Convex cone spanned by w1 and w2. (C) Convex cone and subspace spanned by w1 and w2.

equation (1) becomes

X ≈ WH. (2)

Thus, NMF can be viewed as a problem of decomposing
the matrix of observation vectors into a product of two
non-negative matrices (Figure 1A).

In NMF, the number of bases K is set smaller than
the dimension M of the observation vector or the
number of data N. For example, if K = M, we obtain a
decomposition representation X = WH, if W = I (I is the
unit matrix); however, this decomposition does not make
sense. In addition, for K = N, we obtain a decomposition
representation X = WH such that H = I; however, we
cannot find any meaning from this decomposition either.
K < min(M, N) corresponds to the fact that NMF attempts
to approximate the observation matrix X with a matrix
of lower rank; it is important to find the basis and
coefficient matrices in this case. Geometrically, it can
be interpreted that the principal component analysis
(singular value decomposition) attempts to identify a
subinterval to which the observed data belongs; NMF
attempts to find a convex cone that fits the observed
data well (Figure 1B and C) [61].

There are different types of NMFs that arise from
using different cost functions to measure the divergence
between X and WH and from regularizing the W and/or
H matrices. Two simple divergence functions studied by

Lee and Seung are the squared error (or Frobenius norm)
and an extension of the Kullback–Leibler (KL) divergence
to a positive matrix (the original KL divergence is defined
on a probability distribution). Each divergence leads to a
different NMF algorithm, which uses an iterative update
rule to minimize the divergence. The factorization prob-
lem in the squared error version of NMF can be stated as
follows:

Given a matrix X, find non-negative matrices W and H
that minimize

F (W, H) = ‖X − WH‖2
F (3)

In the NMF algorithm proposed by Lee and Seung, the
initial values are set for W and H, and the update rules
corresponding to the given loss function are alternately
and repeatedly applied [60, 62]. This allows the loss func-
tion to be minimized under non-negative constraints,
such as W ≥ 0 and H ≥ 0.

wik ← wik
(XH)ij(

WHHT
)

ik

, (4)

hkj ← hkj

(
WTX

)
ij(

WTWH
)

ij

. (5)
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Then, the update rule when KL divergence is adopted
is

wik ← wik

∑N
j=1 hkjxij/(WH)ij∑M

j′=1 hkj′
, (6)

hkj ← hkj

∑M
i=1 wikxij/(WH)ij∑M

i′=1 wi′k
. (7)

These are called multiplicative algorithms; the esti-
mated W and H elements are always non-negative if
the elements of the observed data matrix X are non-
negative. Lee and Seung proved that the loss function
always decreases monotonically. Further, the multiplica-
tive algorithm works in the case of missing values. In the
iterative calculation process, the missing values can be
supplemented naturally by replacing the missing parts
with the expected values obtained from WH. Interested
readers are encouraged to refer to older literature to
gain a more detailed understanding of the mathematical
properties of NMF [60, 63].

Currently, NMF is used in a wide range of fields and it
is applied in various ways in the field of oncology. Table 1
summarizes various models based on NMF used in the
field of oncology.

Utilization of NMF in the field of oncology
Benefits of using NMF over other machine
learning methods in cancer research
NMF is a type of matrix factorization technique; other
matrix factorization techniques include PCA and ICA
[60]. There are two primary advantages of using NMF over
other machine learning methods for cancer research.
First, an assumption of uncorrelation or independence
of each component after decomposition is not necessary.
In NMF, the components are decomposed to make them
non-invalid after decomposition. Meanwhile in PCA, the
components are decomposed to ensure that they are
uncorrelated after decomposition and in ICA, they are
decomposed to make them independent. The assump-
tion of uncorrelatedness or independence of each com-
ponent is not in line with the actual biomedical data such
as transcriptome and epigenome, as genes are involved in
multiple pathways and the gene expression is regulated
by protein–protein interactions. Conversely, NMF uses
matrix decomposition that does not assume uncorrelat-
edness or independence. Hence, it is possible to factorize
the data according to its reality.

Second, interpretation of the NMF results is intuitive
and easy. Unlike normal tissues, cancerous tissues have
heterogeneous cell populations. Hence, the omics data
obtained from cancerous tissues are the sum of values
obtained from multiple cell types. In data decomposition
using PCA and ICA, each component can take a negative
value. This makes the interpretation of data difficult as
its meaning in the real world is represented by positive
values only. Interpretation of the biological meaning of

latent features from NMF results is easy because each
component takes a positive value.

Transcriptome analysis of gene expression
profiles
Several reports on transcriptome analysis of the gene
expression profiles using NMF in the field of oncology
have been previously published. For example, Cho et al.
identified six medulloblastoma subgroups by clustering
gene expression microarray data comprising 194 pri-
mary medulloblastomas and 9 atypical teratoid/rhab-
doid tumors for comparison using NMF [64]. Each sub-
group had a unique combination of numerical and struc-
tural chromosomal aberrations that affected mRNA and
miRNA expression. Genetically, it is characterized by an
increased copy number of c-MYC, and transcriptionally,
by the enrichment of the photoreceptor pathway and
increased expression of miR-183-96-182. A previously
unidentified molecular subgroup was associated with
significantly lower event-free survival and overall sur-
vival.

Taylor et al. used iterative NMF on mRNA expression
data from the Cancer Genome Atlas (TCGA) and 24
squamous cell carcinoma (SCC) cell lines to classify
three disease segments of SCC [65]. The analysis of
gene set enrichment and drug sensitivity identified an
immune evasion subtype sensitive to nuclear factor-κB
and mitogen-activated protein kinase (MAPK) inhibition,
a replication stress-related subtype sensitive to ataxia
telangiectasia inhibition, and a neuroendocrine-related
subtype sensitive to phosphoinositide 3-kinase and
fibroblast growth factor receptor inhibition. Further, each
of these subtypes showed unique miRNA expression
profiles. Focusing on the immune evasion subtype, the
bioinformatics analysis of miRNA promoters revealed
the enrichment of binding sites for the MAPK-driven
transcription factor ETS1.

Barras et al. performed the unsupervised clustering of
gene expression data from 218 patients with BRAF V600E
mutation using NMF to identify subgroups based on gene
expression and to analyze the characteristics of pathway
activation [66]. The results strongly suggest a division
into two groups (BM1 and BM2) that are independent of
microsatellite instability status, PI3K mutation, gender,
and sidedness. The pathway analysis showed that BM1
is characterized by the activation of the KRAS/AKT path-
way, regulation of mTOR/4EBP, and EMT, while BM2 plays
an important role in regulating the cell cycle. A proteomic
analysis showed higher phosphorylation levels of AKT
and 4EBP1 in BM1 and higher levels of CDK1 and lower
levels of cyclin D1 in BM2.

Li et al. analyzed the mRNA expression data of 149
pancreatic ductal adenocarcinoma samples registered
in TCGA by NMF and virtually isolated immune-related
signals from a large amount of gene expression data
[67]. The results showed that approximately 31% of
the pancreatic ductal adenocarcinoma samples had
higher immune cell infiltration, more active immune
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Table 1. List of models based on NMF used in the field of oncology

Model name Cancer type Type of data Description Year Ref.

gNMF NSCLC/CRC/MM CNV A genomic NMF algorithm, which is an unsupervised
classification algorithm aimed at identifying the genomic
subgroups of tumors. It is possible to define the genomic
subclasses of disease and identify cell lines representing each
genomic subtype using high-density SNP array data from
patient tumors and established cell lines. The correlation of
genomic classification with disease outcome showed that
overall survival and the time to recurrence differed significantly
among genomic subtypes.

2010 [131]

Convex-NMF GBM MRSI A method for acquiring imaging and spectral information from
brain tissue and applying convex NMF to extract tissue
type-specific sources from these signals. Since convex-NMF is
an unsupervised method and does not use prior information
about the tumor region, it can identify tissue types one step
further than the classical supervised methods that require
labels, and it can minimize the negative effects of using
mislabeled voxels. Further, convex-NMF relaxes the
non-negativity constraint of the observed data, which allows for
a natural representation of the MRSI signal.

2012 [132]

iNMF CRC mRNA An iterative non-negative matrix factorization (iNMF) method
based on a randomly selected set of probes was introduced and
applied to stratify CRC samples into two main types and then
into five subtypes in a two-step process. This iterative process
makes it possible to detect hierarchical relationships between
subtypes based on expression differences of various strengths.
Because iNMF is based on a randomly selected set of probes, it
has the advantage of being unbiased with respect to knowledge
of genes and pathways. Subtype signatures consisting of probe
sets with different expression levels can be easily applied to
hierarchical clustering of independent CRC data sets in a
two-step process, thereby assigning samples to each subtype.

2012 [133]

hNMF GBM MRSI A hierarchical NMF method that allows the blind separation of
the most important spectral sources in a short time TE 1H MRSI
data. The algorithm comprises multiple levels of NMF, and only
two tissue patterns are computed at each level. Further, hNMF
can accurately estimate the three tissue patterns (normal,
tumor, and necrosis) present in and around GBM tumors, which
helps provide useful additional information for the diagnosis of
GBM.

2013 [134]

SNMF BRCA IHC An unsupervised sparse NMF-based approach for color
unmixing. SNMF performed well in resolving the brown
diaminobenzidine component from 36 IHC images and in
accurately segmenting approximately 1400 nuclei and 500
lymphocytes from H&E images.

2015 [135]

intNMF BRCA/GBM mRNA/RPPA/
miRNA/ CNV

An integrated approach for disease subtyping based on NMF
that uses multiple omics data to identify novel molecular
subtypes of diseases that could influence therapeutic decisions.
This method clusters multiple high-dimensional molecular data
and uses multiple biological levels of information from the
same person to perform a single comprehensive analysis. Since
it does not assume any distributional form of the data, it is
superior to other model-based clustering methods that need to
assume a specific distributional form.

2017 [136]

RM-GNMF CRC/GLI/AM-
L/ALL

mRNA An improved graph-regularized NMF algorithm to facilitate the
display of geometric structures in data space. The combination
of the l2,1 -norm NMF with spectral clustering and extensive
experiments with three known data sets showed its usefulness
in cancer gene clustering.

2017 [137]

NetNMF BRCA mRNA/miRNA An NMF framework that integrates large pairwise datasets in a
network-like manner to construct the modular network. The
knowledge of prior interactions between molecules can be
incorporated into the NetNMF framework in the form of
network-based penalty terms to increase the likelihood that
linked features in the network will be placed in the same
module, which will help improve the accuracy of module
discovery and the biological interpretability of the module.

2018 [138]

Continued
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Table 1. Continued

Model name Cancer type Type of data Description Year Ref.

GMvNMF PAAD/ESCA/
HNSC/ COAD

mRNA/CN-
V/DNA_ME

A new integrated model called multiview NMF (MvNMF) was
proposed for the selection of common differentially expressed
genes and multiview clustering. Then, a graph regularized
MvNMF (GMvNMF) was constructed by applying graph
regularization constraints to the objective function to encode
the geometric information of the multiview genomic data.
GMvNMF can not only obtain the potential shared feature
structure and shared cluster group structure, but also capture
the manifold structure of multiview data.

2018 [139]

CeModule OV/UCEC mRNA/miR-
NA/lncRNA

A model based on joint orthogonality NMF constructed to
identify modules using matched lncRNA, miRNA, and mRNA
expression profiles. The application of CeModule to two cancer
datasets, including ovarian cancer and endometrial cancer of
the uterus, showed that specific modules, which include
lncRNA, miRNA, and mRNA, were significantly associated with
and functionally enriched in cancer-related biological processes
and pathways.

2019 [140]

nsNMF GBM/BR-
CA/LUSC/PRAD

Somatic
mutations
data (WES)

A platform to apply non-smooth NMF and support vector
machines to utilize the full range of sequence data, better
aggregate genetic variation, and improve the power to predict
disease type. Factor matrices derived from nsNMF were used to
identify multiple genes and pathways significantly associated
with each cancer type.

2019 [141]

DMAPred BRCA/HCC/RC-
C/SCC/CRC/GB-
M/AML/LC/MM/
OV/PC/PRC/S-
TO/URB

miRNA An algorithm that can predict the likelihood of disease-related
miRNA candidates based on NMF. This algorithm exploits the
similarity and association between diseases and miRNAs, and it
integrates local topological information of miRNA networks.
Case studies of breast, prostate, and lung cancers have
demonstrated DMAPred’s ability to discover miRNAs that may
be associated with disease.

2019 [142]

pyCancerSig BRCA/CRC SNV/SV/MSI A python package with a command line interface that
integrates SNV, SV, and MSI profiles for sample profiling. Using
NMF, the command to decipher the underlying process of
cancer is also available. Evaluated using the TCGA breast and
colorectal cancer cohorts, the integration of multiple mutation
modes can help correctly identify cases with known clear
mutational signatures and enhance signatures in cases where
the signal is obscured by SNV-only profiles.

2020 [143]

LAceModule BRCA/HCC mRNA/miR-
NA/lncRNA

A framework for integrating Pearson correlation coefficients
and dynamic correlation liquid association (LA) with multiview
NMF. Experiments using breast and liver cancer datasets
showed that LA is a useful indicator for detecting ceRNA pairs
and modules; further, the identified ceRNA modules are
involved in cell adhesion, cell migration, and cell-to-cell
communication

2020 [144]

PathME CRC/G-
B/LUSC/BRCA

mRNA/miR-
NA/CNV/
DNA_ME

A framework combining multimodal sparse denoising
autoencoder and sparse NMF. It is possible to integrate
multi-omics data effectively and interpretably at the pathway
level while accommodating the high dimensionality of omics
data. Patient-specific pathway score profiles derived from this
model can reliably identify disease subgroups.

2020 [83]

SPOTlight PC scRNAseq/ST A platform for decomposing spatial transcriptomics capture
locations (spots) using NMF regression initialized with cell-type
marker genes and subsequent non-negative least squares. With
respect to human pancreatic cancer, patient sections can be
segmented, and furthermore, the status of normal and tumor
cells can be mapped in detail. In addition, training was
performed using an external single-cell pancreatic tumor
reference to illustrate clinically relevant tumor-specific immune
cell status.

2021 [90]

CBP-JMF BRCA mRNA/miR-
NA/CNV

An algorithm based on the joint non-negative matrix
tri-factorization framework. Significant overlap was found
between genes extracted from CBPs and pathways of known
subtypes when CBP-JMF was applied to identify CBPs in the four
subtypes of breast cancer.

2021 [84]

Continued
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Table 1. Continued

Model name Cancer type Type of data Description Year Ref.

NMFNA PC DNA_ME/CNV An algorithm that introduces graph-regularized constraints into
NMF to identify modules and characteristic genes from two
types of data, DNA methylation, and CNV. Using Pearson
correlation coefficients, three networks are constructed:
methylation (ME), CNV, and ME-CNV. Next, modules can be
effectively detected from these three networks by introducing
the graph regularization constraint, which is a feature of
NMFNA. Finally, gene ontology (GO) and pathway enrichment
analysis are performed to detect characteristic genes by
multimeasure scoring to gain a deeper understanding of the
biological functions of the core modules.

2021 [145]

SOJNMF LIC mRNA/miR-
NA/DNA_ME

An algorithm that can analyze multidimensional omics data in
an integrated manner. This method not only identifies the
multidimensional molecular control modules, but also reduces
the overlap rate of features among the multidimensional
modules while ensuring the sparsity of the coefficient matrix
after decomposition.

2021 [146]

Abbreviations: NSCLC, non-small cell lung carcinoma; CRC, colorectal cancer; MM, malignant melanoma; CNV, copy number variation; GBM, glioblastoma
multiforme; MRSI, magnetic resonance spectroscopic imaging; mRNA, messenger RNA expression; IHC, immunohistochemistry image data; BRCA, breast
cancer; RPPA, reverse phase protein array; miRNA, microRNA expression; GLI, glioma; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; PAAD,
pancreatic adenocarcinoma; ESCA, esophageal carcinoma data; HNSC, head and neck squamous cell carcinoma; COAD, colon adenocarcinoma; DNA_ME, DNA
methylation; OV, ovarian cancer; UCEC, uterine corpus endometrial carcinoma; lncRNA, long non-coding RNA expression; LUSC, lung squamous cell carcinoma;
PRAD, prostate adenocarcinoma; WES, whole exome sequencing; HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; SCC, squamous cell carcinoma; LC,
lung cancer; PC, pancreatic cancer; PRC, prostate cancer; STO, stomach cancer; URB, urinary bladder neoplasms; SNV, single nucleotide variation; SV, structural
variation; MSI, microsatellite instability; scRNAseq, single-cell RNA sequencing; ST, spatial transcriptomics; and LIC, liver cancer.

cell lysis activity, higher activation of the interferon
pathway, higher tumor mutation burden, and less copy
number alteration compared to other samples. This new
molecular subtype, termed ‘Immune Class’, serves as
an independent and favorable prognostic factor for the
overall survival; PD-1 inhibitors may be effective against
immune class.

Mutational signature analysis
Mutational signature analysis classifies the base substi-
tution patterns of mutations and reveals its biological
process and related background factors. It has proven to
be an important component in somatic genome analysis,
primarily for cancer [68, 69], and is expected to be applied
as a biomarker in clinical practice [70, 71]. NMF has also
been used for mutation signature analysis, and de novo
signatures can be extracted by the NMF algorithm in
MutationalPatterns [72], an R/Bioconductor package that
includes all functions necessary to implement a muta-
tion signature framework, in the R package SomaticSig-
natures [73], and in the Galaxy tool MutSpec [74]. MuSiCa,
a web application built on top of the MutationalPatterns
package, has also been developed to efficiently analyze
mutation signatures in cancer samples through an easy-
to-use web environment adapted for the entire research
community [75].

Multiomics analysis
In recent years, the multimodal analysis of not only
single omics data but also multiomics data has attracted
considerable attention in the field of oncology [30, 76–81];
NMF has been reported to be useful for multiomics anal-
ysis. Wang et al. proposed ConMod, which compresses all
networks into two feature matrices using a multiview

NMF [82]. The multiview NMF does not depend on the
number of input networks (types of omics data) because
module detection is performed only with the feature
matrix using the multiview NMF (Figure 2). Gene mod-
ules common to cancers were found when ConMod was
applied to the co-expression networks of various can-
cers; most of these have functional significance such as
ribosome biogenesis and immune response. In addition,
the analysis of brain tissue-specific protein interaction
networks revealed conserved modules related to nervous
system development and mRNA processing.

Lemsara et al. proposed PathMe, a framework that com-
bines a multimodal sparse denoising autoencoder with
sparse NMF to achieve robust patient clustering based
on multiomics data [83]. The proposed model leverages
pathway information to transform omics data dimen-
sions into pathway- and patient-specific score profiles
effectively (Figure 3). The authors applied the method to
a clusters of patients in multiple cancer datasets and
showed the possibility of obtaining biologically valid dis-
ease subtypes characterized by specific molecular fea-
tures using four types of omics data: mRNA expression,
miRNA expression, DNA methylation, and copy num-
ber variation. Further, post-hoc analyses using somatic
mutations and clinical data provided support for and
interpretation of the identified clusters.

Wang et al. proposed CBP-JMF, a practical tool for infer-
ring the complex biological process (CBP) underlying a
group of samples as a disease subtype using a non-
negative matrix tri-factorization framework [84]. Given P
different multiomics datasets, they can be represented
by multiple matrices X(1), X(2), . . . , X(P) (Figure 4). In each
matrix, the rows represent molecules such as genes, and
the columns represent samples (e.g. patients); the values
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Figure 2. The ConMod approach modified from figure in Ref. 82. The ConMod includes three main steps: 1. transform multiple networks into two
feature matrices, 2. factorize the two feature matrices jointly using multiview NMF to generate a consensus factor, and 3. select soft nodes from the

consensus factor. Here, M, w(t)
ij , x(s)

ij , x(p)

ij , and H(v) represent the number of layers, weights of the edges between nodes i and j in network layer t, connection

strength of the edge between nodes i and j defined as the average weight of the entire network, participation coefficient of an edge, and low rank matrix
representation close to the consensus matrix, HC respectively.

in the matrix are related to the meaning of the omics.
Let X(P) be a matrix of gene expression data, where X(p)

ij

represents the expression value of the i-th row gene in
the j-th sample. Each non-negative matrix X(P) ∈ R

m×n,
p = 1, 2, . . . , P is factorized into three non-negative matrix
factors based on matrix tri-factorization. X(P) ≈ U(P)S(P)V,
where the molecular coefficient matrix (MCM) U(P) ∈
R

m×k and the sample basis matrix (SBM) V ∈ R
k×n repre-

sent the pattern index matrices for k CBPs and k sample
groups, respectively. The scale absorption matrix (SAM)
S(p) ∈ R

k×k explores the relationship between the two pat-
tern index matrices. Further, MCM shows the structural

pattern between molecules (e.g. genes), SBM shows the
structural pattern between samples, and SAM absorbs
the difference in scale between MCM and SBM. Each
column in the MCM infers a potential feature associated
with CBP; its continuous values represent the relative
contribution of each molecule in CBP. Each row of the
SBM describes the relative contribution of the sample
to the latent features. Sample groups can be detected
by comparing the relative weights of each row of the
SBM. As a practical application, CBP-JMF was applied
to four subtypes of breast cancer to identify CBPs [84].
The results showed a significant overlap between the
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Figure 3. The PathMe approach modified from figure in Ref. 83. Multiomics features mapped to a particular pathway are summarized into pathway-level
scores via a sparse denoising multimodal autoencoder architecture. Hidden layer 1 consists of up to pj/2 hidden units for each omics modality, where pj
represents the number of features of omics type j. The hidden units of omics modality j are tightly connected to the input features of the same omics
type; however, there are no connections from the input features of the other data modalities. Hidden layer 2 comprises one hidden unit that represents
the overall score of the multiomics pathway. Consensus sparse NMF clustering can be applied in subsequent steps by concatenating the P multiomics
pathway scores of each patient.

genes extracted from CBP and the pathways of the known
subtypes.

Single-cell sequencing analysis
Single-cell analysis is an important analytical tool in
cancer research because it overcomes the challenges of
bulk analysis and provides insight into the complexity
of cancer heterogeneity and lineage development at
the cellular level [85–89]. Elosua-Bayes et al. developed
SPOTlight, which is a computational tool that inte-
grates spatial transcriptomics (ST) and single-cell RNA
sequencing (scRNA-seq) data and leverages NMF to
estimate the location of cell types and states in complex
tissues (Figure 5) [90]. SPOTlight is built around a seeded
NMF regression initialized using cell type marker genes
and non-negative least squares, which then deconvolutes
the ST capture locations (spots). Simulations with
varying amounts and quality of references have been
performed, and high prediction accuracy has been
confirmed even with scRNA-seq reference datasets
with shallow sequences or small sizes. The authors
successfully segmented patient sections and finely
mapped the status of normal and tumor cells using
SPOTlight for the analysis of human pancreatic cancer.

The authors trained on an external pancreatic cancer
single-cell reference and schematized the localization of
clinically relevant tumor-specific immune cells. Such
visualization highlights the cooperative interactions
of immune cells indigenous to the tumor, and it can
provide additional insight into the specificity of the
tumor microenvironment.

Gao et al. propose an algorithm called online integra-
tive NMF (iNMF) for integrating large, diverse, and con-
tinuously arriving single-cell data sets [91]. This method
is an extension of the NMF method, which is the core
of the LIGER method already presented by the authors
[92, 93]; it is developed as an online learning algorithm
(Figure 6A). The authors envisioned using online iNMF to
integrate single-cell data sets in three different patterns.
In pattern 1, the algorithm simultaneously accesses
mini-batches from all datasets and iteratively updates
metagenes (W, V(i)) and cell factor loadings (H(i)) when
the dataset is large and fully observed; each cell can be
revisited through multiple learning epochs (Figure 6B).
In pattern 2, the input data set is prepared sequentially,
and the online algorithm uses each cell exactly once
to update the metagenes; it does not revisit data that
are already seen (Figure 6C). The advantage of pattern
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Figure 4. The CBP-JMF approach modified from figure in ref. 84. � = (π(1), π(2), . . . , π(P)); β and ω represent the importance of the Laplacian regularization
of the graph and the weight constraint ‖�‖2, respectively. V is divided into VL and VUL according to input data; L and UL mean ‘labeled’ and ‘unlabeled’
samples, respectively. La (Laffinity) and Lp (Lpenalty) are Laplacian matrices of Wa and Wp, respectively.

2 is that it can improve the efficient factorization each
time new data are prepared without requiring expensive
recalculation. Pattern 3 allows us to project new data
into the already learned potential space without using
the new data to update the metagenes (Figure 6D). It
allows for the efficient inclusion of new data without
altering existing integration results, and it allows users
to present their data to curated references. Single-cell
analysis has so far focused on RNA-seq; however, it has
recently been applied to epigenomic analysis such as
ATAC-seq [94–96]. Single-cell level multiomics analysis
methods are expected to become more important in the
future. From this perspective, online iNMF is considered
an important technology.

Meta-analysis
Meta-analytical methods of heterogeneous data are
being utilized to uncover new medical and biological
knowledge given the accumulation of vast amounts of
omics data [97–100]. Most existing analysis methods
show a high false positive rate in the detection of
differentially expressed genes (DEGs) because each gene
is analyzed independently [101–103]. Methods using NMF
have been proposed as a solution to this problem.

Wang et al. proposed a new meta-analysis method for
DEG identification based on joint NMF (jNMFMA), which
is a mathematical extension of the NMF method that
decomposes multiple transcriptome data matrices into
one common submatrix and multiple individual sub-
matrices simultaneously as a joint version [102]. Given
two or more transcriptome data X(i)comprising the same
genes, jNMFMA factors jointly into a common submatrix
W (loading coefficient matrix (LCM)) for all data sets

and an individual submatrix H(i) (metagen matrix (MGM))
for data set i (Figure 7A). We can form an overall meta-
gene matrix H that comprises each row corresponding
to metagenes representing the hidden biological signals
behind the dataset by stacking all H(i) horizontally, as
indicated in Figure 7B. Each row of W reflects the rela-
tionship between the metagenes and genes present in
all data. As shown in Figure 7B, H(H(i)) is used to iden-
tify differentially expressed (DE) metagenes associated
with the phenotype of interest; DEG is identified as a
gene associated with DE metagenes based on W. The
authors adapted jNMFMA to three different datasets on
lung cancer, performed meta-analysis, and compared its
performance with five other methods reported so far. The
results showed that jNMFMA had two unique features:
removal of dependency structure and mitigation of data
heterogeneity. Thus, we believe that the reliability and
robustness of jNMFMA in detecting DEGs are improved.

The authors also performed a meta-analysis using
jNMFMA on four datasets, three different transcriptome
datasets, and a DNA methylation dataset with the aim of
discovering cancer-related mDEGs dysregulated by DNA
methylation. Consequently, NEK2 and TCF2 genes were
identified as genes aberrantly expressed in lung cancer
through epigenetic regulation [102]. In the future, it will
be important to integrate and analyze the omics data of
a large number of large cohorts in the field of oncology;
we believe that it is important to use a method such as
jNMFMA that can remove the dependent structure and
mitigate the heterogeneity of data.

Discussion
We introduced the importance of NMF in gene expres-
sion, multiomics, single cell, and meta analyses, with
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Figure 5. SPOTlight approach modified from figure in Ref. 90. Initialize the basis and coefficient matrices, W and H, respectively, with prior information
for the count matrix V of the scRNAseq data and the set of marker genes of the identified cell types. Assume that the number of topics k is equal to the
number of cell types in the data set. The columns of W are initialized with the marker genes of the cell type associated with that topic; the rows of H
are initialized with each cell’s membership in the associated topic. Next, matrix decomposition is performed from the gene distribution of each topic
in W and the topic profile of each cell in H. W is used to map the ST data V∧ by the non-negative least squares (NNLS) method to obtain H∧. The H∧
column represents the topic profile of each spot. Then, we aggregate all cells of the same cell type to obtain cell type-specific topic profiles from the H
matrix obtained from the scRNAseq data. Finally, NNLS is used to find the combination of topics by cell type similar to the topic profile of each spot.

a particular focus on the field of oncology. Since U.S.
President Barack Obama announced the precision
medicine initiative in his state of the union address
in 2015, the promotion of precision medicine (i.e.
personalized medicine) has become a key issue in the

global health policy [104–106]. In the field of oncology, the
term ‘precision oncology’ has been coined, and attempts
have been started to administer optimal cancer drugs
based on information about genetic mutations around
the world [107–110]. The extraction of useful information
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Figure 6. iNMF approach modified from figure in Ref. 91. (A) Conceptual diagram of iNMF: Input single-cell data are jointly decomposed into shared
metagenes (W), dataset-specific metagenes (V(i)), and corresponding ‘metagen expression levels’ or cell factor loadings (H(i)). These metagenes and
cell factor loadings quantitatively define the identity of the cell and how it changes in the biological environment. (B–D) Three different patterns of
single-cell data integration with online learning. (B) Pattern 1: The single-cell data sets are large but well observed. Online iNMF processes data in
random mini-batches, allowing for memory usage independent of the size of the data set. (C) Pattern 2: Datasets arrive sequentially, and the online
iNMF processes the arriving datasets, using each cell only once to update the metagenes. The cell’s factor loadings on the newly arrived data set are
calculated using the shared metagene (W) learned from the previously processed data set. The new dataset will not be used to update the metagene.
(D) Pattern 3: Online iNMF is performed as in Pattern 1 or Pattern 2, and W and V(i) are learned. The cell’s factor loadings on the newly arrived data set
are calculated using the shared metagene (W) learned from the previously processed data set.

Figure 7. Example of the application of NMF to cancer meta-analysis modified from figure in Ref. 102. (A) Suppose we have S datasets X(i), i = 1, 2, . . . ,
S, and G common genes to be meta-analyzed. The i-th data set is denoted by X(i) = WH(i) + E(i), where n(i), W, H(i), and E(i) represent the number of
samples in the data set, submatrix LCM of size G × k (k is an integer constant), submatrix MGM of size k × n(i) of dataset i, and error matrix of dataset
i to accommodate data heterogeneity and noise, respectively. Since the objective function Γ is not convex when W and H are combined, there is no
standard algorithm for finding the immediate solution to equation (2). In practice, it is desirable to seek local minima in such optimization problems.
Wang et al. develop a two-step multiplicative update algorithm for solving equation (2). (B) The DE metagenes associated with the target phenotype are
identified by H(H(i)), and DEGs are identified as genes associated with the DE metagenes based on W.
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from large-scale medical data is an essential task to
promote medical care optimized for each individual,
and machine learning techniques are expected to be
introduced into the medical field in the future to help
perform this task.

NMF retains various properties that can contribute to
the developments in the field of precision oncology. The
whole genome sequence contains an enormous amount
of information (3 billion base pairs); however, only a lim-
ited amount of information is truly related to the disease.
There is a need for a technology that extracts only impor-
tant information while appropriately reducing dimen-
sions; thus, the characteristics of NMF may be utilized in
the future. Further, the multimodal analysis of data from
various modalities is considered important in the medi-
cal field today. As discussed in this review, NMF supports
multiomics analysis and is expected to be actively used
for multimodal analysis in the future. A meta-analysis
integrating multiple data is necessary when analyzing
large-scale medical data; as indicated in this review, NMF
is useful for the meta-analysis. Although not described
in detail in this review due to space limitations, several
publications have focused on the application of NMF to
medical imaging analysis [111–116]. Further, NMF has
been used for sound source separation; however, some
problems related to the structure of the method have
been reported. NMF is based on the following assump-
tions:

1) The observed spectrum (amplitude and power) at
each time is represented by a weighted sum of the
spectra (amplitude and power) of the constituent
sounds (i.e. the spectrum is additive).

2) The amplitude ratio of the frequency components
of each component is time-invariant, and only the
power varies.

However, these assumptions are not valid when judged
strictly [61]. This is because the conversion from the
complex spectrum to the amplitude/power spectrum is
non-linear and additivity does not hold, and further, the
amplitude ratio of the frequency components of each
component sound is invariant. To overcome this disad-
vantage and based on the advantage of NMF, ‘sparse
signal decomposition’, and complex NMF has been devel-
oped as the new method [61].

The challenge of using NMF in cancer research, as
with other matrix decomposition methods, is that loss
of information due to data compression is inevitable.
Therefore, it should not be used if the focus is on
small changes in data components. Care must be
taken when setting K, the number of bases, in NMF
because the results depend on the number of latent
features in the decomposition matrix i.e. K. K can be set
heuristically based on domain knowledge, or a Bayesian
statistical method can be devised to determine it by
decomposition with multiple basis numbers [117]. As
NMF extracts the common components in the data
as latent features, it is also necessary to consider the

effects of differences in the background and immune
tissue, and tumor content in studies using cancer
tissues.

There are cases where the use of NMF is not optimal
depending on the nature of the data. Hence, there is a
need for better understanding of the properties of NMF
in the medical field before it can be widely used. In
addition, the robustness of the results should be verified
by conducting clinical trials, which is true not only for
NMF but also for all medical research using machine
learning.

Conclusions and future perspectives
NMF is a powerful tool for the promotion of precision
medicine and is expected to be used in various ways
in the field of oncology in the future. Currently, clinical
applications of AI are advancing, and machine learning
technology is recognized as an important tool for advanc-
ing medicine [21, 118–123]. In particular, the amount of
data to be analyzed in the field of medicine, including
whole genome analysis data, is becoming increasingly
huge, and this trend is expected to become stronger in the
future. Under the circumstances of the so-called ‘big data
era’ [124–129], we believe that it is essential to properly
introduce machine learning technology into the medical
field [21, 32, 78, 130]. Considering the characteristics of
NMF, it is not yet fully utilized in the medical field, and
we hope that this method will be further utilized in the
oncology field in the future. However, there are some
cases in which it is not optimal to use NMF to analyze
the data. Therefore, we need to proceed with the analysis
using NMF after understanding the characteristics of the
data and the NMF algorithm. We hope that this review
will aid in this decision.

Key Points

• NMF is a machine learning method that uses a dimen-
sionality reduction method based on a low-rank approx-
imation of the feature space. In addition to reducing
the number of features, it ensures that the features are
non-negative and generates additive models about, for
example, the non-negativity of a physical quantity.

• NMF has been used in various fields such as image
analysis, speech recognition, and language processing,
and has recently been applied in medical research.

• NMF has been actively used in the field of oncology for
gene expression analysis, mutational signature analy-
sis, multi-omics analysis, single cell analysis, and meta-
analysis. It is considered to be an approach that con-
tributes to the realization of precision medicine.

• As the use of NMF may not be optimal depending on the
nature of the data, it is necessary to understanding the
characteristics of NMF holistically is important to utilize
it in the field of medicine.
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