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Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine
available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the
search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de
novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides
its antioxidative properties, a cofactor for a variety of essential enzymes present in themalaria parasite which includes the ornithine
decarboxylase (ODC, synthesis of polyamines), the aspartate aminotransferase (AspAT, involved in the protein biosynthesis), and
the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism).

1. Introduction

Malaria is a devastating infectious disease, which causes
serious problems in tropical and subtropical areas. According
to the World Health Organization (WHO), the population
of more than 100 countries is exposed to malaria parasites
[1]. The causative agent of malaria is belonging to the genus
Plasmodium, which can affect almost all vertebrates; however,
only five species have been reported to be infective for
humans, P. falciparum, P. vivax, P. ovale, P. malariae, and
P. knowlesi [2]. The transmission of the parasite occurs via
a blood meal of the Anopheles vector. Thereby, sporozoites
are transmitted to the vertebrate host and the comprehensive
life cycle of the pathogen is initiated [3]. In the past, several
attempts to control the disease have been undertaken to exter-
minate the vector with insecticide. However, due to spreading
drug resistance, these insecticides lost their efficacy [4]. A
similar situation is present for the treatment of patients, since

an effective vaccine is not yet available and the medication of
malaria is solely based on drugs [5, 6].

The folate (vitamin B9) metabolism is a validated drug
target in several infectious diseases and its biosynthesis is
not present in humans. Folate is an essential cofactor in
enzymatic reactions transferring one-carbon (C1) groups
[7, 8] and prominent antimalarials such as pyrimethamine
and cycloguanil (inhibitors of the dihydrofolate reductase)
and the sulfa drugs against the dihydropteroate synthase are
well characterised within the vitamin B9 metabolism [7, 8].
However—among others—resistance is also rising against
this metabolic pathway. Currently, there is a move towards
artemisinin-based combination therapies (ACTs) [9, 10].

As already indicated above, due to the fact that currently
no effective vaccine is available and the parasite’s speed in
developing resistance against almost all chemotherapeutic
compounds is alarming, there is an urgent need to discover
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Figure 1: Chemical structures of vitamin B6: (a) pyridoxine, (b) pyridoxal, (c) pyridoxamine, and (d) its active form pyridoxal 5-phosphate.

novel drug-targets, which are subsequently exploitable for
the design of new therapeutics against the malaria pathogen
[11, 12]. In the search for novel antimalarials, attention has
been drawn on selective interference with the parasite’s
metabolism without harming the human host [13]. In this
sense promising drug targets are vitamin biosynthetic path-
ways.

Vitamins are molecules which have a variety of functions
in nature. They act as antioxidants, as precursors in electron
carrying processes, or are involved in enzymatic reactions
by acting as cofactors in metabolic pathways such as the
vitamins of the B-family [14]. Mammals generally depend on
the uptake of vitamins, unlike other groups, such as bacteria,
plants, and fungi which can synthesize them de novo. Some
apicomplexan parasites possess also vitamin biosynthetic
pathways which represent attractive drug targets to interfere
with [7, 13].

So far, three vitamin biosynthetic pathways have been
identified in malaria parasites [7, 13]. Besides the occurrence
of the biosynthesis for folate (vitamin B9) and the thiamine
(vitamin B1) biosynthesis, Plasmodium possesses also a vita-
min B6 biosynthetic pathway. Vitamin B6 is designated for
six vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal
(PL), and their respective phosphorylated forms. The differ-
ente molecules differentiate in their substitutions at the 4th
position of the pyridine ring (Figure 1). However, pyridoxal
5-phosphate (PLP) is the only active form of the enzymatic
cofactor which is mainly involved in decarboxylation and
transamination reactions [15].

Up to now, two different vitamin B6 biosynthesis path-
ways are described: (i) the 1-deoxy-D-xylulose 5-phosphate
(DOXP)-dependent pathway is found in some proteobacteria
and is leading to pyridoxine 5-phosphate [16–18]; (ii) the
second pathway, the DOXP-independent pathway, is found
in plants, fungi, and the apicomplexan parasites Plasmodium
and Toxoplasma gondii [19–21].

Historically, the DOXP-independent pathway was iden-
tified in plants and ascribed to oxidative stress response [22,
23]. Afterwards, the analysis of this pathway discovered the
biosynthesis of PLP, which ismediated by an enzyme complex
(PLP-synthase) composed of a core of 12 Pdx1 (also known
as SNZ1 in yeast) individually surrounded by 12 Pdx2 (called
SNO1 in yeast) [24, 25]. The reaction mechanism has already
been studied in some detail, starting with the deamination
of glutamine to glutamate which is catalysed by Pdx2,
subsequently, the ammonia group is channelled to Pdx1,
where it is combined with the two other substrates, ribose

5-phosphate and glyceraldehyde 3-phosphate, leading to the
active cofactor [24, 26]. This complex has already been tested
for its druggability by performing in silico screens in order to
dock compounds into the active site. Identified compounds
were further employed in in vitro assays using recombinantly
expressed enzymes. The best compound derived from this
screen was 4-phospho-D-erythronhydrazide, which revealed
an IC
50
-value of 10 𝜇M in cell culture experiments [27].

Moreover, besides the well-established function of vita-
min B6 in acting as a cofactor, the molecule is also involved
in the combat against reactive oxygen species (ROS), in par-
ticular against singlet oxygen [22, 28]. This additional mode
of action is especially of relevance for the intraerythrocytic
stage of the human malaria parasite, because Plasmodium is
permanently exposed to ROS during proliferation within the
erythrocytes due to the oxidative environment of its host cell
which is accompanied by the parasite-driven haemoglobin
degradation [29, 30].

Additionally, the parasite’s genome encodes also for an
interconversion pathway which consists of the pyridoxal
kinase (PdxK) and a phosphatase [4, 7]. The latter reveals
a broad substrate spectrum and therefore it is questionable
whether this enzyme is solely responsible for the dephos-
phorylation of B6 vitamers [20, 31]. The PdxK catalyses
the phosphorylation of pyridoxal but also accepts the other
B6 vitamers as substrate [20, 32]. The presence of both—
biosynthetic and interconversion—pathways remains still for
elucidation since the parasite is able to generate PLP via two
pathways which would obviously emphasise an uptake of B6
vitamers [4].

In P. falciparum, the PdxK enzyme was already exploited
as drug target by channelling prodrugs into the parasite’s
metabolism. Pyridoxyl-tryptophan chimeras were converted
into their respective phosphorylated forms by the PdxK.
Subsequently, these molecules were shown to interfere with
PLP-dependent enzymes by inhibiting their catalyses and
hence the growth of the parasite [32].

2. PLP-Dependent Enzymes

PLP-dependent enzymes are characterised by their broad
range of enzymatic activities and their participations in differ-
entmetabolic pathways [15, 52].They aremainly concentrated
within the amino-acidmetabolism [53]. Besides the glycogen
phosphorylases, which follow a different mechanism [54, 55],
PLP-dependent enzymes bind PLP during catalysis cova-
lently to the respective substrate by acting as an electrophilic
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Table 1: Different classes of PLP-dependent enzymes according to [15, 33].
Group number Enzyme class/activity Representative enzymes

1 Aminotransferases and the amino-acid decarboxylases Serine hydroxymethyltransferase (SHMT) and the
aspartate aminotransferase (AspAT, prototype)

2 Replacement and elimination of C
𝛽
-groups Serine and threonine dehydratases and the tryptophan

synthase (prototype)

3 Interconversion of L- and D-amino acids with a
common folding (alpha/beta)8

Alanine racemase

4 Alanine aminotransferase D-Alanine aminotransferase
5 Glycogen phosphorylase Glycogen phosphorylase
6 5,6-Aminomutase D-Lysine 5,6-aminomutase
7 2,3-Aminomutase Lysine 2,3-aminomutase

stabilizer of the carbanion intermediate [56]. In the past, a few
attempts have been undertaken to classify PLP-dependent
enzymes according to their activities and evolutionary history
by splitting them into four major classes [57, 58]. Due to their
conservation in the nature, it has been suggested that PLP-
dependent enzymes derived from a common ancestor before
division into the three kingdoms of life occurred [57].

Afterwards, this classification was refined by analysing
genomic and structural information [15, 33] which led to
the sorting of PLP-dependent enzymes into seven groups
(Table 1).

Kappes and collaborators suggested that, because of
the existing metabolic diversity, PLP-dependent enzymes in
protozoan parasites would have potential to be good drug
targets [59]. Most of the enzymes found (at least 2/3) belong
to group I, followed by the less expressive group II, while the
groups IV andVare rare and the groupsVI andVII are almost
inexistent. Recent genome database analyses of different
parasites identified a minimal set of enzymes that are highly
abundant which includes the serine hydroxymethyltrans-
ferase (SHMT), the aspartate aminotransferase (AspAT),
the alanine transaminase, the branched-chain amino-acid
transaminase, and the cysteine desulfurase [59].

Moreover, the comparison of all available genomes of
free-living organisms revealed that only two EC-classified
enzymes are always present: the AspAT (EC 2.6.1.1) and
the SHMT (EC 2.1.2.1), which underlines the fundamental
importance of these enzymes [15].

Additionally, several other PLP-dependent enzymes have
already been exploited as drug targets such as the 𝛾-
aminobutyric acid GABA aminotransferase by the drug viga-
batrin for treatment of epilepsy [60], the alanine racemase in
microbicides [61], or the ornithine decarboxylase (ODC) in
cancer research [62]. In particular, the ODC was also subject
to drug discovery approaches against protozoan parasites
but not limited as outlined below to the aspartate amino-
transferase (AspAT) and the serine hydroxymethyltrans-
ferase (SHMT). However, the occurrence of PLP-dependent
enzymes in themalaria parasite is not restricted to these three
proteins as shown in Table 2.

3. Ornithine Decarboxylase (ODC)

As already outlined above, vitamin B6-dependent enzymes
play central roles not only in the metabolism of amino acids

but also in the polyamine synthesis. Polyamines are simply
structured aliphatic nitrogenous bases containing an essential
role in cell growth, proliferation, and differentiation due to
their stabilizing effect on macromolecules such as nucleic
acids, proteins, and lipids. Their function is considered to
be based on reversible ionic interactions with the negatively
charged macromolecules [63–65].

The ornithine decarboxylase (ODC) is a PLP-dependent
enzyme (Figure 2) which acts as a key regulator in the
polyamine biosynthesis by decarboxylating ornithine to the
polyamine putrescine—the first step in this synthesis. In
contrast to ornithine, the other precursor of the polyamine
synthesis, S-adenosylmethionine (AdoMet), is synthesized
from methionine and ATP by the enzyme AdoMet syn-
thase. AdoMet is also used to generate the polyamines
spermidine and spermine. P. falciparum possesses a unique
polyamine biosynthesis due to the bifunctional organisa-
tion of its key enzymes, S-adenosylmethionine decarboxy-
lase (AdoMetDC) and ornithine decarboxylase (ODC) [42,
66]. Thereby, both enzymes appear as the bifunctional
AdoMetDC/ODC whose organisation was discussed as an
advantage in substrate channelling [66].

There are more bifunctional proteins known in P. fal-
ciparum such as the dihydrofolate reductase-thymidylate
synthase (DHFR-TS) which is also present in other protozoa
[67, 68], the dihydro-6-hydroxymethylpterin pyrophos-
phokinase-dihydropteroate synthase (PPPK-DHPS) [69], the
glucose-6-phosphate dehydrogenase/6-phosphogluconolac-
tonase [70], and the guanylate cyclase/adenylate cyclase [71].

Among others, this unique organisation of the PfODC
has been discussed to be an attractive drug target [72]. As the
amino acid sequence of PfODC shares about 39% identity to
the human homologue, complications in rational drug design
of PfODC-specific lead compounds could be a crucial issue
[39]. Generally, there are three different strategies of inhibitor
design. A formerly used strategy for designing inhibitors
of vitamin B6-dependent enzymes is based on coenzyme-
substrate conjugates that cannot be processed by the enzyme
in their reduced form [73].

Another—already validated—strategy is the use of sub-
strate analogues in order to inhibit enzyme catalysis like the
specific ODC inhibitor difluoromethylornithine (DFMO),
originally designed as an anticancer agent. DFMO blocks the
erythrocytic schizogony of P. falciparum in cell culture at the
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Table 2: PLP-dependent enzymes in Plasmodium.

EC-
number EC-name PlasmoDB

number
Annotation according to

PlasmoDB Pathway Inhibitors References

2.1.2.1 Glycine
hydroxymethyltransferase PFL1720w Serine

hydroxymethyltransferase Folate metabolism

1843U89, AG331, AG337,
D1694, GR1, pemetrexed,

pyrimethamine,
WR99210, methotrexate,
glycine (competitively)

[34, 35]

2.3.1.37 5-Aminolevulinate
synthase PFL2210w

ALA synthase
(aminolevulinate

synthase)

Tetrapyrrole
biosynthesis

Aminomalonate,
Ethanolamine, Hemin [36]

2.6.1.1 Aspartate
aminotransferase PFB0200c Aspartate

aminotransferase

Amino acid and
pyrimidine
metabolism

Inhibited by his own
N-terminal peptide [37]

2.6.1.13 Ornithine
aminotransferase PFF0435w Ornithine

aminotransferase Argnine metabolism L-canaline [38]

2.6.1.57 Aromatic amino-acid
transaminase PFB0200c Aspartate

aminotransferase

Amino acid and
pyrimidine
metabolism

— —

4.1.1.17 Ornithine decarboxylase PF10 0322

S-Adenosylmethionine
decarboxylase/ornithine

decarboxylase
(bifunctional)

Polyamine
biosynthesis

Alpha-
difluoromethylornithine,
alpha-difluoroornithine,

CGP52622A,
CGP54619A, putrescine

(feedback control)

[39–44]

4.1.3.38 p-Aminobenzoic acid
synthetase PFI1100w p-Aminobenzoic acid

synthetase, putative Folate biosynthesis — —

2.6.1.7 3-Hydroxykynurenine
transaminase

Present in the insect
vector: Anopheles

Xanthurenic acid is
needed by the
parasite for
proliferation/
development

— [45]

Putative PLP-dependent enzymes

2.3.1.50 Serine
C-Palmitoyltransferase PF14 0155 Serine

C-Palmitoyltransferase
Sphingolipid
metabolism — —

2.6.1.42
Branched-chain
amino-acid

aminotransferase
PF14 0557 “Conserved Plasmodium

protein”
Pantothenate and
CoA biosynthesis — —

2.8.1.7 Cysteine desulfurase PF07 0068,
MAL7P1.150

Cysteine desulfurase,
putative

Iron-sulfur cluster
synthesis — —

4.1.1.18 Lysine decarboxylase PFD0285c,
PFD0670c

Lysine decarboxylase,
putative

Polyamine
metabolism — —

micromolar level (Table 2) and reduces the parasitemia in
Plasmodium berghei-infected mice [47, 48, 74, 75]. DFMO,
a derivative of ornithine, inhibits the enzyme irreversibly by
an alkylation of its active site. A combination of DFMO and
bis(benzyl)polyamines revealed a curative effect in rodent
malaria [76]. Moreover, DFMO reveals a more prominent
role due to its effectiveness against Trypanosoma brucei
gambiense, the agent of the West African Sleeping Sickness
[77–79]. Only marginal effects of DFMO have been observed
against the apicomplexan relatives of P. falciparum, Cryp-
tosporidium sp. [80] and Toxoplasma gondii [50].

Furthermore, two decades ago, a series of potent ODC
inhibitors were synthesized. These compounds belong to the
group of 3-amino-oxy-1-propanamine (APA) [81, 82], such

as CGP52622A and CGP54619A (Figure 2), which reversibly
inhibit the PfODC with IC

50
-values at the nanomolar range

(Table 3). APA itself had an IC
50
-value of 1 𝜇M revealing a

1000-fold stronger antiplasmodial effect than DFMO (IC
50

value of 1.3mM) (Table 3). However, APA and its analogues
failed as drug candidates in the mouse model [83].

Another interesting PLP-mimicking compound is the
cyclic pyridoxyl-tryptophan methyl ester PT3 which inhibits
in its phosphorylated form (PPT3) the proliferation of P.
falciparum at the cellular level (IC

50
-value of 14 𝜇M) without

harming human cells [32]. Two further compounds of this
chemical group, PPHME and PPT5, act as inhibitors of the
plasmodial ODC with IC

50
-values of 58 𝜇M and 64 𝜇M,

respectively [32] (Figure 2).
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Figure 2: Comparison of the active site of the human and plasmodial ornithine decarboxylases (ODC). (a) Structures of ODC inhibitors
tested against Plasmodium. (b) A structural homology model of the positions of the P. falciparumODC active site (the respective residues are
illustrated in red; amino acid numbering refers to the bifunctional protein) as well as the bound cofactor PLP.

4. The P. falciparum Aspartate
Aminotransferase (AspAT)

Aspartate aminotransferases are involved in three different
metabolic pathways. AspAT is responsible for the reversible
catalysis of L-aspartate (Asp) into oxaloacetate (OAA) and 𝛼-
ketoglutarate (2OG) into L-glutamate (Glu) [37]. Bulusu and
collaborators [84] highlighted that AspAT also acts together
with the fumarate hydratase (FH) and the malate-quinone

oxidoreductase (MQO) in the conversion of fumarate to
aspartate. The enzyme has also been described to accept
𝛼-ketomethylthiobutyrate as substrate in order to generate
methionine [85]. Like all other aminotransferases, AspAT
is structurally classified as a PLP-dependent enzyme of the
subgroup I as outlined previously (Table 1) [86].

In the malaria parasite, AspAT is localised in the
cytosol and reveals a homodimeric structure with two joint
active site regions formed by both subunits [87–89]. Special
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Figure 3: Three-dimensional structures of the AspATs. (a) The 3D structure of PfAspAT (PDB code: 3K7Y) highlighting the three major
domains and the N-terminus (green) as additionally shown in the scheme below. (b) Comparison between the human AspAT (grey, PDB
code: 3HLM) and the P. falciparum counterpart (dark grey). The respective N-terminal region is illustrated in black and the cofactor PLP in
colour.

Table 3: Comparison of the kinetic and inhibitory properties of ornithine decarboxylases.

P. falciparum∗ M. musculus T. gondii T. brucei References
Molecular mass (kDa) 86.4 50–54 14 90 [41, 46]
𝐾
𝑚
-value of L-ornithine (𝜇M) 47.3 30–200 — 161 [41, 47, 48]
𝐾
𝑖
-value of putrescine (𝜇M) 50.4 600 0.92 — [41, 49]
𝐾
𝑖
-value of DFMO (𝜇M) 87.6 39 0.025 220 [41, 50, 51]
𝐾
𝑖
-value of CGP52622A (nM) 20.4 — — — [41]
𝐾
𝑖
-value of CGP54619A (nM) 7.9 — — — [41]

IC50-value of putrescine (𝜇M) 157 — — — [41]
IC50-value of CGP52622A (nM) 63.5 25 — — [41]
IC50-value of CGP54619A (nM) 25 10 — — [41]
∗Data derived from the rPf hinge-ODC [41].

attention has been drawn on the plasmodial AspAT (PDB
code 3K7Y) which possesses a N-terminal-extended region
that is required for the dimerisation process (Figure 3) [37].
This was already used for binding of the N-terminal AspAT
peptide to the N-terminal protein domain of the other
PfAspAT monomer which prevents the formation of the
homodimer. Interestingly, the plasmodial N-terminal region
differs significantly from its human counterpart, so that
the plasmodial peptide did not affect the human AspAT
[37]. Furthermore, activity assays using P. falciparum pro-
tein extracts and the recombinantly expressed N-terminal
PfAspAT peptide have been performed which prevented
AspAT activity suggesting that the malaria parasite possesses

no other enzyme that can compensate for the respective
catalysis [37, 89].

5. Serine Hydroxymethyltransferase (SHMT)

As mentioned before, the folate metabolism in P. falciparum
is a verified drug target and enzymatic reactions catalysed, for
example, by the dihydrofolate reductase (DHFR) are already
exploited by the classic antimalarials pyrimethamine and
cycloguanil [90]. Another enzymatic step within the folate
metabolism is carried out by the serine hydroxymethyltrans-
ferase (SHMT), catalysing the transfer of one-carbon units
from serine to tetrahydrofolate to generate 5,10-methylene
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Figure 4: Model of the plasmodial SHMT and their active site residues. (a) Homology model of the SHMT of P. falciparum highlighting the
three major domains: N-terminal (green), the core and active site (blue), and the C-terminal domain (orange). (b) The conserved residues
Asp208, His211, Thr234, His236 and the Plasmodium-specificThr183 residue are illustrated within the active site of the Pf SHMT as well as its
embedded cofactor. Chemical structures of validated inhibitors of the folate metabolism (c) WR99210 and (d) pyrimethamine.

tetrahydrofolate and glycine; this 𝛼-elimination catalysis is
PLP-dependent, thereby belonging to the subgroup I [91].

The folate metabolism is of particular interest because it
is involved in the pyrimidine biosynthesis which is required
for the DNA synthesis. Since the SHMT is part of the folate
metabolism, its transcription profile is increased in the S-
phase of the DNA replication [92]. Due to the importance
of this enzyme, SHMT is considered as a potential drug
target in cancer research [93, 94]. In this sense, inhibitors
against tumour cells have already been developed, which
are intended to mimic nucleosides in order to be subse-
quently incorporated into the DNA, thereby leading to its
fragmentation [95]. The SHMT of P. falciparum has been
analysed for its functionality by complementation assays
in Escherichia coli [96]. Moreover, activity assays using the
recombinantly expressed Pf SHMT showed that the enzyme
accepts in addition to the natural substrate—unlike its mam-
mal counterpart—D-serine. This lack of stereospecificity
has also been observed for the respective P. vivax enzyme
[97]. Further, the plasmodial enzyme can be also inhibited
competitively by glycine and serine [34].

Since the substrates of SHMT and DHFR are structurally
similar (Figure 4), pyrimethamine, a potent inhibitor of the
plasmodial DHFR, has also been tested on the recombinant
SHMT, however, only with a marginal effect (IC

50
-value in

the midmicromolar range) [35]. The comparison between
the active site of the human enzyme and the plasmodial one
showed a high degree of similarity as illustrated in Figure 4
[98], but, in contrast to themammalian SHMT, which reveals
a homotetrameric structure, the structural conformation
of the plasmodial protein pointed towards a homodimeric
appearance due to the lack of amino acid residues proposed to
be involved in tetramerisation (like the His 135 and a poly-K
sequence within the N-terminal domain) [98].

Despite all the similarities between the human and
the malaria SHMT, the plasmodial enzyme possesses some
peculiarities in the regulation of the folate metabolism such
as binding to its own RNA [35], thus inhibiting protein
translation [99].

Recently, a second open reading frame encoding for a
potential mitochondrial SHMT (PF14 0534, mSHMT) has
been identified in P. falciparum. However, in comparison to
other SHMTs, the active site of the plasmodial mSHMT does
not reveal preserved amino acid residues [35, 100].

6. Druggable PLP-Dependent Enzymes in
the Malaria Vector

Within the life cycle of P. falciparum, the necessity of PLP-
dependent enzymes is not only restricted to the parasite. In
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order to complete its life cycle, sexual forms of the parasite
have to be taken up via the blood meal of the Anopheles
vector to enter the mosquito gut [3]. Subsequently, the
gametogenesis is induced in the mosquito stage by Anopheles
derived triggers [101]. One of these molecules, that has been
described to play a role in this event, is xanthurenic acid
(XA) [101]. XA is generated by a transamination reaction
of 3-hydroxykynurenine (3-HK) which is catalysed by the
PLP-dependent A. gambiae 3-HK transaminase (AgHKT),
an enzyme classified to the subgroup I. This reaction is
necessary to prevent accumulation of the 3-HK, which
can become a toxic molecule if it undergoes spontaneous
oxidation and thereby generates ROS [45, 101]. The three-
dimensional structure of the recombinantAgHKTwas solved
as a homodimer with a PLP molecule located in its active site
[58, 86]. Currently, there are no inhibitors known to target
the AgHKT, although structural information would enable
in silico based drug-design [45]. Selective interference with
the mosquito HKT would prevent the synthesis of XA and
thereby offers the opportunity to block the life cycle of the
malaria parasite in the mosquito stage.

7. Conclusion

Although the mortality of malaria infections is declining, the
disease, of which malaria tropica (caused by P. falciparum)
is the most fatal form, belongs still to the most important
infectious disease to man. Due to the increasing level of
resistance against the current chemotherapeutics, there is
an urgent need to discover novel drugs which should have
the ability to selectively interfere with the proliferation of
this human pathogen. In this sense, the unique plasmodial
cofactor metabolism becomes an attractive drug target due
to the variety of cofactor-dependent enzymes. In particu-
lar, PLP-dependent enzymes are widely distributed in the
metabolism of P. falciparum and responsible for plenty of
essential catalyses such as the reactions carried out by the
ODC, AspAT, or SHMT as outlined in this minireview.
Hence, drug discovery towards inhibition of cofactor-binding
would not only target single enzymes; moreover, the entire
family of PLP-dependent proteins would be affected. This
would certainly lead to the death of the parasite. However, the
respective PLP-dependent host enzymes have to be taken into
account. Therefore, the selective impairment of the malaria
specific vitamin B6 biosynthesis should be considered.
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