
 International Journal of 

Molecular Sciences

Article

Tryptophan Side-Chain Oxidase Enzyme Suppresses
Hepatocellular Carcinoma Growth through Degradation
of Tryptophan

Yang Ai, Ben Wang, Shuai Xiao, Sang Luo and Yefu Wang *

����������
�������

Citation: Ai, Y.; Wang, B.; Xiao, S.;

Luo, S.; Wang, Y. Tryptophan

Side-Chain Oxidase Enzyme

Suppresses Hepatocellular

Carcinoma Growth through

Degradation of Tryptophan. Int. J.

Mol. Sci. 2021, 22, 12428. https://

doi.org/10.3390/ijms222212428

Academic Editor: Amedeo Lonardo

Received: 25 October 2021

Accepted: 16 November 2021

Published: 18 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 299 BaYi Road,
Wuhan 430065, China; aiyang9311@163.com (Y.A.); 2019202040019@whu.edu.cn (B.W.);
xiaoshuai825@hotmail.com (S.X.); 2018102040017@whu.edu.cn (S.L.)
* Correspondence: ay1412@whu.edu.cn; Tel.: +86-13907185508

Abstract: Tryptophan metabolism plays a role in the occurrence and development of hepatocellular
carcinoma cells. By degrading certain amino acids, tumor growth can be limited while maintaining
the body’s normal nutritional requirements. Tryptophan side-chain oxidase (TSO) enzyme can
degrade tryptophan, and its inhibitory effect on hepatocellular carcinoma cells is worthy of further
study. To investigate the degradation effect on tryptophan, TSO was isolated and purified from qq
Pseudomonas. The reaction products were identified with high performance liquid chromatography
(HPLC) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS). De
novo sequencing provided the complete amino acid sequence of TSO. The results of CCK-8, colony
formation, transwell, and qPCR confirmed that TSO had inhibitory effects on the proliferation
and migration of HCCLM3 (human hepatocarcinoma cell line) and HepG2 cells. The results of
flow cytometry confirmed its apoptotic activity. In animal experiments, we found that the tumor-
suppressive effect was better in the oncotherapy group than the intraperitoneal injection group. The
results of immunohistochemistry also suggested that TSO could inhibit proliferation and promote
apoptosis. In conclusion, a specific enzyme that can degrade tryptophan and inhibit the growth of
hepatoma cells was authenticated, and its basic information was obtained by extraction/purification
and amino acid sequencing.

Keywords: hepatocellular carcinoma; tryptophan metabolism; enzyme; de novo sequencing; anti-
cancer drugs

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors world-
wide, with more than 800,000 new cases and deaths each year [1]. The incidence and
mortality rates of HCC are the fourth and third highest, respectively, in China, and the
proportion of HCC patients in China is more than 50% [2]. Although the occurrence and
development of HCC have been intensively studied in recent years, the precise molecular
mechanisms underlying the occurrence of HCC remain unclear. At present, tumor treat-
ments mainly consist of surgery, chemoradiotherapy, immunotherapy, and small molecule
compounds [3]. Recent studies have shown that certain amino acids play an important role
in the occurrence and development of tumors. These studies have included detection of
potential tumor biomarkers [4,5], amino acid derivatives for the treatment of tumors [6,7],
elucidation of tumor mechanisms [8,9], and targeted therapy for tumors [10,11].

In 2011, the reprogramming of the energy metabolism of tumor cells included in the
top-10 characteristics of tumor cells summarized by Hanahan and Weinberg has become a
new focus of tumor research. The energy of rapidly growing tumor cells is mainly derived
from glycolysis, which is known as the Warburg effect [12], confirming that amino-acid-
based energy metabolism plays an important role in tumor research. The metabolism
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of some amino acids (i.e., glycine, arginine, and glutamine) provides raw materials for
the synthesis of nucleic acids [13,14]. Previous studies on tumor metabolism have shown
that tumor metabolic reprogramming can enable tumor cells to maintain selective growth
advantages under adverse living conditions [15]. In addition, amino acids also provide the
nutritional and biosynthetic bases for immune responses of immune cells and the anabolism
of reactive enzymes. Therefore, amino acids can affect tumor growth through their effects
on the tumor immune microenvironment [16]. Recent studies have confirmed that a variety
of amino acids can directly or indirectly influence the tumor immune microenvironment;
hence, modulating the metabolism of tumors via amino acid therapy provides a new
direction for tumor-targeted therapies [17].

Tryptophan, first extracted from casein by Hokinst in 1902, is one of the eight essential
amino acids that cannot be synthesized in the human body. It is an indispensable compo-
nent of proteins and plays an important role in maintaining the physiological activities of
plants and animals [18]. Tryptophan metabolism is involved in the regulation of immunity,
neuronal function, and intestinal homeostasis. In addition to being used for protein syn-
thesis, tryptophan can be broken down by tryptophan hydroxylase (TPH), which is used
for the synthesis of 5-hydroxytryptophan (5-HT) and melatonin [19]. Studies have shown
that tryptophan metabolism contributes to aging and neurodegeneration by similar mecha-
nisms [20,21]. There are two main tryptophan metabolic pathways: (1) the 5-HT pathway,
catalyzed by tryptophan hydroxylase; and (2) the kynurenine pathway. More than 90%
of tryptophan is metabolized by the kynurenine pathway [22]. The catabolic pathway of
tryptophan in mammals is divided into three steps. Tryptophan is first metabolized to
kynurenine and is then metabolized to quinoline, after which it finally undergoes complete
oxidative decomposition to produce ATP and CO2 [23]. The kynurenine pathway me-
tabolizes various enzymes including indoleamine 2,3-dioxygenase1 (IDO1), indoleamine
2,3-dioxygenase2 (IDO2), and tryptophan-2,3-dioxygenase (TDO2). The enhanced activities
of these enzymes can make tryptophan overproduce kynurenine, resulting in tryptophan
deficiency and the production of large amounts of kynurenine, thus inhibiting the immune
system [24]. Moreover, kynurenine is an endogenous ligand that promotes tumor prolif-
eration; it can bind to and activate aryl hydrocarbon receptor (AHR) to exert biological
effects, both of which contribute to the occurrence and development of tumors [25]. AHR
is a ligand-activated transcription factor that plays a powerful role in immune cells [26].

As the basis of other forms of metabolism (including those of other amino acids),
enzymes have become the focus of metabolomics research. In addition to glycolysis, amino
acid metabolism, and lipid metabolism, as well as their participation in the reactions of
these metabolic pathways, enzymes have gradually attracted more attention and become
key targets for the development of cancer treatment [27]. In 1977, Joseph Roberts discovered
and isolated a novel enzyme that oxidizes alpha carbon in the indole ring at site 3. Further
studies showed that this enzyme can degrade tryptophan and oxidize the side chain
of tryptophan to keto-tryptophan [28]. Roberts et al. [29] described the L-tryptophan
degradation enzyme, indole-3-acyl alkane-hydroxylase, and named it as L-tryptophan
side-chain oxidase. It was later found that TSO is composed of two kinds of isozymes,
namely TSO I and TSO II. TSO I is approximately 60 kDa, whereas TSO II is approximately
44 kDa. The third isolated TSO was isolated by Schmer et al. and was named as TSO III,
with a molecular weight of 42 kDa [30].

The development of antitumor drugs targeting tryptophan metabolism has been
primarily based on the tumor-promoting functions of IDO1 and TDO to develop small-
molecule inhibitors of these enzymes for cancer treatments [31–34]. However, there are
currently no known effective enzymes that can directly degrade tryptophan to inhibit
tumors. Although Joseph and his team found that TSO degrades tryptophan, they did not
study TSO in depth, investigate its anticancer function at the cellular level, or evaluate its
efficacy after tumor-forming experiments.
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In the present study, TSO produced by Pseudomonas fermentation technology was used
as a tumor treatment, and we found that it successfully inhibited the growth of tumor cells
and further verified this effect in vivo. In addition, HPLC-MS was used to verify that TSO
degraded tryptophan in tumor cells and prevented tryptophan from being metabolized in
accordance with the canine urine pathway, thus partially inhibiting the proliferation and
growth of tumor cells. Finally, we sequenced the amino acids of TSO, laying a foundation
for future investigations of its targets and its development as an anticancer drug.

2. Results
2.1. TSO Purification, Sequencing and Analysis
2.1.1. Extracted and Purified TSO Degrades Tryptophan

Fermentation of Pseudomonas was carried out in a 5 L fermenter. The fermentation
conditions of pseudomonas are shown in Table 1. The activity of TSO protein collected
under stable condition was the highest. The withdrawal rate was approximately 0.31%.
The TSO protein extracted from the bacterial broth collected during the stable period was
verified to be active.

Table 1. Fermentation Conditions of Pseudomonas.

Tem (◦C) ph DO V (rpm) Time State

30 6.26 98.9% 201 0 start
34.3 5.93 28.8% 215 2 h19 m logarithmic

34.9 4.88 31.1% 201 4 h34 m logarithmic
end

34.5 6.22 66.6% 201 6 h31 m stable
35.9 7.35 103.3% 197 After 24 h ageing
30 6.26 98.9% 201 0 start

After the crude enzymatic solution was eluted with 0.05 M of sodium acetate and
0.2 M of sodium acetate on an AKTA protein purifier, pure TSO protein was obtained. Two
main peaks with high content were obtained. Elution curves are shown in Figure 1A, which
were combined and named as EL-1 and EL-2. The purification efficiency was approximately
78%, as determined by SDS gray-scale analysis (Figure 1B).

Detection of enzymatic activity was carried out on solutions of EL-1, EL-2 and P.S
group (total protein). We found that the enzymatic activity of EL-1 on tryptophan was
the strongest, while there was little enzymatic activity in the EL-2 eluent (Figure 1C). The
specific activities of EL-1 and EL-2 were calculated according to the method of specific
enzyme activity calculation. The degradation activity of TSO on tryptophan is shown in
Figure 1D. The above results indicate that a large amount of TSO protein existed in 0.2 M
of the eluent.
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Figure 1. The purified TSO enzyme extracted from Pseudomonas degraded tryptophan. (A) Affinity chromatogram of 
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umn volumes of eluent, which was the TSO protein we needed. (B) SDS diagrams of proteins in different eluents col-
lected. EL-1 was a strip of 0.2-M eluent and EL-2 was a strip of 0.05-M eluent. In EL-1, the 44-kDa band of protein was 
TSOII. (C) Tryptophan concentration in enzyme activity assay. P.S was the total protein control group. EL-1 had the 
lowest tryptophan content, indicating the highest protein activity. Data are mean ± SD, n = 3; ** p < 0.01 and *** p < 0.001 
vs. Control. (D) Enzyme activity of proteins collected from different eluents. The specific activity of EL-1 was signifi-
cantly higher than that of EL-2. 

2.1.2. HPLC and HPLC-MS Demonstrate That Tryptophan Is Metabolized by TSO 
As shown in the HPLC results in Figure 2A–F, after transfection with TDO2, all of 

the tryptophan in the medium was metabolized to kynurenine, while the tryptophan in 
the medium given TSO alone was degraded but not metabolized to kynurenine, and the 
medium transfected with the siRNA of TDO2 (this siRNA was synthesized by Sangon 
biology company and numbered 604, which was verified to have the most obvious in-
hibitory effect on TDO2 by qPCR in our another manuscript), combined with TSO, also 
contained no tryptophan and kynurenine. 

Based on a previous study [28], the metabolism of tryptophan by TSO is shown in 
Figure 2G. The results of HPLC-MS (Figure 2H) showed that the product in the reaction 
of tryptophan and TSO had a molecular weight of 219, which is consistent with the for-

Figure 1. The purified TSO enzyme extracted from Pseudomonas degraded tryptophan. (A) Affinity chromatogram of TSO
protein. The first peak is the flow-through peak, the second is the 0.05-M sodium acetate elution peak, the third is the 0.2-M
sodium acetate elution peak. We collected 11.3–15.7 column volumes of eluent, which was the TSO protein we needed.
(B) SDS diagrams of proteins in different eluents collected. EL-1 was a strip of 0.2-M eluent and EL-2 was a strip of 0.05-M
eluent. In EL-1, the 44-kDa band of protein was TSOII. (C) Tryptophan concentration in enzyme activity assay. P.S was the
total protein control group. EL-1 had the lowest tryptophan content, indicating the highest protein activity. Data are mean
± SD, n = 3; ** p < 0.01 and *** p < 0.001 vs. Control. (D) Enzyme activity of proteins collected from different eluents. The
specific activity of EL-1 was significantly higher than that of EL-2.

2.1.2. HPLC and HPLC-MS Demonstrate That Tryptophan Is Metabolized by TSO

As shown in the HPLC results in Figure 2A–F, after transfection with TDO2, all of
the tryptophan in the medium was metabolized to kynurenine, while the tryptophan in
the medium given TSO alone was degraded but not metabolized to kynurenine, and the
medium transfected with the siRNA of TDO2 (this siRNA was synthesized by Sangon biol-
ogy company and numbered 604, which was verified to have the most obvious inhibitory
effect on TDO2 by qPCR in our another manuscript), combined with TSO, also contained
no tryptophan and kynurenine.
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Figure 2. Tryptophan can be completely degraded by TSO. (A–E) The peak at 4.5 min was kynurenine, and the peak at
6.5 min was tryptophan. 604 was the number of siRNA of TDO2. (F) Compared with the normal control group, the contents
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of tryptophan and kynurenine in the TSO group and the 604+TSO group were almost zero, and almost all the tryptophan
was metabolized to kynurenine after transfection with TDO2. Data are mean ± SD, n = 3; * p < 0.05, and *** p < 0.001
vs. Control. (G) This reveals the reaction between tryptophan and TSO. Tryptophan with a molecular weight of 204 was
eventually metabolized by TSO into a product with a molecular weight of 219. (H) HPLC-MS results also confirmed that, in
addition to tryptophan (205), the reaction products also contained products with a molecular weight of 219.

Based on a previous study [28], the metabolism of tryptophan by TSO is shown in
Figure 2G. The results of HPLC-MS (Figure 2H) showed that the product in the reaction of
tryptophan and TSO had a molecular weight of 219, which is consistent with the formula
shown in Figure 2G. There was no kynurenine (molecular weight of 208) present in the
reaction.

2.1.3. Sequence Analysis and Detection of TSO Peptide

The samples were subjected to SDS-PAGE (Figure 3A). Then, colloidal particles with a
44-kD band was cut and treated by protease enzymolysis after affinity chromatography.
The processed sample was then analyzed by LC-MS/MS to obtain the raw file of the
original MS results. Verification was obtained via Byonic analysis. The raw file generated
from the sample data collected by LC-MS/MS was opened using Xcalibur in order to
visualize the total ionization chromatogram (Figure 3B). The exact amino acid sequence is
shown below:

MNLHEYQGKQLFAEYGLPVSKGYAVDTPEEAAEACDKIGGSEWVVKAQVHAGGRGK
AGGVKLVRSKEDAKAFAQQWLGKRLVTYQTDANGQPVTKILVESCTDIAKELYLGAV
VDRSSRRIVFMASTEGGVDIEKIAHDTPEKILKATIDPLVGAQPFQGRELAFQLGLEGK
QVAQFAKIFVGLAKLFQDHDLALLEVNPLVIKADGDLHCLDAKINIDANAMYRQPKL
KTFHDPSQDDPREAHAAKFELNYVALEGNIGCMVNGAGLAMGTMDIVNLHGGKPA
NFLDVGGGATKERVTEAFKIILSDTNVAAVLAAKCDMIAEGIIGAVKEVGVKIPVVVR
LEGNNAELGAKVLA ESGLNIIAATSLTDAAQQVVKAAEGK

The amino acid sequence of TSO was obtained by calculating and stitching the differ-
ence of Y-series ions in tandem data, as shown in Supplementary Materials. The MaxQuant
software verified that the reliability of the sequence was 100%. The sequences obtained
from de novo sequencing were submitted to the NCBI database BLAST for homologous
protein retrieval, and it was found that there were highly homologous sequences in the
Pseudomonas species (Figure 3C). Although it was highly homologous to the subunit
of Succinyl-CoA synthetase reported in the database, this coenzyme A does not have
tryptophan degrading activity, and as such they are not the same.

BLAST and HHBlits were used to search the SWISS-MODEL template library for
evolution-related structures that matched the target sequence. A total of 96 templates were
found. The template with the highest quality was selected for model building. Part of
the 3D structure of the TSO protein is shown in the Figure 3D. As shown in Figure 3E,
the similarity between amino acids at positions 317–322 and the original TSO sequence
decreased sharply, because the sequence did not exist in the original sequence.

The online program ProtParam was used to analyze the physicochemical properties of
TSO, which was found to be composed of 382 amino acids. The molecular formula of TSO
was found to be C1805H2913N495O545S12, the theoretical isoelectric point (PI) was 5.71,
and the estimated half-life was 30 h in mammalian reticulocytes and >20 h in yeast. The
instability coefficient was 27.30, which signified that it was a stable protein. The aliphatic
index was 98.12, and the grand average of hydropathicity (gravy) was −0.454, showing
that was a hydrophilic protein, including 49 negatively charged amino acid residues (Asp +
Glu) and 42 positively charged amino acid residues (Arg + Lys).

The TMHMM online prediction showed that the 382 amino acids of TSO were not
located in the membrane or the transmembrane, but were instead located in the outer
membrane, belonging to membrane-receptor proteins. PSORT II Prediction analysis results
showed that 56.5% of TSO was in the cytoplasm, 17.4% was in the nucleus, 17.4% was in
mitochondria, 4.3% was in vesicles of the secretory system, and 4.3% was in vacuoles.



Int. J. Mol. Sci. 2021, 22, 12428 8 of 20

1 
 

 

Figure 3. The de novo sequencing analysis of TSO protein and its related properties. (A) The band at 44 kDa was purified
by SDS-PAGE gelatinization for subsequent mass spectrometry sequencing. (B) As can be seen from the total ion-flow
diagram, the peak number was large and the peak width was small, indicating that the liquid chromatography separation
efficiency was good, and the mass spectrometry data collection was normal. (C) Amino acid sequence alignment results on
SWISS-MODEL. (D) 3D structure predicted by SWISS-MODEL. (E) Graphic representation of the accuracy of structural
prediction. Ion image of 40 peptides by mass spectrometry sequencing. The X-axis was m/z, and the Y-axis was intensity.
The pictures are provided in the Supplementary Materials.

2.2. TSO Anti-Cancer Funtional Analysis
2.2.1. Inhibitory Effect of TSO in Tumor Cells

As a single drug, TSO showed significant growth inhibition. In our previous study,
we also found that when the concentration of TSO was 9 µg/mL (Table 2), it had significant
inhibition on positive tumor cells but no obvious effect on normal cells. It was also ensured
that endotoxin did not have a cytotoxic effect and the protein concentration was effective.

Table 2. Selection of TSO concentration.

Time (h)
TSO Concentration (µg/mL)

200 100 50 40 25 12 9 6 3

0 × ×
√ √ √ √ √ √ √

2 × ×
√ √ √ √ √ √ √

4 × ×
√ √ √ √ √ √ √

8 × × ×
√ √ √ √ √ √

24 × × × × × ×
√ √ √

48 × × × × × ×
√ √ √

Next, CCK-8 assays were used to measure the anticancer effects of TSO on HCCLM3
cells and HepG2 cells. As shown in Figure 4A, TSO significantly inhibited the proliferation
of HCCLM3 cells, and apoptosis was not caused by endotoxins. TSO also had an inhibitory
effect on HepG2 cells, while the effect on HepG2 cells was not as obvious as that on HC-
CLM3 cells (Figure 4B). Flow cytometry results also showed that TSO promoted apoptosis
of tumor cells and was not associated with endotoxins (Figure 4D–G). Clone formation as-
says also confirmed that TSO enhanced the anti-proliferative ability (Figure 4H–K). When
the cells were added into the medium containing 5- and 10-time tryptophan, they regained
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some activity, but not as much as before (Figure 4C,L,M). In contrast, cell growth was
inhibited when tryptophan content as high as 20 times was added.
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Figure 4. TSO can significantly inhibit the proliferation, migration, and invasion of HCCLM3 and HepG2 cells, and promote
apoptosis. (A) Effect of TSO on HCCLM3 cell growth determined by CCK-8 assays. Significant inhibitory effects were
observed at 4 h. (B) Effect of TSO on HepG2 cell growth determined by CCK-8 assays. Endotoxin showed little influence
on cell growth. (C) DMEM medium containing 10 times as much tryptophan showed the strongest proliferation effect on
HCCLM3 cells after TSO administration. Group 0 represents the medium without addition of tryptophan changed after
administration. The n× group represented the medium that contained n times as much tryptophan as the original medium
changed after administration. The NC group represented the unadministered group. (D–G) Flow cytometry results of the
TSO group, endotoxin group (0.01 EU/mL), and control group. The results showed that TSO could promote the apoptosis
of HCCLM3 and HepG2 cells, and that the endotoxin content at this concentration had no effect on cell growth. (H–K)
Colony formation assays in HCCLM3 and HegG2 cells with TSO or control. (L,M) Flow cytometry results of groups with
different tryptophan contents. The culture medium of group 0, 5×, 10×, and control were the same as that of Figure 4C.
Data are mean ± SD, n = 5; * p < 0.05, ** p < 0.01 and *** p < 0.001 vs. Group 0/Control.

Scratch-wound migration assays also showed that cell migration was significantly in-
hibited when the cells were subjected to TSO (Figure 5A–C). In summary, TSO significantly
inhibited the proliferation of HCCLM3 cells and HepG2 cells and promoted the apoptosis
of tumor cells.
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Transwell (Figure 5D–G) and experiments also confirmed that TSO significantly inhib-
ited the invasion and migration of HCCLM3 and HepG2 cells.

2.2.2. Effects of TSO on Factors Reflecting Proliferative Changes in Cells

To verify the effects of TSO on cells at the molecular level, we used qPCR to detect
cytokines reflective of cell proliferation, apoptosis, and migration. The results are depicted
in Figure 5H,I. We observed that compared with those of the normal control group, PCNA
and MMP-2 levels in the administration group were significantly decreased, while BAX
levels were significantly increased. However, intracellular AKT and GSK3 levels showed
little change.
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Figure 5. TSO can significantly inhibit the proliferation, migration, and invasion of HCCLM3 and HepG2 cells and promote
apoptosis. (A–C) Wound healing assays showing the inhibition of TSO on the migratory abilities of HCCLM3 cells and
HepG2 cells. (D–G) Transwell assays in HCCLM3 and HepG2 cells with TSO or control. (H,I) The mRNA level of PCNA,
BAX, MMP-2, and GSK-3β in HCCLM3 cells and HepG2 cells after TSO treatment as determined by real-time PCR (SYBR
Green). Data are mean ± SD, n = 3; * p < 0.05, ** p < 0.01 and *** p < 0.001 vs. Control.

2.2.3. TSO Suppresses the Growth of HCCLM3 Xenograft Tumors

HCCLM3 cells were subcutaneously implanted into the flank of nude mice to study
the effects of TSO on tumorigenicity of tumors by measuring the weights and volumes of
transplanted tumors in nude mice. The mice were weighed every three days, starting at 7 d
after implantations. As shown in Figure 6A–C, the TSO group showed significant inhibition
of tumor growth, with the effect increasing in a gradient with the increase of the dose.
The tumor inhibition effect was better and more obvious in the oncology administration
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group than that in the tumor combination group. Immunohistochemical staining results
(Figure 6D–G) showed that the positive cell percentage of the proliferation marker Ki-67
and invasion marker VEGF in the tumor administration group were the lowest in the four
groups. While the expression level of BAX was the highest in the tumor administration
group. These results were consistent with those of our in vitro experiments.
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Figure 6. Verification of anticancer effect of TSO in nude mice transplantation experiment. (A) BALB/c nude mice were
taken for xenotransplantation, and the size was measured by the beside ruler. (B) The volume of anatomized subcutaneous
xenograft tumors was measured and analyzed by Student’s t-test. (C) The body weight of nude mice in each group also
showed significant difference due to tumor size. (D–G) Representative Ki-67, BAX and VEGF immunohistochemical
staining micrographs of xenograft tumors were performed. Ki-67 and VEGF were significantly reduced after administration.
BAX increased significantly after administration. Data are mean ± SD, n = 3; *** p < 0.001 vs. Blank.
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3. Discussion

Restricting the intake of certain essential amino acids can cause tumor nutrient de-
ficiency, thus restricting tumor growth or even starving tumors while maintaining the
normal nutritional requirements of the body. Therefore, regulating amino acid metabolism
in the body may represent a new strategy for anticancer treatments [35,36]. Tryptophan
metabolism plays an important role in cancer, which can promote tumor progression by
inhibiting anti-tumor immune responses and increasing the malignant properties of cancer
cells.

In the present study, we found that TSO can degrade tryptophan. In order to study its
degradative activity, we isolated and purified high-purity TSO from Pseudomonas species.
Unlike previous methods [29], we selected 0.05 M and 0.2 M sodium acetate buffer for
gradient elution, because we found that many TSO proteins were absent in the 0.1 M buffer
as described previously. Additionally, our results showed that this gradient elution was
more efficient than the 0.1 M buffer, with a purification efficiency of 78%. In order to study
the effect of TSO and impurities on the activity, we added the activity of total protein and
its degradation ability of tryptophan into the experiment to compare. It was found that
under the premise of the same total amount, the higher the purity of TSO was, the stronger
its activity was. As shown in Figure 1 of the manuscript, EL-1 had the highest content of
TSO and the strongest enzyme activity. Furthermore, we obtained a more concentrated
and more active yield of TSO than that found previously using the 0.1 M buffer. We then
tested the degradative activity of TSO and verified that it completely degraded tryptophan
at 5 µg/mL within 1 h. Therefore, it can be concluded that TSO is an effective component
for tryptophan degradation in purified products.

As 95% of tryptophan in human cells is metabolized in accordance with the kynurenine
metabolic pathway, HPLC-MS was used to verify that the product produced by tryptophan
after TSO metabolism was not kynurenine. In addition, to further verify that TSO had a
stronger degradative effect on tryptophan in cells than that of TDO2, HCCLM3 cells were
divided into groups and then the contents of tryptophan and kynurenine in each group
were detected. We found that tryptophan was completely degraded in the TSO group and
in the TDO2 inhibitor combined with TSO group, with almost no kynurenine production.
This suggests that TSO was sufficient to metabolize tryptophan in the medium without
inhibition of TDO. This result was likely due to the amount of tryptophan in the TSO group
being nearly the same as that in the TDO inhibitor group. After verifying that there was
no interference of the kynurenine pathway in cells, we confirmed that TSO had a specific
and efficient degradative effect on tryptophan. We also found that the combination of a
TDO2 inhibitor and TSO completely degraded tryptophan and blocked the metabolism
of kynurenine in the body. In subsequent studies, we will investigate the effects of the
combination TSO and a TDO2 inhibitor on cancer treatments [37].

In this study, cytological experiments confirmed that TSO had an inhibitory effect
on the proliferation, invasion and migration of HCCLM3 and HepG2 cells, which was
indirectly supported by QPCR results. It was also proved that sufficient tryptophan
could reverse the inhibitory effect of TSO by changing the medium containing different
concentrations of tryptophan after administration. In vivo experiments, we found that
the tumor growth of the drug administration group was significantly inhibited compared
to that of the blank group, as there was a significant difference in tumor size between
these groups. The results of immunohistochemistry also confirmed this finding. We also
found that the effect of direct tumor administration was better than that of intraperitoneal
injection at the same dose, which may be due to the compensatory effect in the body.
As studies of ovarian and prostate cancer have shown, cancer-related fibroblasts (CAFs)
can resynthesize glutamine and secrete glutamine to support tumor cell growth in a
glutamine-restricted environment [38]. However, tryptophan is an essential amino acid
that cannot be synthesized by itself. Therefore, it is possible that when tryptophan levels
drop to a certain level, the body spontaneously stores tryptophan to provide nutrients for
survival. Additionally, through qualitative observations, the mice did not appear anxious
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or depressed, and continued to eat a normal amount of food. Because tryptophan is not
only metabolized by TDO2 to kynurenine, but also a small part of it is metabolized to 5-HT,
tryptophan will affect the nervous system and thus affect mood [39]. Hence, this indirectly
suggests that a small amount of tryptophan may be stored in the body for maintenance.

There were no tumorigenesis experiments on HepG2 cells because HepG2 cells had
been proven to be ineffective in experimental tumor formation. We tried inoculating
different sites with different doses of cell suspension, and after 30 days, we did not see any
tumor.

Because we used affinity chromatography to purify TSO protein, there were dis-
advantages of low efficiency and insufficient purity in the subsequent development of
drugs. Hence, we also performed de novo sequencing of amino acids for TSO, laying a
foundation for the subsequent discovery of its DNA sequence and the efficient produc-
tion of TSO enzyme by means of genetic engineering. We used the EMBL-EBI software
(http://www.ebi.ac.uk/Tools/st/, accessed on 5 January 2021) to predict the probable
nucleotide sequence based on the amino acid sequence in Pseudomonas. We then used
genetic engineering methods to clone and recombine these sequences to find the nucleotide
sequences of proteins with tryptophan degradation activity. In addition, we performed
a simple 3D structure prediction of TSO to determine its transmembrane domains and
physicochemical properties, which laid a foundation for future studies investigating its
targets, receptors, and anticancer function.

By suppressing the proliferation of cancer cells with effective metabolic interventions,
it is possible to expand the range of anti-cancer immune responses [40]. For amino acids
that are limited, they may be safe to use intermittently for days or weeks, or even for one
or two months. Thus, intermittent dietary amino acid restriction may have value and
potential as a practical and viable dietary strategy for cancer treatments [41]. This also lays
a foundation for the development of colorless amino-acid food for tumor patients.

At present, the regulation of tryptophan metabolism for anticancer treatment is mainly
produced by TDO, IDO, and AHR receptor inhibitors [19,42], as well as 5-HT signaling
pathways [42]. TSO can directly degrade tryptophan and competitively inhibit TDO2,
such that tryptophan is not metabolized in accordance with the kynurenine pathway,
thus inhibiting tumor cells. This provides a novel insight into development of anti-tumor
drugs and methods. In the future, we will compare the anti-cancer effects of individual or
combined administration of a TDO2 inhibitor and TSO.

4. Materials and Methods
4.1. Cell Cultures, siRNAs, and Transfections

HCCLM3 cells and HepG2 cells were purchased from the National Typical Culture
Preservation Center (preservation center of Wuhan University, Wuhan, China). All cell lines
were confirmed to be free of mycoplasma contamination, as determined by PCR and culture
methods. The species origin of each cell line was confirmed via PCR. The identity of each
cell line was authenticated via short tandem repeat (STR) profiling. These cell lines were
cultured in DMEM (Hyclone, Logan, UT, USA) containing 10% fetal bovine serum (FBS)
(AusgeneX, Queensland, Australia), 100 units/mL penicillin, and 100 µg/mL streptomycin
(Hyclone, USA) at 37 ◦C with 5% CO2 in a humidified atmosphere. The medium was
replaced every 2–3 d, and the cells were subcultured when their cell fusion rate reached
80–90%. DNA transfection and RNA interference were performed via Lipofectamine 3000
(Thermo Fisher Scientific, Dover, DE, USA), according to the manufacturer’s instructions.
The siRNA sense sequence for TDO2 was 5′-CGUGAUAACUUCAAAGGAGAATT-3′ and
was synthesized by Sangon Biotech (Shanghai, China). The PCR product of TDO2 was
cloned into pEGFP-C1. The complete plasmid was verified by sequencing.

4.2. Antibodies and Reagents

The following commercially available antibodies were used: anti-BAX (Servicebio, cat:
GB11007-1, 1:50 dilution, Wuhan, China), anti-Ki67 (Abcam, cat: Ab16667, 1:200 dilution,
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Cambridge, MA, USA), anti-VEGF (Servicebio, cat: GB11007-1, 1:100 dilution, Wuhan,
China).

The following commercially available reagents were also used: SDS sample buffer
(Sinopharm Group Chemical Reagent Co., Ltd., Beijing, China, cat: 30166428), 30% acry-
lamide (Biosharp, cat: BL513b, Hefei, China), Trise-Base (Biofavor biotech, cat: 1115GR500,
Wuhan, China), Glycine (Biofavor biotech, cat: 1275GR500, Wuhan, China), methyl alcohol,
NaCl, KCl, Na2HPO4.12H2O, KH2PO4, acetic acid, Tween-20 (Sinopharm Group Chemical
Reagent Co., Ltd., Beijing, China), protein markers (Thermo Fisher Scientific, Dover, DE,
USA).

4.3. Aminoagarose Affinity Chromatography Columns

In the first step, 4 g of indoleacrylic acid, 12 g of carbonized dimethylamine, and 4 g
of N- hydroxysuccinimide were dissolved in 100 mL of anhydrous dimethylamide. The
mixture was placed on a shaker for 24–48 h to produce a pale-yellow ester substance. In the
second step, 5 mL of amino agarose filler was added with the same amount of phosphate
buffer (0.1 M, pH = 8.5). Then, esters obtained in the first step were added to the balanced
amino agarose at a ratio of 1:20, and the reaction was oscillated at room temperature for 1 h.
Finally, in the third step, the coupled packing was packed into an empty chromatography
column and cleaned with a 0.1 M phosphate solution in a 30× column volume (pH = 6.9).
Then, the lower outlet of the column was opened to drain the coupling mixture. The amino
agarose affinity chromatography column conjugated with 3-indoleacrylic acid was stored
at 4 ◦C with 0.02% sodium azide.

4.4. Thallus Fragmentation Lysates

For thallus fragmentation lysates, 2 mM of EDTA, 100 mM of NaCl, and 0.5% TritonX-
100 were dissolved in 50 mM of Tris-HCL (pH = 8.5–9.0). Then, 100 µg/mL of lysozyme
and 1 µg/mL of PMSF were added to the lysis buffer before use.

4.5. Preparation of Pseudomonas Fermentation Broth

The frozen Pseudomonas strain (ATCC 29574) was inoculated into a sterilized nutrient
broth medium and cultured at 30 ◦C, at 150 rpm for 24 h. Then, the inoculated bacterial
solution was added to sterilized 2% BBL liquid medium at a ratio of 1:20, and the mixture
was cultured at 200 rpm for 36 h at 30 ◦C. After the bacteria completed logarithmic
growth and reached the stable growth stage (the bacterial content was approximately
2 × 1010 cells/mL), the bacteria were centrifuged at 8000 rpm for 1 h at 4 ◦C, and the
storage temperature of the bacterial precipitation obtained by precipitation fermentation
was −80 ◦C. The fermentation conditions of the fermenter were also explored.

4.6. Bacteria Lysates

First, 2 g of wet heavy bacteria was taken, and 10 mL of bacteria lysate was added.
On an ice bath, the bacteria were lysed by ultrasonication. Ultrasonic crushing conditions
were as follows: 140 W, 10 s, an intermittent 10 s, and the working time was 30–40 min.
After ultrasonication, the bacterial suspension became clear and transparent, indicating
that the bacteria were sufficiently lysed. Then, the liquid after ultrasonic crushing was
centrifuged at and 10,000 rpm for 30 min at 4 ◦C. The supernatant was then collected. Then,
the concentration of the extracted protein mixture was detected by ultra-fine ultraviolet
spectrophotometry.

4.7. Desalination

The crude enzyme liquid was placed into an Amicon Ultra centrifugal filter (the
ultrafiltration centrifugal filter underwent four washes with ultra-pure water and was
pre-cooled before use). The ultrafiltration centrifuge filter was placed into a centrifuge
with the membrane panel facing upward, and was centrifuged at 4000 rpm for 40 min at
4 ◦C. After centrifugation, the lower layer was drained and then acetate buffer (0.002 M,
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pH = 5.5) was added to the upper tube to fill the 12 mL calibration line. This step was
repeated 2–3 times.

4.8. Affinity Chromatography

The enzymatic solution obtained in subsection above was purified by AKTA protein
purifier (NGC Chromatography System, Bio-Rad, California, USA). The acetate buffer was
balanced with a 30× column volume (0.05 M, pH = 5.5) until the effluent A280 was less than
50 mAU. After equilibrium, the enzymatic solution in the sample ring was added to the
affinity chromatography column with 5 mL of acetate buffer (0.2 M pH = 5.5). The loading
volume was 1 mL, and the flow rate was 2 mL/min. Then, the eluent was eluted with a
20× column volume of acetic acid buffer (0.05 M, pH = 5.5) and A280 (0.2 M, pH = 5.5)
less than 50 mAU, after which the eluent of each gradient concentration of the buffer was
collected. Finally, the column was cleaned with a 5× column volume of acetate buffer (0.2
M, pH = 5.5) and ultra-pure water.

4.9. Concentration, Endotoxin Removal, and Detection of Enzymatic Activity

The TSO enzymatic solution obtained by washing different concentrations of acetate
buffer solution was added into different Amicon ultra centrifugal filters. According to the
final required concentration, the TSO enzymatic solution was obtained by centrifugation at
4000 rpm for 30–40 min.

An endotoxin removal kit (ToxinEraser Endotoxin Removal Kit, Genscript, Beijing,
China) was used to remove endotoxins from the TSO enzymatic solution. Then, an endo-
toxin assay kit (ToxinSensor Chromogenic LAL Endotoxin Assay Kit, Genscript, China)
was used to measure endotoxin levels in the TSO enzymatic solution to ensure that this
solution would not lead to cellular and/or organismal death.

Next, the national standard method was used to detect the content of tryptophan in
the reaction solution of TSO and tryptophan to calculate and analyze the enzymatic activity
of the TSO enzymatic solution to degrade tryptophan. After the reaction of tryptophan and
TSO, the chromogenic substrate was added to detect the absorption value at 590 nm, and
the corresponding tryptophan concentration was calculated according to the regression
equation.

4.10. HPLC and HPLC-MS Detection of Tryptophan and Kynurenine Levels

HPLC-MS was used to detect the metabolites of tryptophan standard substance
metabolized by TSO to confirm that TSO metabolized tryptophan and did not activate the
kynurenine-metabolizing pathway.

HPLC was performed using an HPLC-MS instrument (Shimadzu, Japan, and ABSciex)
for detection and quantitation of tryptophan and kynurenine. The mass scan mode was set
to positive and negative ions, and the range was set to 70–1000 m/z. This mass spectrometer
method was used for the detection of samples eluted from the Shimadzu LC-20 HPLC
system. Separation of tryptophan and kynurenine was carried out on an Agilent XDB-C18
column. Standards and samples were eluted using methyl alcohol and ultrapure water
(0.1% formic acid). The injection volume was set to 5 µL, with a solvent flow rate of
0.2 mL/min. The column temperature was set to 40 ◦C. The IDA mode was used for data
acquisition.

The contents of tryptophan and kynurenine in cells were determined by HPLC. HC-
CLM3 cells were divided into the following four groups, with 1 × 106 cells/well that
were inoculated into six-well plates: control group, TDO2 group, TSO group, and siRNA
combined with TSO group. Then, 2 mL of serum-free medium was added to each well.
The culture medium was harvested after 48 h of incubation and was then centrifuged
and frozen until HPLC analysis. Standards of known concentrations of kynurenine and
tryptophan were used for standardization of assays. Kynurenine and tryptophan reference
standards were obtained from Solarbio Life Sciences (Beijing, China). Chromatographic
separation conditions are described above.
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4.11. LC-MS/MS Sequencing

The crude enzymatic solution after affinity chromatography was further purified by
SDS-PAGE and the target protein bands (44 kDa) were separated. Trypsin, chymotrypsin,
and pepsin were used to enzymolyze the target band.

The enzymatic peptides were analyzed by capillary HPLC (Ultimate 3000, Thermo
Fisher Scientific, USA) and electrospray-combined ion-trap Orbitrap mass spectrometry
(Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer, Thermo Fisher Scientific,
USA). The separation was carried out with prefabricated columns (300 µm i.d. × 5 mm,
packed with Acclaim PepMap RPLC C18, 5 µm, 100 Å) and analytical columns (150 µm i.d.
× 150 mm, packed with Acclaim PepMap RPLC C18, 1.9 µm, 100 Å). The samples were
eluted with mobile phase A (0.1% formic acid and 2% ACN) and phase B (0.1% formic acid
and 80% ACN). The solvent flow rate was set to 600 nl/min, and the analysis time of each
component was 60 min.

First-order MS parameters were as follows: resolution, 70,000; AGC target, 3,000,000;
maximum IT, 40 ms; and scan range, 300–1400 m/z. Secondary MS parameters were as
follows: resolution, 75,000; AGC target, 100,000; maximum IT, 60 ms; Top N, 20; and
NCE/stepped NCE, 27.

The raw MS files were analyzed and searched against a protein database based
on the species of the samples using Byonic. The parameters were set as follows. The
protein modifications were carbamido methylation (C) (fixed), oxidation (M) (variable),
and acetylation (Protein N-term, variable). The enzymatic specificity was set to trypsin.
The maximum missed cleavages were set to 3. The precursor ion-mass tolerance was set
to 20 ppm, and the MS/MS tolerance was set to 0.02 Da. Only high-confidence identified
peptides were chosen for downstream protein-identification analysis. The amino acid
sequences were manually spliced and verified by the MaxQuant software.

The amino acid sequences obtained by splicing analysis were performed via BLAST on
NCBI (http://www.ncbi.nlm.nih.gov/BLAST, accessed on 4 January 2021), after which the
3D structure was predicted on SWISS-MODEL (http://swissmodel.expasy.org, accessed
on 4 January 2021). The ProtParam of ExPASy (http://web.expasy.Org/ProtParam/,
accessed on 4 January 2021) was used to predict and analyze physical parameters, such
as molecular-weight isoelectric points of proteins. TMHMM software (http://www.cbs.
dtu.dk/services/TMHMM-2.0/, accessed on 5 January 2021) was used to predict the
transmembrane regions of proteins. Finally, the PSORT II on-line Prediction tool (https:
//psort.hgc.jp/cgi-bin/runpsort.pl, accessed on 5 January 2021) was used to predict the
distribution of TSO protein in cells.

4.12. CCK-8 Assays

First, 9 µg/mL of TSO enzyme and 0.01 unit/mL of endotoxin standard were added
to 10% DMEM medium as the administration treatment. This dose has been tested for drug
endotoxin toxicity (i.e., at this dose, the endotoxin level is below 0.01 units/mL).

HCCLM3 and HepG2 cells were seeded in 96-well plates (2000 cells/well), with 100 µL
of medium per well. After 4, 24, and 48 h of incubation, the medium was discarded, and
100 µL of PBS (phosphate buffer saline) and 10 µL of CCK-8 reagent (Beyotime) were added
to each well. The cells were then incubated for an additional 1 h. Absorbance values at
450 nm were recorded to assess cell proliferation.

In order to verify the reversal effect of tryptophan on TSO, we studied the changes
in cell proliferation and apoptosis under different concentrations of tryptophan. We
designed the medium to be replaced with different concentrations of tryptophan (5, 10,
and 20 times) 48 h after administration to explore which concentration was most suitable
for cell proliferation.

4.13. Wound Healing Assays

Exponentially growing cells were inoculated into six-well plates with 5 × 105 cells per
well and were divided into the drug treatment group and control group. Linear wounds
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were scratched with a 0.2-mL pipette tip. The dead cells were washed with PBS. Then,
1 mL of DMEM medium containing 9 µg/mL TSO was added, and drug-free medium was
added to the control well. Images were acquired at 0 and 48 h after the cells were wounded.
ImageJ (V1.8.0) software was used to measure the uncovered area of cells at each time
point.

4.14. Detection of Apoptotic Rates via Annexin V-FITC/PI Double Staining

First, for supernatant collection, the culture medium was collected into a flow tube
(with a small number of suspended cells). Next, the cells in the six-well plate were washed
once with PBS, and 1 mL of 0.25% trypsin was added to digest the cells. When the cells
became round and some of the cells were suspended, culture medium was added to stop
the digestion. Then, we gently mixed the cells to suspend them. They were collected into
a flow tube, centrifuged at 1500 rpm for 5 min, and the supernatant was then discarded.
Thereafter, 3 mL of 4 ◦C pre-cooled PBS was added to resuspend each pellet, which was then
centrifuged at 1500 rpm for 5 min. The supernatant was then discarded. The precipitate
was resuspended with 300 mL of binding buffer. For fluorescent labeling, 5 Annexin v-fitc
and propidium iodide was added and mixed. At room temperature, the reaction was
conducted for 5–15 min in the dark. Next, at 1 h after the previous step, Annexin v-FITC
green fluorescence was detected by the FITC channel (FL1) and PI red fluorescence was
detected by the PI channel (FL2). The parameters for flow cytometry were as follows:
excitation wavelength = 488 nm and emission wavelength = 530 nm.

4.15. Transwell Invasion Assays

Transwell invasion assays were used to detect the invasive and migratory abilities
of cells. First, 3 × 105 cells were inoculated into a precoated supraventral Matrigel (BD
Biosciences, NewYork, USA) and DMEM containing 10% fetal bovine serum was added to
the underlying Matrigel. After incubation for 24 h, uninvaded cells were removed with
cotton swabs, and the invaded cells were fixed with methanol and stained with crystal
violet. We then performed microscopy to count the number of invading cells.

4.16. Colony Formation Assays

After digestion and counting of logarithmic HCCLM3 and HepG2 cells, 200 cells/well
were inoculated into 6-well plates. After 12 h, the medium was changed and TSO treatment
at a final concentration of either 5 or 9 µg/mL was added for 48 h. The normal control
group was assigned to three wells per group. The cells were placed in an incubator at
37 ◦C and 5% CO2 for two weeks, and the medium was changed every 4 d until visible
cell colonies appeared. After formaldehyde was used for fixation, the crystal violet was
used for staining and five fields were randomly selected for observation under an inverted
microscope. The average cell mass number (greater than 50) was used as the colony count.
The experiment was repeated three times.

4.17. RNA Extraction and qRT-PCR

Total RNA from cultured cells was extracted using a Takara MiniBEST Universal RNA
Extraction kit (Takara Scientific, Inc., Shiga, Japan) and was quantified using a Nanodrop
2000 (Thermo Fisher Scientific, Inc.). cDNA (Complementary DNA) was synthesized from
RNA using PrimeScript RT Reagent (Takara Scientific, Inc., Shiga, Japan). Realtime-PCR
was performed via an ABI 7500 system (Thermo Fisher Scientific, Dover, DE, USA) using
SYBR Premix Ex Taq II (Takara). The primers used were as follows: PCNA forward, 5′-
TAATTTCCTGTGCAAAAGACGG-3′ and reverse, 5′-AAGAAGTTCAGGTACCTCAGTG-
3′; MMP-2 forward, 5′-ATTGTATTTGATGGCATC-GCTC-3′, and reverse, 5′-ATTCATTCCC
TGCAAAGAACAC-3′; GSK-3β forward, 5′-AGGAGAACCCAATGTTTCGTAT-3′ and re-
verse, 5′-ATCCCCTGGAAATATTGGTTG-T-3′; BAX forward, 5′-CGAACTGGACAGTAAC
ATGG-AG-3′ and reverse 5′-CAGTTTG-CTGGCAAAGTAGAAA-3′; AKT forward, 5′-
TGACCATG-AACGAGTTTGAGTA and reverse, 5′-GAGGATCTTCATGGCGTAGTAG-3′;
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β-actin forw-ard, 5′-TCAAGATCAT-TGCTCCTCCTG-3′, and reverse, 5′-CTGCTTGCTGA
TCCACATC-TG-3′. The procedures were as follows: one cycle of 95 ◦C for 30 s, followed
by 40 cycles of 95 ◦C for 5 s, and 60 ◦C for 34 s.

4.18. Tumor Xenograft Assays

A mouse xenograft model was established in five-week-old BALB/c-nu mice (Model
Animal Research Institute of the Chinese Academy of Medical Sciences, Beijing, China) in
accordance with our institutional guidelines. In brief, 5 × 106 HCCLM3 cells suspended
in 100 µL of PBS were injected subcutaneously into the left dorsal flanks of mice. When
the tumor size reached approximately 50 mm3, 12 mice were equally divided into the
following four groups: group A as the blank control, group B as the drug administration
group by intraperitoneal injection, group C as the intraperitoneal injection group combined
with tumor upper administration, and group D as the tumor administration. Each tumor
in group B or D was injected with 50 µL of solution containing 2 mg/mL of TSO. The
solution used for intraperitoneal injection and tumor injection in group C contained 50 µL
of 1 mg/mL of TSO. We administered the TSO enzyme twice per week for 4 weeks.
During treatments, the weight was measured every 3 d. The mice were monitored daily
to determine whether they were free to eat, drink, and be active as usual, and whether
their body shapes had changed. The behavior and food intake of mice were observed
daily. On day 28, the mice were sacrificed, and the tumors were dissected, weighed, and
imaged. The tumor volume (V) was calculated using the following equation: V = 0.5 × L ×
W2. The tumor tissues were fixed in 4% paraformaldehyde for further studies. Dewaxing
and hydration were performed successively, and then the morphological and structural
changes of tumor tissues were observed via microscopy.

4.19. Immunohistochemistry

The tumor tissues of the mice were fixed, embedded in paraffin, and sliced into consec-
utive tissue sections. Next, 5 µm-thick tissue sections were deparaffinized, dehydrated, and
heated in citrate buffer (pH = 6.0) for 15 min at 95 ◦C. To block nonspecific binding of the
first antibody, we added 1% bovine serum onto the slides for 20 min at room temperature.
Paraffin sections of tumor tissues were taken. BAX (reflecting apoptosis), KI-67 (reflecting
proliferation) and VEGF (reflecting invasion) were detected by immunohistochemistry
according to the instructions of the SP kit. Finally, the sections were visualized with a
DAB kit (ZSGB-bio, Beijing, China) and were counterstained with hematoxylin (Beyotime,
Jiangsu, China).

4.20. Statistical Analysis

SPSS Statistics 25.0 (Armonk, NY, USA) was used for all data analysis. The data are
expressed as the mean ± standard deviation (SD). A p value < 0.05 was considered to be
statistically significant. Student’s t-test was used to evaluate the differences in groups.

5. Conclusions

In conclusion, we found that TSO extracted and purified from Pseudomonas had a
degradative effect on tryptophan and affected proliferation and migration of tumor cells
in vitro and in vivo. Collectively, our findings may contribute to the development of anti-
tumor drugs. We also hope that our study will be able to combine TSO with other enzyme
inhibitors in the future so as to jointly play a stronger anti-cancer effect.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222212428/s1.
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