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Abstract: Surplus calves, which consist predominately of male calves born on dairy farms, are an
underrecognized source of antimicrobial-resistant (AMR) pathogens. Current production systems
for surplus calves have important risk factors for the dissemination of pathogens, including the
high degree of commingling during auction and transportation and sometimes inadequate care
early in life. These circumstances contribute to an increased risk of respiratory and other infectious
diseases, resulting in higher antimicrobial use (AMU) and the development of AMR. Several studies
have shown that surplus calves harbor AMR genes and pathogens that are resistant to critically
important antimicrobials. This is a potential concern as the resistant pathogens and genes can be
shared between animal, human and environmental microbiomes. Although knowledge of AMU and
AMR has grown substantially in dairy and beef cattle systems, comparable studies in surplus calves
have been mostly neglected in North America. Therefore, the overall goal of this narrative review
is to summarize the existing literature regarding AMU and AMR in surplus dairy calf production,
highlight the management practices contributing to the increased AMU and the resulting AMR,
and discuss potential strategies and barriers for improved antimicrobial stewardship in surplus calf
production systems.

Keywords: antimicrobial use; antimicrobial resistance; surplus calves; antimicrobials; veal; bovine
respiratory pathogens; commensal bacteria; foodborne pathogens

1. Introduction

The rise in antimicrobial resistance (AMR) is a major public health crisis [1], and food
animals are important reservoirs of AMR bacteria [2]. However, most studies on AMR
in food animals focused on either poultry, swine, dairy, or feedlots production systems,
with scarce attention paid to surplus calf production. Interestingly, Salaheen et al. [3] found
that about 70% of veal calves had resistomes containing AMR genes conferring resistance
to multiple medically important antimicrobials. It is therefore important to study the
contribution of surplus dairy calves to overall AMR spread.

Surplus dairy calves are calves born on dairy farms that are either unsuitable or not
required to replace the milking herd [4]. Most of these calves are male and are either
sold for “bob” veal (marketed at <3 weeks of age), veal (milk-fed or formula-fed veal
raised mainly only on a milk-based diet with some amount of grain and marketed at
20 weeks of age; grain-fed veal raised mainly on a milk-based diet until 6–8 weeks of
age before transitioning to a grain-based diet and marketed at 8 months of age), or dairy
beef (marketed at 12–14 months of age). Recently, however, there has been an exponential
increase in the use of beef semen in Holstein cows leading to an increase in the number of
surplus cross-bred calves [5]. The production stages in surplus calves involve sometimes
long-distance transportation to the auction or livestock markets from where the calves are
either sent for slaughter or are purchased by the calf raisers to be reared for a certain amount
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of time depending on the production system type. Throughout these stages, surplus calves
experience many health challenges [6–13], leading to an increased risk of disease and
subsequent antimicrobial use (AMU) as represented in Figure 1 [4].
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Figure 1. Events and causal pathways in surplus calf production leading to increased infection risk
and subsequent AMU.

AMU in the surplus calf production operations represents an unquantified risk to
human health through the foodborne transmission or environmental dissemination of
AMR bacteria and the genetic elements mediating resistance. The academic literature
has devoted relatively little effort to characterizing the types, indications, and quantity
of antimicrobials used and the emerging AMR within surplus calf production systems.
In North America, research has characterized AMU among dairy cattle [14–16], but few
studies focused on AMU in dairy calves [17]. Only a single manuscript in North America
has detailed AMU in surplus calf production systems [18]. By comparison, a plethora of
research in Europe [19–23] has characterized or identified AMU in surplus calf industries.
An overview of the current state of AMU and AMR among commensal and pathogenic
bacteria in surplus calves is important to develop scientifically supported and applicable
measures to curb AMU and reduce the risk of AMR. Therefore, the overall goal of this
review is to (a) summarize the current situation of AMU and AMR in surplus dairy calf
production systems, (b) highlight the management practices contributing to the increased
AMU and the resulting AMR, and (c) discuss potential strategies and barriers for improved
antimicrobial stewardship in surplus calf production systems.
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2. Individual and Group Antimicrobial Use in Surplus Calf Production

Individual therapies, primarily consisting of parenteral administration, are mostly
used for the treatment of respiratory and gastrointestinal diseases [19], and the majority of
AMU happens in the first two months of life [18]. Within the peer-reviewed literature, the
reported frequencies of individual AMU in surplus calf systems are typically higher than in
other types of animal production. For instance, 61% to 87% of calves received at least one
injection of an antimicrobial in their production period [19,24,25]. The level of individual
AMU is likely a reflection of the disease incidence. The higher burden of disease has
been confirmed through objective health scoring—roughly 85% of calves at a veal facility
had at least one day with an abnormal fecal consistency score in the first 28 days after
arrival [26]. In addition, others have found a similar disease burden with calves having an
abnormal respiratory score for on average 7% of the days the calves were observed at a veal
facility [27]. Although prior studies confirm a uniquely high disease burden, AMU could
likely be reduced through more targeted AMU. For instance, roughly 40% of replacement
heifer producers reported typically using antimicrobials in cases without systemic signs of
disease [28]. In another study, Uyama et al. [29] reported that about 96% and 74% of the
Canadian dairy producers used antimicrobials to treat respiratory and diarrhea diseases,
respectively, in pre-weaned dairy calves. However, less than half of the producers had any
written treatment protocol for calf diseases [29].

In addition to individual administration, producers often use group administration
of antimicrobials as a prophylactic measure for calf health on arrival due to high disease
risks in the first weeks of life. In most contexts, the primary indications for group antimi-
crobial therapy are (1) metaphylaxis of disease for arriving groups of calves, (2) treatment
of gastrointestinal disease and (3) treatment of respiratory disease. In the U.S., group
administration of antimicrobials in the feed or water requires a Veterinary Feed Directive or
prescription, respectively. Calf producers often use group administration of antimicrobials
for the treatment, control, or prevention of disease. In the U.S., 77% of surveyed veal
producers reported that they use blanket therapy for the treatment of either diarrhea or
pneumonia [30], and group antimicrobial administration constituted 24.1% of the doses
of antimicrobials on Ohio veal farms [18]. In Europe, the frequency and/or quantity of
group administration of antimicrobials varies widely; investigators reported that 13.4%
of farms in Switzerland used group treatments [31], while in France and Belgium, 98%
of antimicrobial treatments and antimicrobial doses were group treatments rather than
individual treatments [19,32]. By contrast, 85% of antimicrobial doses were administered
parenterally rather than in a blanket group therapy on farms in Denmark, potentially
reflecting official Danish guidelines that caution against oral administration [23].

2.1. Common Antimicrobials Used in Surplus Calf Production

Beyond the quantity of antimicrobials, the antimicrobial selection is an important
consideration for optimal antimicrobial stewardship. The World Health Organization
has categorized antimicrobials as either critically important antimicrobials (CIA), highly
important (HPA), or important (IA) according to the importance for human medicine. In
addition, 3rd generation cephalosporins, fluoroquinolones, and macrolides are categorized
as highest-priority (HP-CIAs) [33]. In the U.S., fluoroquinolones (e.g., enrofloxacin) are
available to treat respiratory disease in all classes of beef cattle and dairy heifers under
20 months of age but are prohibited for use in veal calves. Third-generation cephalosporins
are labeled for bovine respiratory disease and are used on dairy-beef and veal operations
for treatment. Veal producers in the U.S. used a mean of 1.0 defined doses of ceftiofur
per 100 calves per day, which comprised 3.3% of the individual treatments, and fluoro-
quinolones were reportedly not used [18]. In European countries, fluoroquinolones and
cephalosporins represented 1.9% and 0.1% of the total doses of AMU, respectively [20].
Among the three classes of HP-CIAs (fluoroquinolones, 3rd-generation cephalosporins,
and macrolides), macrolides appear to be the most frequently used. Specifically, in a study
conducted in Belgium, oral and long-acting parenteral macrolides comprised 11% and
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28% of total use, respectively, in part owing to the respiratory disease treatment label and
reported effectiveness against Mycoplasma bovis, a common cause of respiratory disease in
veal calves [20]. In addition, macrolides were commonly used as individual treatments
(4.7% of individual treatments) [18], and macrolides were among the three most used
antimicrobials in veal calves in France [22]. Although macrolide use may become a target
for improved stewardship, increased use was a protective factor against mortality, and
the use of macrolides are likely important for reducing the negative impact of respiratory
disease [34].

The largest number of doses of antimicrobials used on veal farms were those that were
more commonly administered in a group fashion. Antimicrobials most used for group
therapy and administered in the water included chlortetracycline, neomycin, amoxicillin,
and sulfmethoxazole/trimethoprim [18]. Of course, the types of antimicrobials used for
group treatments in different countries in part reflect differing regulatory availability
of antimicrobials. For instance, doxycycline was the second most used antimicrobial in
Belgium [20], and colistin was the second most used antimicrobial in veal herds in the
Netherlands [35].

2.2. Quantification of Antimicrobial Use in Surplus Dairy Calves

Quantification of AMU on farms is necessary to measure and monitor the effect of
AMU reduction strategies. Quantified estimates of AMU are frequently expressed as a
treatment incidence rate, i.e., the number of doses per units of animal-time (e.g., 1000 calf-
days). Calculation of the rate requires a definition of a “dose” of antimicrobials (e.g.,
defined daily doses) and assumed standard animal weight. Methods and assumptions
for the calculation have not been standardized in the U.S., but dose definitions have been
published in Canada [36] and Europe [37]. Comparisons of AMU estimates between
published manuscripts are inherently difficult and particularly difficult for growing calves.
For instance, Cheng et al. [18] used an estimate of weight based on carcass weights at
slaughter and assumed growth rates, whereas other reports use, for instance, a standard
weight of 160 kg [34] or 60 kg [38], likely underestimating the number of doses for lighter
calves (i.e., neonates) when AMU is most common. Nonetheless, available research suggests
that dosing rates are substantially higher among surplus calf production systems. Among
Ohio veal calf herds, veal calves received a mean of 35 doses per 100 calves per day, whereas
dosing rates ranged between 1.44 and 2.08 per 100 days on beef or dairy production
systems [15,39,40]. Similarly, the animal defined daily dose (ADD) in Belgium veal herds
was almost double that of the ADD of dairy and beef herds for parental antimicrobials [41].
The quantity of AMU can substantially vary between farms. For instance, Bokma et al. [34]
showed that the dosing rate was approximately 60% higher on farms managed by one veal
company relative to a different company. Across 78 farms, the doses used per calf-year
ranged from 10 to over 50 [20], and the number of treatments per calf ranged from 2.8 to
15.9 on farms in France [22]. Similarly, the treatment incidence among Ohio, USA veal
farms ranged from 20.4 to 54.4 doses per 100 calf-days. The significant between-farm
variation suggests there is an opportunity for a substantial reduction in the dosing rate
of antimicrobials

2.3. Major Risk Factors Associated with Antimicrobial Use in Surplus Calf Production

Research evaluating the risk factors for AMU in surplus calves has mostly focused
on the European and Canadian veal industries. As shown in Table 1, there are multiple
risk factors associated with AMU in surplus calves. Clearly, the quality of the arriving
calves and the management practices in the calf rearing facility plays a critical role in the
occurrence of disease and the use of antimicrobials. Therefore, interventions to reduce the
incidence of disease and AMU will require collaborations across multiple segments of the
production chain, including dairy farms, transporters, and growers.
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Table 1. Risk factors contributing to increased antimicrobial use in surplus calves.

Factors that Increase Antimicrobial Use Risk Reference

Antimicrobial Use

1. Winter months [20]
2. Beef breed surplus calves compared to dairy and crossbred [20]
3. Higher the number of source farms [42]
4. Higher ammonia levels [42]
5. Practices such as health checks and quarantine reduce the risk of AMU [31]
6. A higher number of calves/drinking nipple [42]
7. Lower body weight [12,25,43]
8. Younger age at arrival [24,44,45]
9. Calf health—Diarrhea, cough, pyrexia, depressed attitude, umbilical
infection, dehydration, and failed transfer of passive immunity [9,25,46–48]

3. Surplus Calf Production System as Reservoirs of Major Antimicrobial
Resistant Pathogens

The selective pressure exerted by antimicrobials is one of the main drivers of AMR in
commensals and zoonotic enteropathogens [49–52]. AMR carriage in surplus calves is a
public health concern due to the potential for transmission to humans via direct contact,
environmental contamination, or contamination of food. In 2016, the Wisconsin Department
of Health and the US Centers for Disease Control and Prevention identified dairy calves sold
at livestock markets as the source of the multidrug-resistant Salmonella Heidelberg outbreak
in humans [53]. AMR is also a concern for animal health as resistance in animal pathogens
reduces the effectiveness of drugs used in veterinary medicine. Direct contact with surplus
calves or their environments could transmit AMR to other animals (e.g., via livestock trailers
or auctions). Several studies report that among all cattle sectors, the highest levels of AMR
in commensals and pathogens are found in veal production systems [54–56]. Specifically,
bovine respiratory pathogens, enteric pathogens, and foodborne infectious agents are
the major group of organisms that have significant health and economic consequences
in animals and humans and are widely studied for the presence of AMR in surplus calf
production systems. The following paragraphs address each of these categories directly.

3.1. Bovine Respiratory Pathogens Play a Key Role in Overall Antimicrobial Use and
Antimicrobial Resistance

Bovine respiratory disease (BRD) has been recorded as the leading cause of morbidity
and mortality in pre-weaned calves in the United States [57], wherein in an analysis that
involved 43,739 calves, 10.5% were diagnosed with BRD [57]. Bovine respiratory disease
(BRD) is a multifactorial disease complex involving numerous bacterial and viral agents
which act in synergy with stressors such as nutrition, weaning, transportation, and rearing
environment. Members of the Pasteurellaceae family (Mannheimia haemolytica, Pasteurella
multocida, Histophilus somni, and Mycoplasma bovis) are often described as secondary in-
fectious agents but are also considered as commensal organisms in the upper respiratory
tract [58]. Owing to the high infection pressure after transportation, pro- and metaphylactic
treatments are frequently used to control BRD outbreaks in surplus calves [20]. Selection
pressure exerted by antimicrobial therapy was shown to influence the prevalence of resis-
tance among commensal and pathogenic respiratory bacteria. Table 2 represents major
respiratory pathogens and associated resistance phenotypes isolated from surplus calves.
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Table 2. Summary of research that studied resistance among bovine respiratory pathogens in surplus
calves: The table below shows the source of the different isolates included in the study, country in
which the study was conducted, panel of antimicrobials that were tested against the bacterial agent
and, major findings from the study.

Bacterial Agents Studied Country Antimicrobials Tested Major Findings Reference

Pasteurellaceae (P.multocida,
Pasteurella spp,
M. haemolytica,
Mannheimia spp.) from the
respiratory tract of healthy
veal calves

Belgium

Ampicillin, ceftiofur,
oxytetracycline, gentamicin,
enrofloxacin, tilmicosin,
trimethoprim-sulfadimidine

Acquired resistance to ampicillin,
oxytetracycline,
trimethoprim-sulfadimidine,
gentamicin, tilmicosin, enrofloxacin
more common in veal herds when
compared to dairy and beef

[55]

P. multocida,
M. haemolytica from
respiratory samples
collected during two time
points (at 4 and 24 weeks
after arrival at a veal farm)

Belgium

Ampicillin, amoxicillin-
clavulanic acid, ceftiofur,
oxytetracycline, trimethoprim-
sulfonamide, neomycin,
gentamicin, spectinomycin,
nalidixic acid, flumequine,
enrofloxacin

Veal herds had a substantially
higher number of resistant isolates
compared to beef herds.
Antimicrobials to which highest
percentages of resistance identified
include -ampicillin (8–30%),
tetracyclines (38–43%), trimethoprim
sulfonamide (30–50%), nalidixic acid
(19–49%), flumequine (16–44%),
enrofloxacin (10–36%), neomycin
(18–45%), streptomycin (78–89%),
gentamicin (15–43%)

[41]

M. haemolytica,
P. multocida from the
respiratory tract of
veal calves

Switzerland

Ceftiofur, danofloxacin,
enrofloxacin, tilmicosin,
tulathromycin, spectinomycin,
penicillin, oxytetracycline,
florfenicol, ceftiofur,

Antimicrobials to which highest
percentages of resistance identified
include—oxytetracyclines (27–94%),
penicillin (42–52%), spectinomycin
(0.3–81%), tilmicosin (53%),
tulathromycin (0–30%) and
danofloxacin (14–36%)

[59]

P. multocida,
M. haemolytica,
Histophilus somni * from the
nasopharynx of young and
older veal calves

Switzerland

Ceftiofur, danofloxacin,
enrofloxacin, tulathromycin,
spectinomycin, penicillin,
oxytetracycline, florfenicol,
tilmicosin

AMR was common against
oxytetracycline, spectinomycin,
tulathromycin, penicillin
and danofloxacin

[58]

Mycoplasma bovis from
clinical samples Netherland

Enrofloxacin, erythromycin,
oxytetracycline, tilmicosin,
tulathromycin, tylosin, ampicillin,
ceftiofur, chlortetracycline,
clindamycin, danofloxacin,
florfenicol, gentamicin, neomycin,
penicillin, spectinomycin,
sulphadimethoxine, tiamulin,
trimethoprim-sulphamethoxazole

The highest minimum inhibitory
concentrations (MIC) values were
obtained for erythromycin,
tilmicosin, tylosin.

[60]

M. bovis from respiratory
samples Belgium

Florfenicol, oxytetracycline,
doxycycline, tilmicosin, tylosin,
gamithromycin, tiamulin,
gentamicin, enrofloxacin

No significant difference in
resistance was observed between
veal, dairy and beef herds except for
gamithromyicn (highest resistance
in beef herds).
Higher MIC values were obtained
for tilmicosin, tylosin,
gamithromycin and florfenicol

[61]

* No resistance was detected in H. somni.

Pasteurella multocida was most frequently isolated (37%) from veal calves in cases
associated with BRD followed by Mannhemia spp. [55]. Interestingly, a majority (71.9%) of
the resistant strains of the Pasteurellaceae family, and isolates with multi-resistance profiles
were restricted to organisms originating from veal calves when compared to the dairy
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and beef production systems [55]. Similar results were obtained in another study where a
substantially higher proportion of AMR P. multocida and M. haemolytica were isolated from
intensively reared veal calves in contrast to the more extensively raised beef herds [41].
Antimicrobial susceptibility profiles demonstrated that more than 80% of the resistant
Pasteurellaceae strains from veal calves were multidrug-resistant (resistant to four or more
antimicrobials). A higher percentage of resistant Pasteurellaceae strains were recovered
from veal calves in Switzerland. The study showed that 85% and 95% of M. haemolytica
and P. multocida were resistant to at least one of the tested antimicrobials [59]. However,
Schönecker et al. [58] reported an overall decrease in resistance in M. haemolytica isolates
from veal calves in Switzerland when compared to previous studies [59,62]. Even though
there was a decrease in resistance in M. haemolytica, no information was available on the
health and treatment status of the calves in the study. Among P. multocida, reports from
Swiss veal calves [41] demonstrated a common occurrence of resistance to tetracyclines
and macrolides. More recent studies showed a higher prevalence of resistance among
Pasteurella spp. To fluoroquinolones and macrolides [58] when compared to earlier studies
that had distinctly less resistance towards these antimicrobials [62,63]. Further, group
treatment was associated with increased odds of isolating resistant M. haemolytica and
P. multocida isolates [59]. Adding to this, another study in veal calves demonstrated large
deviations from recommended dosing regimens, with 88% of oral administrations being
underdosed [41].

As for Mycoplasma bovis infection, there is no effective vaccine at present, and control is
mostly dependent on a variety of husbandry and infection control practices. However, due
to the lack of cell wall and its inability to synthesize folic acid, Mycoplasma is intrinsically
resistant to beta-lactams and sulfonamide classes of antimicrobials. Hence, antimicrobials
that target protein or DNA synthesis (such as fluoroquinolones and macrolides) are com-
monly used for the treatment of Mycoplasma. However, resistance against these classes of
drugs is frequently reported in veal calves [64]. A significant increasing trend in MIC values
of macrolides, that are the first choice for the treatment of BRD caused by Mycoplasma spp.
Was reported in Netherlands from M. bovis collected from clinical samples between the
period 2008–2014 [60]. Similarly, a recent study comparing the antimicrobial susceptibility
of Mycoplasma bovis isolated from dairy, beef, and veal cattle sectors in Belgium showed
high percentages (50–100%) of acquired resistance for macrolides. However, no significant
differences were observed in AMR between production systems except for gamithromycin
which was higher in beef cattle [61].

Overall, a higher percentage of AMR respiratory pathogens were isolated from veal
calves when compared to dairy and beef cattle [41,55,56]. Furthermore, there have been
drastic changes in the prevalence of resistance among respiratory pathogens among surplus
calves. Specifically, a trend of elevated resistance towards the macrolide class of antimicro-
bials in Pasteurellaceae family and Mycoplasma spp. Were observed in recent years. Increased
resistance towards macrolides in respiratory pathogens does not come as a surprise, since
macrolides (such as tilmicosin and tulathromycin) are frequently administered either pro-
phylactically, metaphylactically, or therapeutically in animals recognized to be at high
risk for BRD. The high levels of resistance in animal respiratory pathogens are likely to
have a substantial but unmeasured impact on calf health and welfare due to treatment
failures. Given the fact that surplus calves are an important reservoir of AMR respiratory
bacteria, preventive measures against BRD should be revisited, with good management
practices implemented at the farm of origin of the surplus calves, long before the arrival at
the fattening unit, rather than actions aimed at limiting the spread of the diseases.

3.2. Enteric Bacteria in Surplus Calves Contribute to Antimicrobial Resistance Burden

Enteric bacteria, such as E. coli, are known to be reservoirs of AMR genes as shown
in Table 3. Studies show that surplus calves can carry higher levels of resistant E. coli
strains compared to older animals [65–69]. For instance, the proportion of extended-
spectrum beta-lactamase (ESBL) carrying E. coli isolates was higher in veal calves relative
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to adult cattle in France [32]. Further, Schönecker et al. [59] demonstrated that ~70% of the
E. coli isolated from veal calves were resistant to at least one of the tested antimicrobials.
However, only a few studies studied the prevalence and distribution of AMR in E. coli
within surplus dairy calves in the U.S. In this context, Salaheen et al. [70] showed that
multidrug-resistant E. coli (resistant to more than three antimicrobial classes) was isolated
from 75–100% of veal calf samples in Pennsylvania. The authors showed that E. coli isolated
from those calves were resistant to antimicrobials belonging to multiple antimicrobial
classes [70]. Hutchinson et al. [71] also documented a higher percentage of multidrug
resistance (97%) among E. coli recovered from farm isolates in a vertically integrated veal
production system in the U.S. Consistent with the study in veal calves in Europe [32,72],
resistance to quinolones and macrolides remained low at all times among enteric E. coli
in the U.S. Similarly, Berge et al. [73] reported lower resistance percentages to quinolones
among veal calves in California. Furthermore, a follow-up study from the same authors [3],
characterizing the gut microbiota of veal calves by shotgun metagenomic sequencing
showed that 70% of veal calves had resistomes containing AMR genes conferring resistance
to aminoglycosides, tetracyclines, and MLS.

Table 3. Summary of research that studied resistance among enteric bacteria in surplus calves: The
table below shows the source of the different isolates included in the study, the country in which
the study was conducted, the panel of antimicrobials that were tested against the bacterial agent,
antimicrobials to which highest proportion of resistance was observed and major antibiotic resistance
genes that were identified in the study.

Isolates Studied Country Antimicrobials Tested
Antimicrobials to Which
the Highest Proportion of
Resistance Was Observed

Major Antibiotic
Resistance Genes
Identified

Reference

ESBL/AmpC producing
E. coli from fecal samples
collected from veal calves
upon arrival at the
fattening farm and just
before departure to the
slaughterhouse

France

Amoxicillin,
amoxicillin-clavulanic acid,
cefalothin, cefuroxime,
ceftiofur, cefoxitin,
cefquinome, ertapenem),
tetracycline, gentamicin,
streptomycin, florfenicol,
colistin, sulfonamides,
nalidixic acid, enrofloxacin

Amoxicillin (69%)-,
tetracyclines (90–93%),
streptomycin (74–80%),
sulfonamides (78–95%)

CTX-M group 1
(blaCTX-M-1, blaCTX-M-15,
blaCTX-M-32, blaCTX-M-55,
blaCTX-M-3) group 9,
group 2, blaCMY-2, mcr-1,
mcr-3

[32]

E. coli from calves from
multiple veal farms Switzerland

Ceftiofur, enrofloxacin,
gentamicin, neomycin,
spectinomycin, ampicillin,
oxytetracycline

Oxytetracycline (66%),
ampicillin (54%), neomycin
(26%), spectinomycin (25%),
gentamicin (15%),
enrofloxacin (14%)

Not studied [59]

ESBL/AmpC E. coli from
veal calf fecal samples
collected from 1997 to
2010

Netherland Tested only for cefotaxime
susceptibility -

AmpC type 3, type 34,
blaCMY-2, blaCTX-M-1,
blaCTX-M-2 or 97,
blaCTX-M-14, blaCTX-M-15,
blaCTX-M-32, blaCTX-M-79,
blaTEM-52, blaTEM-20,
blaSHV-12

[66]

E. coli from manure and
fecal samples from calves
in auction houses and at
veal calf operations

U.S.

Ampicillin,
amoxicillin-clavulanic acid,
cefoxitin, ceftiofur,
ceftriaxone, gentamicin,
sulfisoxazole, trimethoprim-
sulfamethoxazole,
azithromycin,
chloramphenicol,
tetracycline, streptomycin,
ciprofloxacin, nalidixic acid

Tetracyclines (75–100%),
Penicillins (50–100%),
Aminoglycosides
(60–100%),
Phenicols (25–100%),
Folate pathway inhibitors
(40–100%),
Beta-lactams (20–100%)

blaCTX-M-1, blaCTX-M-9 [70]
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Table 3. Cont.

Isolates Studied Country Antimicrobials Tested
Antimicrobials to Which
the Highest Proportion of
Resistance Was Observed

Major Antibiotic
Resistance Genes
Identified

Reference

Fecal microbial
community of
commercially raised veal
calves early and late
stages of production
(metagenomic study)

U.S. Not tested -

* ARGs to
aminoglycosides,
tetracyclines,
macrolide-lincosamide-
streptogramin B

[3]

E. coli from feces and
carcass swabs from a
vertically integrated veal
production system

U.S.

Ampicillin, ciprofloxacin,
ceftriaxone,
chloramphenicol, cefoxitin,
gentamicin, neomycin,
nalidixic acid, streptomycin,
sulfamethoxazole-
trimethoprim, tetracycline,
ceftiofur

Ampicillin (25–95%),
neomycin (20–98%),
streptomycin (30–95%),
tetracycline (45–98%),
sulfamethoxazole-
trimethoprim
(20–92%)

blaCMY-2, blaCTX-M (only
two genes were tested) [71]

* Too many ARGs were present to list out separately.

Studies also show age-related changes in the fecal carriage of AMR in E. coli among
surplus calf production systems [69]. For instance, resistance to critically important antimi-
crobials (quinolone resistance) decreased significantly by the end of the fattening process
in veal calves in Europe [32]. However, resistance towards non critically important an-
timicrobials and MDR in E. coli increased in parallel to a decrease in resistance to critically
important antimicrobials by the end of the fattening process. These results imply an in-
crease in the use of non-critically important antimicrobials during the fattening process.
Concurring with these observations, higher tetracycline use was reported in fattening farms
when compared to the farms of birth [32]. In contrast, higher quantities of antimicrobial
administration were observed in the first three weeks of rearing in veal calves in Ohio [18].
Similar to the studies in Europe, studies in U.S. have found an age-related decline in
the carriage of ampicillin-resistant E. coli in calves sampled within the first month after
birth until up to the eighth month of sampling [74]. In contrast, Salaheen et al. [70] ob-
served higher percentages of resistance in samples collected from animals before slaughter
(16–18 weeks) when compared to samples collected from bob calves (<1-month-old) at
the auction houses. Further, fluoroquinolone resistance was found in 75% of farm fecal
isolates, despite veal calves never receiving fluoroquinolones from veal growers [71]. It
is not clear why fluoroquinolone resistance was found in E. coli isolates recovered from
veal calves. One possibility is that the resistant bacteria were acquired at birth from the
dam or dairy-farm environment, as fluoroquinolones are not used in U.S. veal operations.
Alternatively, contact with other animals or contaminated environments during auction or
transport could have resulted in colonization. Similarly, another study showed the presence
of E. coli strains with a similar resistance pattern (resistance to ampicillin, streptomycin,
sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole) isolated from both auction
houses and farms suggesting a common source of origin of the isolates [70].

Resistance towards extended-spectrum cephalosporins is a common occurrence in
young dairy calves. Despite their public health significance, fecal carriage of extended-
spectrum cephalosporins/AmpC is not well described in surplus calves. The presence of
blaCTX-M, a group of class A ESBL, conferring resistance to second and third-generation
cephalosporins was observed in 13.3–17.5% of veal calf samples in the U.S. [70]. In a similar
study from Pennsylvania, Donaldson et al. [75] reported that 100% of E. coli isolated from
dairy calves that were resistant to ceftiofur were also MDR. Additionally, Hordijk et al. [66]
evaluated the fecal samples taken from veal calves and found that 83% of the E. coli
isolates that were resistant to cefotaxime carried the blaCTX-M gene family. Researchers
in France also identified CTX-M group 1 enzyme (71.5%) in veal calf isolates with ESBL
phenotype. [32]. This is consistent with the data from other European countries where
blaCTX-M-1 was identified as the main gene responsible for ESBL spread in food-producing
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animals including veal, poultry, cattle, and swine [66,76,77]. Interestingly, 26% of the E. coli
that harbored ESBL/AmpC genes carried multiple plasmid types (both IncI1 and IncF
plasmids) within the same isolate, suggesting horizontal gene transfer events occurring
within those isolates. Further, the authors also reported a rare combination of blaCTX-M-1
with IncF-type plasmid in ESBL E. coli. [76].

Overall, a higher prevalence of resistance observed among enteric bacteria in young
surplus calves relative to older calves is a consistent feature across Europe and the U.S.
This can be attributed to several factors such as increased fecal–oral transmission, in vivo
fitness advantage of resistant E. coli in neonatal calves, or due to the higher levels of AMU
in younger animals due to the increased infection risk in those animals [78,79]. Age related
changes in the occurrence of AMR is a common feature among calves which is partially a
result of changes in management practices and reduced incidence of disease in older calves.
Furthermore, the emergence of enteric E. coli carrying ESBL such as blaCTX-M-55 in surplus
calves is of significant concern as those isolates are known to carry horizontally transferable
genes which mediate resistance to aminoglycoside (rmtB) and colistin (mcr-3) [80]. High
trafficking of calves from different locations across dairy farms along with the presence of
resistant determinants capable of horizontal transfer between bacterial populations might
have resulted in a diverse set of plasmid/gene combinations among surplus calves. In any
case, resistance to CIA antimicrobials among enteric commensal organisms has significant
public health implications due to their ability for the widespread dissemination of AMR
genes among animal and human bacterial populations.

3.3. Major AMR Foodborne Pathogens Recovered from Meat from Surplus Calves

Integrated surveillance efforts have been used to monitor AMR transmission from
food animals to humans. This includes sampling on-farm, harvest facilities, and from
retail cuts of meat [81]. Much information on AMR bacteria in ground beef and other food
products are available. However, information on AMR bacteria in surplus dairy and veal
meat is very limited. The first estimates of bacterial contamination and AMR prevalence
in retail veal meat in the United States were generated as part of the 2018 U.S. National
Antimicrobial Resistance Monitoring System (NARMS) [82]. The study showed that 14% of
the E. coli and 39% of Enterococcus veal-derived isolates were resistant to antimicrobials,
and resistance was more likely to be found in isolates derived from veal samples compared
to dairy cattle samples [82]. Although a wide variety of AMR bacteria of public health
significance are detected in veal meats, major AMR foodborne pathogens of concern include
Salmonella, Escherichia coli, and Campylobacter [83].

MDR (resistant to five or more antimicrobials) Salmonella was detected in 24% of the
total Salmonella isolated from grain-fed veal meat [84]. Studies also show that bob veal
samples harbored higher concentrations of Salmonella compared to special-fed veal [85].
While Salmonella isolated from healthy adult cattle are typically pan susceptible and are
not of high public health significance [86], the opposite is true for Salmonella isolated from
surplus calves. For instance, special-fed veal was found to harbor Salmonella serovars of
greater clinical importance (such as monophasic Typhimurium 4,[5],12:i:-, Heidelberg, and
Agona) than those recovered from bob veal samples. Additionally, Salmonella recovered
from special-fed veal was found to be more resistant than those from bob veal [85]. Further,
samples from mesenteric lymph nodes collected from a vertically integrated veal production
company revealed the presence of Salmonella in 21.9% (35/160) of the samples [87]. In
addition, serotypes of high public health importance were identified in the study and
include Salmonella Typhimurium, and Newport [87]. MDR Salmonella Dublin was also
recovered from ground veal [82]. Salmonella Dublin is a cattle-adapted serovar with the
potential for causing severe disease in humans [88]. The incidence of human Dublin
infections has been increasing over the last few decades [89] and multidrug resistance is a
hallmark of American isolates [90]. Work within a veal production company revealed that
over 70.8% of lymph node isolates (34/48) were MDR and Salmonella Dublin was the most
common serovar recovered from the samples. [91]. Further genomic analysis of Dublin
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isolates recovered from those veal lymph nodes suggested lymph node infection that could
be traced to the farm of origin [91].

Similar to the occurrence of resistance in Salmonella, AMR was also reported in E. coli
and Campylobacter in veal meat. Resistance to five or more antimicrobials was detected in
33% and 10% of the total E. coli isolates isolated from milk-fed and grain-fed veal samples,
respectively [84,92]. Work within a veal production system in the U.S. that harvested bob
and special-fed veal recovered MDR (resistance to three or more antimicrobial classes)
E. coli from 61% (51/84) pre-evisceration isolates, and 22% (5/21) final carcass isolates [71].
Additionally, an epidemiologic investigation to identify the source of sporadic Campylobac-
teriosis outbreaks in humans linked the veal liver as a potential source of infection [93]. In
a study in Switzerland, 27% of the Campylobacter spp. isolated from veal calves at slaughter
were resistant to at least one of the tested antimicrobials [94]. A low prevalence of Campy-
lobacter was observed in retail grain-fed veal meat in Canada. However, 50% of the samples
were resistant to one or more tested antimicrobials [94].

To summarize, antimicrobial resistance is typically found in isolates recovered from
surplus calves. The consistent recovery of MDR Salmonella and E. coli from veal meat
implicates this population as a reservoir for MDR pathogens. Furthermore, the Salmonella
serotypes that are recovered from surplus calf meat have higher public health importance
relative to isolates from other cattle production classes. Surplus veal calves (both bob and
formula-fed) are unique populations with differing challenges from beef cattle, but the lack
of knowledge on the source and prevalence of AMR foodborne pathogens in surplus calf
meat hinders the creation of appropriate interventions. Therefore, to assess potential food
safety risks and efficiently target mitigation efforts, further research into surplus calf meat
production is prudent.

4. Antimicrobial Resistance Control Strategies Focused on Reduced Antimicrobial Use
in Surplus Calf Production

Given the high levels of AMR within bacteria from surplus calves and the likely, albeit
unmeasured public health impact, improvements in antimicrobial stewardship among veal
and dairy beef farms is necessary for long-term sustainability and maintenance of a social
license to operate [4,95]. The most often stated goal for antimicrobial stewardship programs
is to reduce the total quantity of antimicrobials used throughout the production process [96].
Based on limited evidence in North America, veal and dairy-beef production systems have
higher levels of AMU dosing rates relative to other cattle production systems, and a higher
prevalence of AMR commensals and pathogens relative to other production classes of
cattle. Undoubtedly, reducing AMU and/or AMR will be particularly challenging within
surplus calf production systems. Reductions in the total quantity of AMU can be achieved
through some combination of reduced disease incidence and judicious (i.e., selective)
antimicrobial use [23,31,97,98]. However, the disaggregated nature of the production chain
makes changes difficult. For instance, dairy farmers responsible for early-life care have little
financial motivation for investments in the care of calves sold at auctions [4,9]. Collaboration
across sectors of the production system will be necessary to remove some of the causes
of disease. Conflicting messages and a lack of harmony among different advisors were
major barriers to applying novel management practices to reduce unnecessary use [99,100].
Additionally, high production costs combined with unstable calf prices, calf quality, and
scarce labor keep surplus calf producers under constant financial pressure [101], which
makes motivating changes difficult.

Improving Judicious Application of Antimicrobials
In addition to reduced disease incidence, reductions in AMR can be achieved by

adopting strategies for judicious AMU (Figure 2).
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Selective application of antimicrobials or reserving AMU where it is necessary for
animal health is likely to be effective in reducing AMU. However, some routine applications
of antimicrobials lack documented evidence of efficacy. Metaphylactic treatment based on
oral administration of antimicrobials for healthy and diseased animals within the same
group can be a frequent practice [42], and for instance, U.S. producers sometimes use
extra-label administration of antimicrobials in the water to treat or prevent gastrointestinal
disease. The efficacy of this practice has not been documented, and optimal antimicrobial
stewardship will require evidence to support routine use. Similarly, appropriate training
is necessary for farm personnel to accurately identify instances requiring antimicrobial
therapy and to follow veterinary written treatment protocols. Two-thirds of veal producers
in the Midwestern United States reported routinely using antimicrobials when presented
with uncomplicated cases of diarrhea that could be managed with non-antimicrobial inter-
ventions [102]. Indeed, training on the accurate identification of calves with diarrhea and
pneumonia led to better-targeted therapy and a 50% reduction in the quantity of antimi-
crobials on Ohio veal herds [30]. Routine implementation of more selective application of
antimicrobials will require an additional understanding of behavioral drivers and barriers
among farm personnel and veterinarians responsible for AMU. Research has begun to
identify the drivers and barriers that influence veterinarians’ and farm owners’ intentions
to make treatment decisions [103]. The risk aversion to the high mortality rate among veal
calves has been found to facilitate the start of antimicrobial therapy among veterinarians in
Flanders, Belgium [20]. Additionally, veterinarians acknowledged that they were afraid
of legal action from their employers in the event of negative clinical outcomes if they
refuse to treat with antimicrobials [103]. Veterinarians wanted to make responsible usage
of antimicrobials, but sometimes they responded to the uncertainty of clinical cases and the
need for favorable results by prescribing antimicrobials [104].

Furthermore, routine measurement and monitoring of antimicrobial consumption are
necessary to document patterns and temporal changes in the consumption of antimicrobials.
Standardized and consistent methods for AMU monitoring have not yet been adopted in
the U.S, but the methods will need to be scalable, efficient, and able to document farm-
level variability. Importantly, systematic monitoring should protect the confidentiality of
participant farms. Candidate methods for AMU monitoring on cattle operations in the
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U.S. are either based on farm treatment records [105] or sales data [106]. Using treatment
records to quantify AMU would be particularly challenging on surplus calf operations
as meat residue violations are not a concern for early life treatments, and treatments are
recorded less frequently relative to other cattle production classes. Therefore, veterinary
sales data are likely the only viable option, which would be enabled by the forthcoming
FDA rules eliminating over-the-counter sales of medically important antimicrobials [107].
Given the availability of consistent farm-level AMU measurements, benchmarking tools
could be used to improve the awareness of producers on the quantity of AMU and motivate
the behavioral changes necessary for meaningful reductions [108,109].

A combination of contextual and psychosocial factors serves as important barriers to a
reduction in AMU either through reducing disease incidence or improving selectivity for
application of antimicrobials. Future research incorporating social science approaches is
necessary to understand the barriers to the implementation of antimicrobial stewardship.
Coordination across components of the surplus calf production chain and collaboration
between actors in the industry, academics, and regulators are additionally necessary to
facilitate or implement stewardship activities, including antimicrobial use monitoring.

5. Conclusions

Surplus dairy calves are likely an underrecognized source of AMR bacteria, and
reducing the global AMU in the surplus calf sector will be important to mitigate public
health risks and assuage consumer concerns. Several challenges faced by surplus calves
during their early life (such as long-distance transportation, commingling, and inadequate
nutrition) predispose them to respiratory and enteric diseases, necessitating relatively high
dosing rates of antimicrobials. Treatment strategies in veal calves often depend on group
administration of antimicrobials rather than treating calves individually. Very few studies
have characterized AMU in North American surplus calf production systems, and the lack
of standardized dosing metrics for AMU quantification hinders AMU reduction strategies.
A variety of factors, including young age, high exposures, and antimicrobial use result in
substantial levels of resistance to medically important antimicrobials. Coordination across
the disaggregated sectors of surplus calf production will be required to reduce disease
incidence and AMU. A better understanding of psychosocial and contextual barriers faced
by veterinarians and farm owners will facilitate the implementation of economically feasible
antimicrobial stewardship practices that maintain animal health and welfare. However,
it is still unclear to what magnitude surplus calves affect AMR in livestock production;
therefore, additional work will be necessary to characterize and mitigate the impact on
public health.
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