
Citation: Offor, B.C.; Mhlongo, M.I.;

Steenkamp, P.A.; Dubery, I.A.;

Piater, L.A. Untargeted Metabolomics

Profiling of Arabidopsis WT, lbr-2-2

and bak1-4 Mutants Following

Treatment with Two LPS

Chemotypes. Metabolites 2022, 12, 379.

https://doi.org/10.3390/

metabo12050379

Academic Editors: Gilles Comte

and Young Hae Choi

Received: 29 March 2022

Accepted: 19 April 2022

Published: 22 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Untargeted Metabolomics Profiling of Arabidopsis WT, lbr-2-2
and bak1-4 Mutants Following Treatment with Two
LPS Chemotypes
Benedict C. Offor , Msizi I. Mhlongo, Paul A. Steenkamp , Ian A. Dubery and Lizelle A. Piater *

Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa;
benedictoffor@gmail.com (B.C.O.); mmhlongo@uj.ac.za (M.I.M.); psteenkamp@uj.ac.za (P.A.S.);
idubery@uj.ac.za (I.A.D.)
* Correspondence: lpiater@uj.ac.za; Tel.: +27-11-559-2403

Abstract: Plants perceive pathogenic threats from the environment that have evaded preformed
barriers through pattern recognition receptors (PRRs) that recognise microbe-associated molecular
patterns (MAMPs). The perception of and triggered defence to lipopolysaccharides (LPSs) as a MAMP
is well-studied in mammals, but little is known in plants, including the PRR(s). Understanding
LPS-induced secondary metabolites and perturbed metabolic pathways in Arabidopsis will be key
to generating disease-resistant plants and improving global plant crop yield. Recently, Arabidopsis
LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI)-related proteins
(LBP/BPI related-1) and (LBP/BPI related-2) were shown to perceive LPS from Pseudomonas aeruginosa
and trigger defence responses. In turn, brassinosteroid insensitive 1 (BRI1)-associated receptor kinase
1 (BAK1) is a well-established co-receptor for several defence-related PRRs in plants. Due to the lack of
knowledge pertaining to LPS perception in plants and given the involvement of the afore-mentioned
proteins in MAMPs recognition, in this study, Arabidopsis wild type (WT) and mutant (lbr2-2 and
bak1-4) plants were pressure-infiltrated with LPSs purified from Pseudomonas syringae pv. tomato
DC3000 (Pst) and Xanthomonas campestris pv. campestris 8004 (Xcc). Metabolites were extracted from
the leaves at four time points over a 24 h period and analysed by UHPLC-MS, generating distinct
metabolite profiles. Data analysed using unsupervised and supervised multivariate data analysis
(MVDA) tools generated results that reflected time- and treatment-related variations after both LPS
chemotypes treatments. Forty-five significant metabolites were putatively annotated and belong to
the following groups: glucosinolates, hydroxycinnamic acid derivatives, flavonoids, lignans, lipids,
oxylipins, arabidopsides and phytohormones, while metabolic pathway analysis (MetPA) showed
enrichment of flavone and flavanol biosynthesis, phenylpropanoid biosynthesis, alpha-linolenic acid
metabolism and glucosinolate biosynthesis. Distinct metabolite accumulations depended on the LPS
chemotype and the genetic background of the lbr2-2 and bak1-4 mutants. This study highlights the
role of LPSs in the reprogramming Arabidopsis metabolism into a defensive state, and the possible
role of LBR and BAK1 proteins in LPSs perception and thus plant defence against pathogenic bacteria.

Keywords: Arabidopsis thaliana; BAK1; untargeted metabolomics; LBR2; LPS; Pseudomonas syringae;
Xanthomonas campestris

1. Introduction

Lipopolysaccharides (LPSs) as microbe-associated molecular patterns (MAMPs) from
Gram-negative bacteria has been shown to trigger innate immune responses in animals and
plants [1,2]. While LPS perception in mammals is well-studied, little is known about the role(s)
of this MAMP and/or its epitopes and defence signalling in plants. In addition, it is yet to be re-
solved if the unknown LPS receptor(s) require co-receptors or accessory proteins. Sanabria et al. [3]
proposed the involvement of a LPS-responsive N. tabacum S-domain receptor-like kinase (RLK)
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(Nt-Sd-RLK) gene encoding conserved B-lectin, S- and Plasminogen/Apple/Nematode (PAN) do-
mains in LPS perception, while Arabidopsis AtLBR-1 and AtLBR-2 have been shown to perceive
LPS and trigger defence responses such as upregulation of the PR1 gene [4]. Using transcriptomics,
Arabidopsis AtLBR-2 was further reported to play a key role in defence responses against
LPSs [5]. Ranf et al. [6] reported that LPSs from Xanthomonas and Pseudomonas were sensed
by the bulb-type (B-type) lectin S-domain (SD)-1 RLK (lipooligosaccharide-specific reduced
elicitation, LORE) and induced a defence response in Arabidopsis. This finding was later
set aside as a consequence of a subsequent result that LORE did not perceive LPS, but
rather bacterial 3-hydroxy fatty acids co-purified with LPS [7].

The plant metabolome is often referred to as the terminal downstream product of
the central dogma of biology and a bridge that links the genotype and phenotype [8].
Metabolomics evaluates small molecules that are synthesised or transformed as a result of
a cellular metabolism [8,9]. As such, this ‘omics’ approach can complement the use of other
‘omics’ technologies since metabolites may not be directly encoded by the genome, and also
changes in the transcriptome or proteome do not always correlate with the phenotypes [10].
Untargeted metabolomics has been used to profile LPS-induced defence-related metabolites
such as glucosinolates, flavonoids, hydroxycinnamic acid (HCA) derivatives and lipids in
Arabidopsis [11,12]. Moreover, Mareya et al. [13] using liquid chromatography coupled to
mass spectrometry (LC-MS), reported defence-related metabolome changes that involved
alterations in the levels of phytohormones and several other metabolites in Sorghum bicolor
cells treated by the LPS from Burkholderia andropogonis.

The current study reports on purified LPSs from Pseudomonas syringae pv. tomato
DC3000 (Pst) (LPSPst) and Xanthomonas campestris pv. campestris 8004 (Xcc) (LPSXcc) as
MAMPs to treat Arabidopsis wild type (WT) and mutants (lbr2-2 and bak1-4) generated
by T-DNA insertional mutagenesis. The two LPS chemotypes differ in the chemical
‘molecular patterns’ of the LPS sub-moieties [11,14–16]. Both LPSs from Pst and Xcc have
intact O-polysaccharides that characterises a smooth LPS which may differ in molecular
structures. In addition, most phytopathogenic bacterial species have been shown to possess
the [α-L-Rha-(1→ 3)-α-L-Rha-(1→ 3)-α-L-Rha-(1→ 2)]n repeating motif that has been
linked to induction of defence responses [17]. The acylation pattern of lipid A moiety con-
tributes to the variability of LPS and affects its endotoxicity [18]. While the lipid A moiety
of LPS from Xcc is hexa-acylated, that of Pst is either penta-/hexa-acylated [16,19,20]. With
regards to the mutant lines, LBP/BPI-related proteins (LBRs) were shown to perceive LPS
from bacterial Pseudomonas aeruginosa and trigger defence responses [4]. In turn, brassi-
nosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) is a well-established
co-receptor for several defence-related PRRs in plants [21–23].

Understanding the LPS-induced metabolites and perturbed metabolic pathways in
Arabidopsis WT and mutants (lbr2-2 and bak1-4) will reveal the role of this MAMP, specifi-
cally pertaining to two chemotypes, as well as LBR and BAK1 proteins in plant defence
against Gram-negative bacterial pathogens. To investigate LPS-induced metabolome
changes in the mutant lines vs. the WT, an untargeted metabolomics approach using
LC-MS was followed and chemometric models were used for the data analyses. The
observed dynamic cellular metabolomic variations due to the different LPS chemotypes
treatments thus contribute to efforts in elucidating molecular and biochemical mechanisms
underlying LPS perception in plants and could be extrapolated to plant: microbe interac-
tions. In addition, the results obtained in this study will contribute to future research in
identifying biomarkers in crops for resistance to diseases, and as such, improve crop yield.

2. Results

LPS has been shown to cause innate immune responses in animals and plants. While
the LPS recognition and defence signalling is well-documented in mammals, little is known
about its role in plants, including a postulated PRR responsible for ligand perception.
In this study, a knockout (KO) of Arabidopsis LBR2 was selected because it has been
shown to recognise LPS from bacterial P. aeruginosa, while BAK1 has been established as an
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essential co-receptor to several known PRRs such as flagellin-sensitive 2 (FLS2), elongation
factor-thermo unstable (EF-Tu) receptor (EFR), etc. As such, an untargeted metabolomics
approach was followed to study the role of different LPS chemotypes from P. syringae (Pst)
and X. campestris (Xcc) in the metabolome dynamism of Arabidopsis WT and mutants
(lbr-2-2 and bak1-4). From here on, LPS from Pst and Xcc are abbreviated as LPSPst and
LPSXcc, respectively, while early LPS treatments represent 0–12 h time points and later
treatments represent 18–24 h.

2.1. Ultra-High Performance Liquid-Chromatography-Mass Spectometry Data Analysis

The hydromethanolic leaf extracts from Arabidopsis WT and mutant (lbr2-2 and
bak1-4) plants treated with LPSPst and LPSXcc were prepared from tissue harvested after
0, 12, 18, and 24 h post-treatments. These samples were analysed using a UHPLC-qTOF-MS
instrument, in both electrospray ionisation (ESI) modes (+/−). The instrument generated
base peak intensity (BPI) MS chromatograms that depicted well-resolved peaks, with time-
and treatment-related peak differences, distributed over 0–30 min, in Arabidopsis WT
and mutant plants treated with both LPS chemotypes. Figure S1 shows representative
WT ESI (−) data. When compared to the controls, these observed treatment- and time-
related peak differences/intensities suggested the underlying Arabidopsis metabolome
changes that may arise from the use of different LPS chemotype treatments (i.e., differences
in response to LPS chemotypes by WT vs. mutant plants).

2.2. Multivariate Data Analysis

To further evaluate the effect of LPSPst and LPSXcc on the metabolomes of Arabidopsis
WT and mutant (lbr2-2 and bak1-4) plants, as observed from the differential chromato-
graphic profiles of the respective leaf extracts, and to extract valuable biological infor-
mation from the multidimensional data, chemometric and multivariate data analysis
(MVDA) tools were used. The data was processed using MarkerlynxXSTM and exported to
‘Soft independent modelling of class analogy’ (SIMCA) software for principal component
analysis (PCA), hierarchical clustering analysis (HiCA), orthogonal projection to latent
structures discriminant analysis (OPLS-DA) and OPLS-DA loading S-plots modelling. The
unsupervised PCA modelling is vital for the analysis of multivariate data due to its ability
to reduce the dimensionality of data, and reveal natural groupings and trends within and
between the data sets [24]. The PCA models were validated using the cumulative modelled
variation that explains the variation (R2) and the models’ predictive ability (Q2). In addition,
HiCA dendrograms were used to support treatment-related sample grouping observed
in PCA models. Here, PCA scores plots and HiCA dendrograms revealed time-related
grouping of samples treated with LPSPst and LPSXcc in the Arabidopsis WT, lbr2-2 and
bak1-4 plants. Representative WT ESI (−) data is shown in Figure S2. The differential
PCA and HiCA dendrograms sample clustering in WT and mutants supported evidence
of metabolic reprogramming of the Arabidopsis metabolome subsequent to different LPS
chemotype treatments.

To evaluate the cause of sample grouping observed in PCA, supervised modelling
such as OPLS-DA score plots were subsequently used. Additionally, OPLS-DA loading
S-plots were included to highlight and extract LPS-induced metabolite ‘features’ (ions with
a specific Rt and m/z), contributing to the group separation observed in OPLS-DA score
plots [25]. For example, the Arabidopsis WT OPLS-DA models showed clear separation of
control vs. 0, 12, 18 or 24 h treated with LPSPst (Figure 1A–D for ESI (−) and Figure S3A–D
for ESI (+)), as well as the LPSXcc (Figure 2A–D for ESI (−) and Figure S4A–D for ESI (+)).
These models were validated, and an example of receiver operator characteristic (ROC)
plots of control vs. 0, 12, 18, and 24 h post-LPSPst-treated Arabidopsis WT are shown in
Figure S5. ROC plots summarised the performance of OPLS-DA as an excellent binary
classifier with 100% sensitivity and 100% specificity. Overall, differential separations
observed in OPLS-DA models, when comparing control vs. treated samples in both WT
and mutants (lbr2-2 and bak1-4), can be linked to changes in the metabolome that may
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arise from different LPS chemotype treatments. Subsequently, the LPS-induced significant
variables of OPLS-DA loading S-plots that contributed to the observed class discrimination
in both WT and mutants were annotated and putatively identified.
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presented as Figure S3. 

Figure 1. Orthogonal projection to latent structures discriminant analysis (OPLS-DA) modelling of
Arabidopsis WT leaf extracts (ESI (−) data). (A–D) (i) represent OPLS-DA score plots showing clear
separation between control vs. LPSPst treatment after 0, 12, 18, and 24 h, respectively. (A–D) (ii) rep-
resent OPLS-DA loading S-plots showing the discriminant features (ions) responsible for the sample
grouping observed in (A–D) (i). The OPLS-DA model parameters were: (A) R2X = 46.2%/Q2 = 97.4%,
(B) R2X = 53.6%/Q2 = 98.3%, (C) R2X = 60.9%/Q2 = 98.9%, (D) R2X = 64.2%/Q2 = 98.9%, respec-
tively. The variables in the top right quadrants of the S-plots correlated positively to the treatment.
Selected discriminant ions for downstream metabolite identifications were based of a correlation
[p(corr)] of ≥ 0.5 and covariance of (p1) ≥ 0.05. The equivalent set of figures for the ESI (+) mode is
presented as Figure S3.

2.3. Metabolite Annotation and Functional Classification

Forty-five statistically significant LPS-induced metabolites were annotated and puta-
tively identified according to level 2 of the Metabolomic Standard Initiative (MSI) [26], and
listed (Table 1 and Table S1) for the metabolites and their respective diagnostic fragmenta-
tion patterns, as well as KEGG IDs. The identified metabolites were grouped according
to their functional categories: glucosinolates, benzoic- and HCA derivatives, flavonoids,
lignans, lipids, oxylipins, arabidopsides, phytohormones, and other metabolite classes
(Table 1; Figure 3). Combined, LPSPst induced accumulation of 35, 27 and 30 significant
metabolites in WT, lbr2-2 and bak1-4, respectively, whereas LPSXcc triggered the accumula-
tion of 32, 23 and 29 significant metabolites in WT, lbr2-2 and bak1-4, respectively. These
metabolites were either shared amongst the plants (common) or differentially detected
in the WT, lbr2-2 or bak1-4 (Table 1). Similarly, all the metabolite classes identified from
LPSPst- or LPSXcc-treated Arabidopsis WT, lbr2-2 or bak1-4 were presented as percentages
using pie charts (Figure 3). For instance, with both LPSPst and LPSXcc, the glucosino-
late metabolite 8-(methylsulphinyl)octyl cyanide (8-MeSO-octyl-CN) [#1] was present
as a discriminatory ion in WT and bak1-4, but not in lbr2-2 plants. On the other hand,
8-(methylsulphinyl)octyl isothiocyanate (hirsutin) [#2] was absent in bak1-4, but was iden-
tified in WT and lbr2-2 under both treatments. Of the plants under investigation, it was
only in bak1-4 treated with LPSPst that 7-methylsulphinylheptyl isothiocyanate [#3] and
8-(methylsulphinyl)octylamine (8-MeSO-octyl-NH2) [#4] were not identified. Notably, the
remaining significantly identified glucosinolates such as 4-methylthiobutyl glucosinolate
(glucoerucin) [#5] (only in LPSXcc), 3-indolylmethyl glucosinolate (glucobrassicin) [#6]
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(only in LPSXcc) and 8-methylsulfinyloctyl glucosinolate (glucohirsutin) [#7] (in both LPS
chemotypes treatment) were only detected in WT, but not in the two mutant lines. Overall,
in WT, lbr2-2 and bak1-4 treated by LPSPst, the percentage of glucosinolates identified were
14, 11 and 3%, respectively (Figure 3A–C). In comparison, 22, 13 and 10% of glucosinolates
were detected when the different plants were treated with LPSXcc (Figure 3D–F). Moreover,
the percentage of glucosinolates were dominant in WT treated with both LPS chemotypes
followed by lbr2-2 and bak1-4, respectively.
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Figure 2. OPLS-DA modelling of Arabidopsis WT leaf extracts, (ESI (−) data). (A–D) (i) represent
OPLS-DA score plots showing clear separation between control vs. LPSXcc treatment after 0, 12, 18,
and 24 h, respectively. (A–D) (ii) represent OPLS-DA loading S-plots showing the discriminant fea-
tures (ions) responsible for the sample grouping observed in (A–D) (i). The OPLS-DA model parame-
ters were: (A) R2X = 57.8%/Q2 = 99.3%, (B) R2X = 48.9%/Q2 = 99.0%, (C) R2X = 64.0%/Q2 = 99.3%,
(D) R2X = 45.5%/Q2 = 98.5%, respectively. The variables in the top right quadrants of the S-plots
correlated positively to the treatment. Selected discriminant ions for downstream metabolite identifi-
cations were based on a correlation [p(corr)] of ≥ 0.5 and covariance of (p1) ≥ 0.05. The equivalent
set of figures for the ESI (+) mode is presented as Figure S4.

Hydroxycinnamic acid-derivatives such as 6,7-dimethoxycoumarin (scoparone) [#8],
sinapic acid [#9] and sinapoyl malate [#10] were identified in the Arabidopsis WT, lbr2-2 and
bak1-4 for both LPS chemotypes treatments, while 1-O-sinapoyl-beta-D-glucose [#13] was
detected in the WT and bak1-4 (both chemotypes), but not in lbr2-2. Furthermore, benzoic
acid derivatives such as 2,5-dihydroxybenzoic acid pentoside isomer I [#11] accumulated in
WT, lbr2-2 and bak1-4 (for both chemotypes), whereas 2,5-dihydroxybenzoic acid pentoside
isomer II [#12] was detected in bak1-4 only for both LPS chemotypes treatments. The
percentage of benzoic- and HCA derivatives identified in WT, lbr2-2 and bak1-4 after LPSPst
treatment were 14, 15 and 21%, respectively, while 16, 17 and 21% of the same group of
metabolites were detected after LPSXcc treatment (Figure 3). Overall, the percentage of
LPS-induced benzoic- and HCA derivatives was lowest in the WT, followed by lbr2-2 and
bak1-4, respectively.
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Table 1. Putatively annotated discriminatory metabolites, extracted from the OPLS-DA S-plots, for the Arabidopsis WT, lbr2-2 and bak1-4 leaves treated with LPSPst

and LPSXcc chemotypes, and analysed in both ESI (+/−) MS modes. Metabolites that accumulated due to the specific LPS chemotype treatment after 0, 12, 18, and
24 h in WT, lbr2-2 and bak1-4, respectively, are listed. Early and later time point LPS treatments are represented as 0–12 h and 18–24 h, respectively. Metabolites are
coloured based for the plants they were identified in (only WT: green; WT and lbr2-2: pink; WT and bak1-4: yellow; only mutants: blue; all three lines: grey, and with
a lighter shade for only one chemotype).

# Annotated
Metabolites m/z Rt (min) Adducts Molecular

Formula

WT (h) lbr2-2 (h) bak1-4 (h)

Pst Xcc Pst Xcc Pst Xcc

Glucosinolates

1
8-(Methylsulphinyl)octyl

cyanide
(8-MeSO-octyl-CN)

202.126 13.45 [M + H]+ C10H19NOS 12, 18, 24 0, 12, 18, 24 24 12, 18,

2 8-(Methylsulphinyl)octyl
isothiocyanate (Hirsutin) 234.096 18.48 [M + H]+ C10H19NOS2 0, 12, 18, 24 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24

3 7-Methylsulphinylheptyl
isothiocyanate 220.080 17.13 [M + H]+ C9H17NOS2 12, 18, 24 0, 12 12 12, 24 12

4
8-

(Methylsulphinyl)octylamine
(8-MeSO-octyl-NH2)

192.141 2.41 [M + H]+ C9H21NOS 0, 12, 18, 24 0, 12, 18 12, 24 24 0, 12

5
4-Methylthiobutyl

glucosinolate
(Glucoerucin)

420.044 2.38 [ M−H ]− C12H23NO9S3 12, 24

6
3-Indolylmethyl

glucosinolate
(Glucobrassicin)

447.052 2.80 [ M−H ]− C16H19N2O9S2 24

7
8-Methylsulphinyloctyl

glucosinolate
(Glucohirsutin)

492.104 4.79 [ M−H ]− C16H31NO10S3 12 24

Benzoic Acid and Hydroxycinnamic Acid Derivatives

8 6,7-Dimethoxycoumarin
(scoparone) 207.066 11.50 [M + H]+ C11H10O4 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 18, 24

9 Sinapic acid 223.059 11.49 [ M−H ]− C11H12O5 0, 12, 18, 24 0, 12, 18 0, 12, 18, 24 0, 12, 18, 24 0, 18 18
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Table 1. Cont.

# Annotated
Metabolites m/z Rt (min) Adducts Molecular

Formula

WT (h) lbr2-2 (h) bak1-4 (h)

Pst Xcc Pst Xcc Pst Xcc

10 Sinapoyl malate 339.071 11.49 [ M−H ]− C15H16O9 0, 18, 24 0, 12, 18 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 18, 24

11 2,5-Dihydroxybenzoic
acid pentoside isomer I 285.059 3.24 [ M−H ]− C12H14O8 0, 12, 18 18 0, 12, 18, 24 0, 12, 18, 24 12, 24 18, 24

12 2,5-Dihydroxybenzoic
acid pentoside isomer II 285.060 4.53 [ M−H ]− C12H14O8 0, 12 0, 12

13 1-O-Sinapoyl-beta-D-
glucose 385.111 7.20 [ M−H ]− C17H22O10 0 0, 12, 24 18 18

Flavonoids

14 Afzelin (Kaempferol-3-
rhamnoside) 433.108 12.71 [M + H]+ C21H20O10 24

15
Robinin (Kaempferol-3-O-

robinoside-7-O-
rhamnoside

739.211 10.11 [ M−H ]− C33H40O19 24 0

16
Kaempferitrin
(Kaempferol

3,7-dirhamnoside)
577.156 12.69 [ M−H ]− C27H30O14 24 12 24

17
Kaempferol

3-O-rhamnoside-7-O-
glucoside

593.149 11.72 [ M−H ]− C27H30O15 24 24

18 2’,4’,4-Trihydroxy-3’-
prenylchalcone 323.133 4.04 [ M−H ]− C20H20O4 18 18

Lignans *

19 G(8-O-4)G hexoside 537.196 5.30 [ M−H ]− C26H34O12 24 18

20 Lariciresinol hexoside 521.201 11.72 [ M−H ]− C26H34O11 0, 12, 18, 24 0, 12, 18 0, 12

21 G(8–5)FA malate 487.128 14.55 [ M−H ]− C24H24O11 0 0, 18, 24

Lipids, Oxylipins and Arabidopsides

22 Methyl 8-hydroxy-11E,17-
Octadecadien-9-ynoate 307.223 23.55 [M + H]+ C19H30O3 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 12, 18, 24 0, 12, 18, 24
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Table 1. Cont.

# Annotated
Metabolites m/z Rt (min) Adducts Molecular

Formula

WT (h) lbr2-2 (h) bak1-4 (h)

Pst Xcc Pst Xcc Pst Xcc

23
9,12,13-Trihydroxy-10,15-

octadecadienoic
acid

327.216 17.10 [ M−H ]− C18H32O5 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 12, 18, 24 0, 12, 18, 24

24

9,12,13-
Trihydroxyoctadec-10-

enoic acid (9, 12,
13-TriHOME)

329.232 17.75 [ M−H ]− C18H34O5 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 18, 24 18, 24

25
13S-Hydroperoxy-9Z, 11E,
15Z octadecatrienoic acid

(13(S)-HPOTrE)
309.206 20.76 [ M−H ]− C18H30O4 18, 24 0, 12, 18, 24 0, 18 0, 24 0 12, 18, 24

26
7S,8S-Dihydroxy-9Z,12Z-

octadecadienoic acid
(7S,8S-DiHODE)

311.221 20.34 [ M−H ]− C18H32O4 12, 18, 24 0, 12, 18, 24 0, 18, 24 0, 12, 18, 24 24 24

27 Methyl 9,12-dihydroxy-13-
oxo-10-octadecenoate 341.231 18.73 [ M−H ]− C19H34O5 18 18

28

3’-O-Linolenoylglyceryl
6-O-galactopyranosyl-

galactopyranoside isomer
I

721.366 20.96 [ M−H +
FA]− C33H56O14 0, 12

29

3’-O-Linolenoylglyceryl
6-O-galactopyranosyl-

galactopyranoside isomer
II

721.365 21.21 [ M−H +
FA]− C33H56O14 0, 18 12, 18 0,12 0

30 Arabidopside A 775.463 23.10 [M + H]+ C43H66O12 0, 12, 18, 24 12, 18, 24

31 Arabidopside D 1,009.500 22.85 [ M−H +
FA]− C51H80O17 0, 12 12 0, 12

32 12-Oxo-phytodienoic
Acid (12-OPDA) 291.198 21.26 [ M−H ]− C18 H28O3 18, 24 0, 12, 18, 24 0, 18, 24 0, 12, 18, 24 18, 24 12, 18, 24
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Table 1. Cont.

# Annotated
Metabolites m/z Rt (min) Adducts Molecular

Formula

WT (h) lbr2-2 (h) bak1-4 (h)

Pst Xcc Pst Xcc Pst Xcc

33
Dinor-12-oxo

phytodienoic acid
(dinor-OPDA)

263.163 19.50 [ M−H ]− C16H24O3 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 12, 18, 24 0, 12, 18, 24

34

Sn2-O-
(dinoroxophytodienoyl)-

monogalactosyl
monogylceride

545.261 16.84 [ M−H +
FA]− C25H40O10 0, 12 0 0 0, 12 12

35

Sn2-O-
(dinoroxophytodienoyl)-

digalactosyl isomer
I

707.317 15.96 [ M−H +
FA]− C31H50O15 18, 24 0, 18 12 12, 24

36

Sn2-O-
(dinoroxophytodienoyl)-

digalactosyl isomer
II

707.312 16.31 [ M−H +
FA]− C31H50O15 0, 18, 24 18, 24 18 24

37

Sn1-O-(12-
oxophytodienoyl)-

digalactosyl
monoglyceride isomer I

735.351 17.64 [ M−H +
FA]− C33H54O15 0, 12, 18 0, 12, 18, 24 0, 12 0, 12, 18 0, 12, 24

38

Sn1-O-(12-
oxophytodienoyl)-

digalactosyl
monoglyceride isomer II

735.351 17.96 [ M−H +
FA]− C33H54O15 0, 24 12, 18 12, 24

Phytohormones

39 Abscisic acid 265.177 19.51 [M + H]+ C15H20O4 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 18, 24 12, 18, 24

40 Salicylic acid
2-O-beta-D-glucoside 299.075 4.10 [ M−H ]− C13H16O8 12 0, 12

Others

41 L-Threonine 120.080 1.88 [M + H]+ C4H9NO3 12, 18 0, 12 12, 18, 24 0, 12, 18, 24

42 Citric acid 191.016 1.05 [ M−H ]− C6H8O7 12, 18 18 12, 18, 24 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24
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Table 1. Cont.

# Annotated
Metabolites m/z Rt (min) Adducts Molecular

Formula

WT (h) lbr2-2 (h) bak1-4 (h)

Pst Xcc Pst Xcc Pst Xcc

43 Adenosine 268.104 1.17 [M + H]+ C10H13N5O4 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24 0, 12, 18, 24

44 Corchoionoside C 431.189 8.54 [ M−H +
FA]− C19H30O8 0, 12, 18 0, 12 0, 18 0, 18, 24 12, 18 0, 12

45 Sulforaphane-glutathione 485.116 2.86 [M + H]+ C16H28N4O7S3 0, 12, 18, 24 12, 18, 24

* Shorthand naming of lignans nomenclature, as introduced by Morreel et al. [27].
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LOA = lipids, oxylipins and arabidopsides.

Interestingly, flavonoids were not identified as discriminant markers in the lbr2-2
mutant plants after treatment with both LPSPst and LPSXcc (Table 1; Figure 3). LPSPst-treated
WT and bak1-4 had 14 and 7% flavonoids, whereas under LPSXcc treatment the percentages
were 6 and 4%, respectively (Figure 3). Most of the identified flavonoids are afzelin
(kaempferol-3-rhamnoside) [#14], robinin (kaempferol-3-O-robinoside-7-O-rhamnoside
[#15], kaempferitrin (kaempferol 3,7-dirhamnoside) [#16], kaempferol 3-O-rhamnoside-7-O-
glucoside [#17] and 2’,4’,4-trihydroxy-3’-prenylchalcone [#18]. In all, WT accumulated the
highest percentage of flavonoids, followed by bak1-4, but none in lbr2-2 post-LPS treatments.
Afzelin and robinin were identified at 24 h LPSPst-treated WT. Kaempferitrin accumulated
in WT treated with both LPS chemotypes, and also in the LPSPst-treated bak1-4 at 24 h.
Additionally, kaempferol 3-O-rhamnoside-7-O-glucoside was detected only at 24 h in WT
treated with both chemotypes, while 2’,4’,4-trihydroxy-3’-prenylchalcone accumulated in
WT and bak1-4 treated with LPSPst at 18 h. In summary, flavonoids identified in this study
were mostly induced by the LPSPst, and mainly in the WT.

None of the identified lignans was observed in LPSXcc-treated lbr2-2, with 3% each
in WT and bak1-4 (Table 1; Figure 3A–C), while the percentage of lignans identified in
WT, lbr2-2 and bak1-4 treated with LPSPst were 6, 4 and 7%, respectively (Figure 3D–F).
G(8-O-4)G hexoside [#19] was only detected in WT treated with LPSXcc at 24 h, as well as in
LPSPst-treated bak1-4 at 18 h. Lariciresinol hexoside [#20] was detected in LPSPst-treated WT
and also in bak1-4 treated with both LPS chemotypes (Table 1). Another lignan, G(8–5)FA
malate [#21], was not identified in lbr2-2 and bak1-4, but was accumulated in LPSPst-treated
WT (Table 1).

The “lipids, oxylipins and arabidopsides” (LOA) class of metabolites were abundantly
identified in WT, lbr2-2 and bak1-4, with few in absence (Table 1). For example, the follow-
ing metabolites were present in all plants: methyl 8-hydroxy-11E,17-octadecadien-9-ynoate
[#22], 9,12,13-trihydroxy-10,15-octadecadienoic acid [#23], 9,12,13-trihydroxyoctadec-10-enoic acid
(9, 12, 13-TriHOME) [#24], 13S-hydroperoxy-9Z, 11E, 15Z octadecatrienoic acid (13(S)-HPOTrE)
[#25] (for both chemotypes, but not in LPSPst-treated bak1-4), 7S,8S-dihydroxy-9Z,12Z-
octadecadienoic acid (7S,8S-DiHODE) [#26], 12-oxo-phytodienoic acid (12-OPDA) [#32],
and dinor-12-oxo phytodienoic acid (dinor-OPDA) [#33]. On the other hand, methyl
9,12-dihydroxy-13-oxo-10-octadecenoate [#27] was absent in both mutants under both
LPS chemotype treatments but was present in WT at 18 h for both chemotypes, while
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3′-O-linolenoylglyceryl 6-O-galactopyranosyl-galactopyranoside isomer I [#28] was only
detected in bak1-4 after LPSPst treatment. Arabidopside A [#30] was not identified in
either of the mutants, but only in WT for both chemotypes, whereas Arabidopside D
[#31] was only identified in WT and lbr2-2 treated by LPSPst, but not in bak1-4. Sn2-O-
(dinoroxophytodienoyl)-digalactosyl isomer II [#36] was detected in both mutants (both
chemotypes) but not in WT, while Sn2-O-(dinoroxophytodienoyl)-digalactosyl isomer I
[#35] was absent in WT treated with LPSPst, as well as LPSXcc-treated lbr2-2, but present in
bak1-4 for both chemotype treatments. Metabolites from Arabidopsis WT, lbr2-2 and bak1-4
treated with LPSPst were dominated by the group “lipids, oxylipin and arabidopsides”,
with the percentage of 40, 48 and 41%, respectively (Figure 3A–C). A similar trend was
observed when LPSXcc was used to treat WT, lbr2-2 and bak1-4, with the said metabolites
group documented as 41, 44 and 41%, respectively (Figure 3D–F). Overall, lbr2-2 treated
with LPSPst and LPSXcc resulted in the highest number of LOA metabolites compared to
the WT and bak1-4.

The phytohormone abscisic acid [#39] was present as a discriminatory marker in both
LPSPst- and LPSXcc-treated WT, lbr2-2 and bak1-4, while salicylic acid 2-O-beta-D-glucoside
[#40] was detected only in bak1-4 treated with both LPS chemotypes (Table 1). Amongst “other”
identified metabolites, L-threonine [#41] was identified in both LPSPst- and LPSXcc-treated
mutants, but not in the WT, while sulforaphane-glutathione [#45] was identified only in
lbr2-2 treated with both LPS chemotypes. The remaining other metabolites [#42, 43, 44]
were identified in all the plants and both LPS treatments.

Furthermore, Venn diagrams were constructed to visualise the number of LPS-induced
metabolites that overlapped or were unique for Arabidopsis WT, lbr2-2 and bak1-4 (Figure 4).
LPSPst induced seven unique metabolites in the WT compared to one and four observed in
lbr2-2 and bak1-4, respectively (Figure 4A). For the LPSXcc-treated plants, nine, two, and four
metabolites were unique in the WT, lbr2-2 and bak1-4, respectively (Figure 4B). Eighteen
and seventeen metabolites were overlapped in LPSPst- and LPSXcc-treated WT, lbr2-2 and
bak1-4, respectively. Arabidopsis WT and bak1-4 shared five metabolites in both LPSPst
and LPSXcc treatments. Similarly, three metabolites were overlapped between lb2-2 and
bak1-4 in both LPSPst and LPSXcc treatments. Five metabolites were overlapped between
WT and lb2-2 after LPSPst treatment, as compared to one metabolite shared between them
after LPSXcc treatment.

From the classes of identified annotated metabolites, it is evident that the metabolomes
of the Arabidopsis WT and mutants (lbr2-2 and bak1-4) were reprogrammed to a defence
state upon LPS treatments. Furthermore, the presence and absence of certain metabolites
as observed in the WT and mutants suggest that they responded differently to the two LPS
chemotype treatments as a consequence of the functional LBR2 and BAK1 proteins in WT,
but not in the respective mutants.

2.4. Metabolite Heat Map Visualization and Analysis

Significant metabolites from LPS-induced Arabidopsis WT, lbr2-2 and bak1-4 were
submitted to the colour-coded heat map module in the MetaboAnalyst web-based tool, to
visualise and analyse the time course of relative intensities across control, 0, 12, 18, and
24 h. Notably, the heat maps display the relative intensities of the annotated metabolites
across all time points. In the constructed heat maps (Figure S6 for ESI (+) data and Figure 5
for ESI (−) data), the rows represent the group of the identified metabolites, while the
columns represent Arabidopsis plants with their respective LPS chemotype time-related
treatments. The colour gradient of dark blue indicates the lowest concentration (relative
peak intensity), while deep red indicates the highest concentration. In this study, the
annotated metabolites showed a variation of metabolite accumulation as displayed by
the average relative intensities (blue and red colour gradient). For the ESI (+) data, high
intensities were observed within the lbr2-2 (toward the middle and lower sections for both
LPS chemotypes), followed by the bak1-4 (towards the left for LPSPst and towards the right
for LPSXcc), and finally to the WT (right side of the heat map). The metabolites on the top
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half of WT showed higher intensity (mainly glucosinolates) than the bottom, while in the
lbr2-2, the bottom half (mainly the LOA and other metabolites) were more intense than
the top half (and clearly so compared to the WT), whereas in the bak1-4, intensities were
relatively equal in the top and bottom half (Figure S6). Metabolites identified from WT
treated with LPSPst appeared to have late increases in intensities compared to the plants
treated with LPSXcc that displayed early intensity increases (Figure S6). A similar pattern
was observed in the lbr2-2 and bak1-4 plants, but with higher increased intensities. For
the ESI (−) data, similar trends were observed where metabolites on the top half (mainly
glucosinolates, benzoic acid and HCA derivatives and flavonoids) of WT had higher
intensities than the bottom half. In lbr2-2, the bottom half (mainly the LOA, phytohormones
and other metabolites) was higher in intensity than the top half, and notably so compared
to the WT. Finally, in the bak1-4, relatively similar intensities were observed on the top and
bottom half of the heat map (Figure 5).
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Overall, the observed variation in intensity from the heat map analysis further re-
vealed the differential changes in the metabolome of the Arabidopsis WT and mutants
(lbr2-2 and bak1-4) after different LPS chemotype treatments. More so, increased in-
tensities observed in the LPS-treated mutants, especially the LOA metabolites group
of lbr2-2, indicate an inducible response to the LPS chemotypes. The nature of these
metabolomic responses seems different when compared to that of the WT as reflected
by the greater peak intensities of defense-associated metabolites. This might suggest the
presence of other LPS-interacting proteins/co-receptors other than LBR2/BAK1, or possi-
bly the participation/complementation by close homologues such as LBP/BPI related-1
(LBR1)/BAK1-like 1 (BKK1).
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as in Table 1. Abbreviations: GLS = glucosinolates; BHCAs = benzoic- and hydroxycinnamic acid
derivatives; FL = flavonoids; LOA = lipids, oxylipins and arabidopsides; PhH = phytohormones.

2.5. Pathway Mapping and Quantification

To elucidate various pathways associated with the identified LPS-induced metabolites
in WT, lbr2-2 and bak1-4 mutants, the Metabolomic Pathway Analysis (MetPA) tool, a com-
ponent of the MetaboAnalyst suite, was used. Notably, MetPA mapped only metabolites
with KEGG IDs and graphically presented the data as the metabolome view and a table
that contains all the altered/perturbed pathways (Figure 6A–C; Tables S2–S4).

In WT, lbr2-2 and bak1-4 treated with LPSPst and LPSXcc, alpha-linolenic acid metabolism
(#1) was the most significantly altered pathway followed by the phenylpropanoid biosynthe-
sis (#2). The flavone and flavanol biosynthesis pathway (#3) and glucosinolate biosynthesis
(#4) were affected/induced in the LPS-treated WT, not in the lbr2-2 and bak1-4 mutants. The
rest of the enriched pathways perturbed by LPS in both Arabidopsis WT and mutants are
listed in Tables S2–S4. More so, the bar graphs (Figures S7–S10) display the relative intensi-
ties of the mapped metabolites (and some unmapped metabolites) of affected pathways
across all time points. These results, as elaborated below, suggest that Arabidopsis uses
different pathways to reprogramme its metabolome into a defensive state when challenged
by LPS MAMPs. The relative quantification of the average intensities of metabolites from
the selected four pathways: alpha-linolenic acid metabolism (#1), phenylpropanoid biosyn-
thesis (#2), flavone and flavanol biosynthesis pathway (#3), glucosinolate biosynthesis (#4),
are shown (Figures S7–S10).



Metabolites 2022, 12, 379 15 of 27

Metabolites 2022, 12, x FOR PEER REVIEW 13 of 26 
 

 

Figure 5. Heatmap presentation of significant annotated metabolites in ESI (–) mode. The LPSPst– 
and LPSXcc-induced annotated metabolites data of WT, lbr2-2 and bak1-4 were submitted to Metabo-
Analyst and the relative intensities showing the extent of metabolites accumulation. The rows rep-
resent the group of the identified metabolites (numbered as in Table 1), while the columns represent 
Arabidopsis plants with their respective LPS chemotype time-related treatments. The colour gradi-
ent of dark blue indicates lowest intensity, while deep red indicates highest intensity. Metabolites 
are numbered as in Table 1. Abbreviations: GLS = glucosinolates; BHCAs = benzoic- and hy-
droxycinnamic acid derivatives; FL = flavonoids; LOA = lipids, oxylipins and arabidopsides; PhH = 
phytohormones. 

2.5. Pathway Mapping and Quantification 
To elucidate various pathways associated with the identified LPS-induced metabo-

lites in WT, lbr2-2 and bak1-4 mutants, the Metabolomic Pathway Analysis (MetPA) tool, 
a component of the MetaboAnalyst suite, was used. Notably, MetPA mapped only me-
tabolites with KEGG IDs and graphically presented the data as the metabolome view and 
a table that contains all the altered/perturbed pathways (Figure 6A–C; Tables S2–S4). 

 
Figure 6. Metabolome view of metabolic pathways (MetPA) mapped from identified metabolites. 
Metabolite KEGG IDs from both LPS chemotype-treated WT, lbr2-2 or bak1-4 were mapped to path-
ways as displayed. (A–C) represents the metabolome view for the WT, lbr2-2 and bak1-4, respec-
tively. The graphs were arranged such that the p-values from the pathway analysis are on the y-axis 

Figure 6. Metabolome view of metabolic pathways (MetPA) mapped from identified metabolites.
Metabolite KEGG IDs from both LPS chemotype-treated WT, lbr2-2 or bak1-4 were mapped to path-
ways as displayed. (A–C) represents the metabolome view for the WT, lbr2-2 and bak1-4, respectively.
The graphs were arranged such that the p-values from the pathway analysis are on the y-axis and
the impact values from the pathway topology analysis on the x-axis. The colour gradient of the
circles (pathways) from light yellow to dark red indicates lower to higher significance, respectively.
Pathways are numbered #1: Alpha-linolenic acid metabolism, #2: Phenylpropanoid biosynthesis, #3:
Flavone and flavanol biosynthesis and #4: Glucosinolate biosynthesis. Notably, pathways #3 and #4
were not mapped in the lbr2-2 and bak1-4 mutants.

Figure S7A,B show the alpha-linolenic acid metabolism mapped metabolites,
13S(S)-HPOTrE and 12-OPDA with the relative intensities. The 13S(S)-HPOTrE had in-
creased intensity in the WT treated with LPSPst and LPSXcc. There were increased intensities
of 13S(S)-HPOTrE in lbr2-2 with reduced intensities at 12 h LPSPst treatment (Figure S7A).
The 13S(S)-HPOTrE in bak1-4 decreased in intensity after 0 h, but picked up at 24 h when
treated by LPSPst. On the other hand, when treated with LPSXcc, there was a steady increase
in intensity from 12 to 24 h. In all, there was an overall greater intensity of 13S(S)-HPOTrE
in WT than in the mutants, when comparing the control vs. treatments. For 12-OPDA iden-
tified in WT, there was an increase in intensities across treatments with LPSPst and LPSXcc,
with the highest intensities observed at 24 and 18 h, respectively (Figure S7B). In lbr2-2,
there was an increase in 12-OPDA intensities at 18 to 24 h after treatment by LPSPst. On the
other hand, the LPSXcc treatment showed a steady increase in intensities of 12-OPDA at
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early and late time points. The 12-OPDA in bak1-4 plants showed mainly late accumulation
in both LPSPst and LPSXcc treatments. Overall, 12-OPDA identified in lbr2-2 appeared to
have the highest intensities followed by WT and bak1-4, across all treatments. The second
altered pathway was phenylpropanoid biosynthesis with the analysed intensities of the
two mapped metabolites (sinapic acid and sinapoyl malate) (Figure S8A,B). The intensity
of another identified phenylpropanoid metabolite sinapoyl 1-O-sinapoyl-beta-D-glucose
that was not mapped by MetPA was included in the analysis (Figure S8C). Figure S8A
shows that the relative intensities of sinapic acid identified from WT after LPSPst treatment
increased exponentially, but decreased when treated with LPSXcc. A similar trend was
observed in lbr2-2 plants but with reduced relative intensities. The relative intensities of
metabolites from bak1-4 after LPS treatment appeared to have similar intensities across
the time points (Figure S8A). For sinapoyl malate (Figure S8B), there was an increase in
intensity in both early and late responses after LPSPst treatment, but a reduced late response
at 24 h LPSXcc treatment. In lbr2-2, sinapoyl malate had both early and late increased
intensities with a slight reduction when treated with LPSXcc at 12 h. Sinapoyl malate from
bak1-4 also had both early and late increased intensities with a slight reduction when treated
with LPSXcc at 12 h.

For 1-O-sinapoyl-beta-D-glucose (Figure S8C), the overall intensities of the WT and
mutant plants decreased significantly (over 10-fold) when compared to those of the sinapic
acid and sinapoyl malate. The WT treated with LPSPst had an early increase but reduced
significantly after 12 h to 24 h. This was not the case for the LPSXcc-treated WT that only
had reduced intensity at 18 h. The 1-O-sinapoyl-beta-D-glucose accumulated in lbr2-2 had
increased intensities across all time points after LPSPst treatment, but in 12 h and 18 h after
in LPSXcc treatments. For the bak1-4, there was an increase of intensity at 18 h LPSPst and
LPSXcc treatments.

For the flavone and flavanol biosynthesis pathway, kaempferol-3-O-rhamnoside-7-O-
glucoside was mapped (Figure S9A). The average intensity of two other flavonoids (afzelin
and kaempferitrin) that were not mapped by MetPA were also analysed (Figure S9B,C).
There was increased accumulation of kaempferol-3-O-rhamnoside-7-O-glucoside accumu-
lation in WT at 24 h and 12 h LPSPst and LPSXcc treatments, respectively (Figure S9A). There
was no clear increase in the accumulation of kaempferol-3-O-rhamnoside-7-O-glucoside
in lbr2-2 and bak1-4, albeit a slight increase at the 24 h LPSPst-treated lbr2-2. For afzelin
(Figure S9B), there was a clear increase of intensity at 24 h and 12 h after LPSPst and LPSXcc
treatments, respectively, in WT; whereas there was no clear increase observed in lbr2-2 and
bak1-4 after both LPS chemotype treatments, albeit a slight increase observed at 12 h and
24 h LPSXcc and LPSPst treatments in lbr2-2 and bak1-4, respectively. For the kaempferitrin,
an increase of intensity was observed in 24 h LPSPst-treated WT, with no clear increase in
lbr2-2 and bak1-4 after both LPSPst and LPSXcc treatments. Notably, the flavone and flavanol
biosynthesis pathway was seemingly not affected by the LPSPst and LPSXcc chemotypes.

Furthermore, the glucosinolate biosynthesis pathway mapped glucoerucin and gluco-
brassicin metabolites and their relative intensities are shown in Figure S10A,B, respectively.
In addition, the intensities of MetPA unmapped glucosinolates such as glucohirsutin
and glucosinolate degradation product 8-(methylsulphinyl)octylamine were analysed in
Figure S10C,D, respectively. Glucoerucin identified in LPSXcc-treated WT plants showed
a slight decrease in intensities across time points when treated with LPSPst, but with a
slight increase at 12 h and 24 h with LPSXcc. For lbr2-2, there was over a 2-fold decrease of
intensities across time points in both LPSPst and LPSXcc-treated plants. Glucoerucin from
bak1-4 showed decreased and similar intensities in both LPS chemotypes treatments. For
glucobrassicin (Figure S10B), there were decreased intensities in the WT treated with LPSPst
and LPSXcc across time points, except at 24 h LPSXcc treatment where there was, relatively,
over a 1.5-fold increase in intensity. In lbr2-2, glucobrassicin showed over a 1.6- and 2.5-fold
decrease in intensity when treated with LPSPst and LPSXcc, respectively. Glucobrassicin
in bak1-4 treated with LPSPst and LPSXcc showed decreased and similar intensities when
comparing the control vs. treatment. Glucohirsutin (Figure S10C), was increased at 12 h
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and 24 h LPSPst and LPSXcc-treated WT, but decreased in both lbr2-2 and bak1-4. The glu-
cosinolate degradation product 8-(methylsulfinyl)octylamine was accumulated in both WT,
lbr2-2 and bak1-4 after both LPS chemotypes treatments, with lesser accumulation observed
in LPSPst-treated bak1-4 (Figure S10D).

Overall, LPS chemotypes altered the glucosinolate biosynthesis pathway and led
to more accumulation of glucosinolates and their products in the WT as compared to
the mutants.

3. Discussion

LPSs found on the outer membrane of Gram-negative bacteria is one of the MAMPs
associated with bacterial adhesion and induction of defence responses in animals and
plants [28]. The structure of LPS is made up of lipid A, core oligosaccharides and an
O-polysaccharide chain, which have been reported to induce defence responses in plants
individually or collectively [4,29,30]. To date, the plant pattern recognition receptor (PRR)
and/or co-receptor involved in LPS perception, as well as the molecular mechanism un-
derlying the defence signalling, remains elusive. Sanabria et al. [3] have proposed the
involvement of an LPS-responsive N. tabacum S-domain RLK (Nt-Sd-RLK) gene encod-
ing conserved B-lectin, S- and PAN domains in LPS perception. Additionally, a recent
study implicated Arabidopsis AtLBR-1 and AtLBR-2 in the LPS perception and defence
responses [4].

In this study, untargeted metabolomics were used to profile the metabolite changes
that might occur after treatment of Arabidopsis WT and mutant (lbr2-2 ad bak1-4) plants
with different LPS chemotypes from Pseudomonas syringae pv. tomato DC3000 (Pst) and
Xanthomonas campestris pv. campestris 8004 (Xcc). Advancement in liquid chromatography-
mass spectrometry (LC-MS) has improved the use of metabolomics in the study of
MAMP-treated plants [11,12,31]. Here, chromatographic and spectrometric changes were
observed in extracts from both Arabidopsis WT and the mutants after treatments with
LPSPst and LPSXcc. Such perturbations can be linked to the metabolome changes caused by
LPS chemotypes treatments. The 12–24 h period selected in this study has been shown to
be sufficient to capture the metabolome changes that may occur and possibly return the
plant system to homeostasis [12,31]. The chemometric modelling tools such as PCA and
OPLS-DA play vital roles in the observed sample grouping and accompanying metabolite
identification that reflects on the evidence of differential metabolic reprogramming that is
related to the response of Arabidopsis plants to the LPS chemotypes. There were broad
classes of annotated metabolites involved as significant response markers, including glu-
cosinolates, benzoic acids and HCAs, flavonoids, lignan, lipids, oxylipins, arabidopsides
and phytohormones, that unravelled the complexity of the plant metabolomes and the
implication of LPS in the Arabidopsis defence responses.

3.1. Glucosinolates Accumulation Following LPSs Treatment

Glucosinolates are a sulphur-rich, structurally diverse class of secondary metabolites
that are richly found in Brassicaceae such as Arabidopsis, with various roles that include
response against plant pathogens [32]. In this regard, the glucosinolate–myrosinase defence
system is activated upon pathogen or insect attack in plants. The glucosinolate breakdown
activity of myrosinase leads to the production of various degradation products that are
involved in the defence activities [33]. In this study, we annotated and putatively identified
a number of glucosinolates and their products in both Arabidopsis WT and mutants (lbr2-2
and bak1-4) (Table 1). However, WT treated with LPSPst and LPSXcc accumulated more
glucosinolates compared to the lbr2-2 and bak1-4. Similar trends were observed when
glucosinolates (e.g., glucoerucin and glucobrassicin) were mapped by MetPA. Consistently,
there were higher qualitative accumulation of glucoerucin, glucobrassicin and glucohirsutin
when comparing control vs. LPS treatments in the WT vs. lbr2-2 and bak1-4 (Figure S10).
While glucosinolates were identified only in the WT, glucosinolate degradation products
were identified in both WT and mutants. For instance, glucosinolate degradation product
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8-(methylsulfinyl)octylamine accumulated in both LPSPst- and LPSXcc-treated WT, lbr2-2
and bak1-4. Robin et al. [34] reported increased accumulations of both glucoerucin (e.g., of
aliphatic glucosinolate) and glucobrassicin (e.g., of indole glucosinolate) in the resistant
cabbage line BN4303 infected by Leptosphaeria maculans that causes blackleg disease in
Brassica crops. Furthermore, aliphatic and aromatic glucosinolates enhanced resistance
against necrotrophic bacteria Erwinia caratovora and hemi-biotrophic bacteria P. syringae, re-
spectively, in Arabidopsis [35]. These studies highlight the significant role of glucosinolates
in plant defence against pathogens. In our group, several glucosinolates including glucohir-
sutin, glucoerucin, glucobrassicin were putatively annotated from Arabidopsis treated by
LPS from B. cepacia [11,12]. The results obtained in this study (both the annotated metabo-
lites, heat map and MetPA analyses) suggested that different LPS chemotypes induced
significant accumulation of glucosinolates in the WT compared to the mutants. More-
over, the variation in the accumulation of glucosinolates and their degradation products
in the WT compared to the mutants may be caused by the knock out of the LBR2 and
BAK1 proteins.

3.2. Hydroxycinnamic Acid Derivatives Accumulation Post-LPSs Treatment

HCAs and their derivatives are indispensable in the protection of plants against
pathogens, ultraviolet B irradiation and central to the synthesis of secondary metabolites
such as flavonoids, tannins and lignin [36,37]. The synthesis of HCAs and derivatives
from phenylalanine through the phenylpropanoid pathway is well-documented in plants,
including the Arabidopsis model system [38]. In this study, LPSPst and LPSXcc triggered
the differential accumulation of metabolites that belong to the HCA derivatives such as
6,7-dimethoxycoumarin, sinapic acid and sinapoyl malate in WT and the mutants. For
example, 1-O-sinapoyl-beta-D-glucose was detected in WT and bak1-4, but not in the lbr2-2,
suggesting its differential accumulation that may be linked to the absence of LBR2 protein.

Sinapic acid may be found in free form or esterified like other HCAs. These esters
can be sugar conjugates (glycosides) such as sinapoyl glucose (identified in this study),
or conjugates of other compounds, such as sinapoyl malate (identified in this study) and
sinapoyl choline or sinapine (a source of sinapic acid and choline in germinating mustard
seed) [39–42]. Tinte et al. [11] also identified sinapic acid, sinapoyl glucose and sinapoyl
malate in Arabidopsis after treatment with LPS from B. cepacia Furthermore, the antibacte-
rial activity of sinapic acid against both Gram-positive and Gram-negative bacteria have
been reported in mustard seeds [43,44]. Sinapoyl glucose was one of the infection markers
identified in the apoplasts of Arabidopsis leaves infected by Verticillium longisporum [45].
An Arabidopsis mutant deficient in sinapoyl malate or sinapic acid affected the accumu-
lation of sinapic esters and disrupted the phenylpropanoid pathway and eventual lignin
biosynthesis [40,46]. Heat map (Figure 5) and MetPA analysis (Figure 6) showed that the
phenylpropanoid biosynthesis pathway was altered with variations in the accumulation of
sinapic acid, sinapoyl malate and sinapoyl 1-O-sinapoyl-beta-D-glucose when the control
vs. LPS treatments were compared (Figure S8). These results showed increased accumula-
tion of HCAs and derivatives in WT compared to the mutants (lbr2-2 and bak1-4), further
highlighting a possible influence of different LPS chemotypes and lack of functional LBR2-2
and BAK1-4 proteins in the perturbation observed in the Arabidopsis metabolome.

3.3. Flavonoids Accumulation Post-LPSs Treatment

Flavonoids are secondary metabolites produced in plants through the phenylpropanoid
pathway with a variety of functions that include defence against environmental stresses,
pigmentation, auxin transport, signalling, feeding deterrents and protection against UV
light [47–49]. As shown in Table 1, more flavonoids were accumulated in WT followed
by bak1-4, with none identified in the lbr2-2. Flavonoids accumulated mostly at 24 h
post-LPS treatment in the WT suggesting a late flavonoid response in Arabidopsis. The
absence of significant flavonoids in the lbr2-2 suggests a possible role of LBR in the LPS
perception Arabidopsis. MetPA analysis (Figure 6) showed the mapping of kaempferol
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3-O-rhamnoside-7-O-glucoside in the altered flavone and flavonol biosynthesis pathway.
This LPS-induced kaempferol 3-O-rhamnoside-7-O-glucoside and unmapped flavonoids
such as afzelin and kaempferitrin displayed distinct variations in quantitative intensi-
ties, suggesting differential metabolic accumulation in the WT and mutants. Kaempferol
is involved in the defence response of Arabidopsis against the Cucumber mosaic virus
containing satellite RNA (CMVsat) infection [50]. Kaempferitrin is reported as the key
flavonoid that inhibits the polar auxin transport (PAT) and thereby regulates growth and
development in Arabidopsis shoots [51]. A study of prenylated flavonoids showed high
free radical scavenging activities that contribute to their use as potent anti-oxidants [52].

3.4. Lignan Accumulation Following LPSs Treatment

Lignans are synthesised from HCAs through the early phenylpropanoid pathway with
precursors such as coniferyl alcohol, sinapyl alcohol and 4-hydroxycinnamyl alcohol [53].
Lignan biosynthesis is related to but different from that of phenylpropanoids such as lignins,
norlignans and neolignans [54–56]. There is evidence of bacteria and fungi triggering
accumulation of lignin and lignan, leading to the protection of plants against pathogen
invasion [46,57]. Cinnamyl alcohol dehydrogenase (CAD) genes that code for the enzyme
that catalyses the final step in the biosynthesis of monolignol have been shown to accelerate
lignin and lignan biosynthesis and deposition are induced following pathogen infection [58].
Lignans such as G(8-O-4)G hexoside, lariciresinol hexoside and G(8–5)FA malate were
identified in response to LPS treatment in this study (Table 1).

The fungal pathogen V. longisporum induced accumulation of phenylpropanoid metabo-
lites including lignans such as the syringaresinol glucoside (a sinapyl alcohol-derived
lignan), secoisolaricoresinol, pinoresinol glucoside and lariciresinol glucoside (coniferyl
alcohol-derived lignans) in Arabidopsis [46]. G(8-O-4)G hexoside, G(8–5)FA malate and
lariciresinol hexoside identified in this study were reported to accumulate in Arabidopsis
treated with silver nanoparticles [59]. In this study, the accumulation of lignans upon LPS
treatment was higher in the WT followed by bak1-4 and decreased in lbr2-2 (from heat map
analysis). This supports the above suggestions that different LPS chemotypes are able to
trigger this metabolic pathway, as well as that the BAK1 and LBR2 proteins play a possible
regulatory role in the accumulation of lignan. These findings further correlate with existing
reports that link lignans in plant defence against biotic and abiotic stresses.

3.5. Lipids, Oxylipins and Arabidopsides Accumulation Post-LPSs Treatment

Lipids are involved in the establishment of membrane interfaces as well as in the
regulation of intracellular signalling during plant–microbe communication [60,61]. Oxi-
dation products of polyunsaturated fatty acids (PUFAs) known as oxylipins function as
signal molecules in the regulation of plant growth, development, and biotic and abiotic
responses [60,62]. Fatty acid derivatives such as 9,12,13-trihydroxy-10,15-octadecadienoic
acid and 9,12,13-TriHOME detected in this study have been identified from the Arabidopsis
root exudate profile [63] and the apoplast of Arabidopsis infected by V. longisporum [45].
Tinte et al. [11] reported accumulation of 13(S)-HPOTrE, 12-OPDA and Arabidopside A
in Arabidopsis leaves treated by LPS from P. syringae. Arabidopsides are named based on
the position at which OPDA is found esterified to the mono- or digalactosyl diacylglycerol
(MGDG or DGDG), instead of the fatty acyl moiety. For instance, Arabidopside A (identi-
fied here) is a MGDG derivative containing OPDA esterified at position sn-1, while Ara-
bidopside C is a DGDG containing dn-OPDA esterified at position sn-2 [64–66]. Oxylipin,
12-OPDA is a precursor for phytohormone jasmonic acid (JA) and related jasmonates such
as methyl jasmonate (MeJA) and jasmonyl-L-isoleucine (JA-IIe), which are involved in plant
defence responses and growth [64]. Arabidopside D (detected in this study) has previously
been identified in the aerial parts of Arabidopsis with a characteristic inhibitory effect on
cress root growth [67]. Additionally, V. longisporum induced accumulation of 12-OPDA and
dinor-OPDA as signatory infection markers in the apoplast of Arabidopsis [45].
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Our MetPA analysis implicated 13(S)-HPOTrE and 12-OPDA as mapped metabolites
in the enriched alpha-linolenic acid metabolic pathway (Figure 6 and Figure S7). Both
metabolites are precursors of JA with evidence in the regulation of plant defence signalling
against pathogens [66]. There were distinct relative intensity changes of both 13(S)-HPOTrE
and 12-OPDA metabolites when comparing control vs. LPSPst--and LPSXcc-treated WT,
lbr2-2 and bak1-4. Overall heat map analysis showed LPS-induced more LOA metabolite
group in lbr2-2, followed by bak1-4 and WT. This alteration of metabolite intensities, espe-
cially LOA in mutants (mainly in lbr2-2), suggests that the knock-out of LBR2 and BAK1
appeared to enhance the accumulation of this group of metabolites upon LPS treatment.
Overall, the result indicates that the alpha-linolenic acid metabolism is differentially altered
in the Arabidopsis WT and mutants treated by different LPS chemotypes, with the WT
exhibiting stricter metabolic control over LPS inducible responses/pathways.

3.6. Phytohormones Accumulation Following LPSs Treatment

Salicylic acid (SA) accumulates in both local and systemic defence responses against
pathogens where it mediates disease resistance in both the infected and distal leaves [68,69].
SA can be synthesised through the isochorismic acid (IC) or phenylalanine ammonia lyase
(PAL) pathways, using shikimic acid as a precursor in both routes [70]. Free SA level can
be regulated through conversion into alternative forms by chemical modification such
as methylation (e.g., methyl SA, MeSA), glycosylation (e.g., SA glucoside, SAG), and
hydroxylation to form dihydroxybenzoic acids. SAG is stored in the vacuole and can be
reconverted to SA when needed by the plant. SAG was identified as a disease infection
marker in Arabidopsis treated with V. longisporum [45]. Furthermore, B. cepacia LPS induced
accumulation of conjugated SA and systemic acquired resistance (SAR) against Pst in
Arabidopsis [71].

In this study, SAG accumulated in both LPS chemotype-treated bak1-4, but not in the WT
or lbr2-2. Two isomers of the benzoic acid precursors of SA such as 2,5-dihydroxybenzoic acid
pentoside isomer I and II were identified in this study. While 2,5-dihydroxybenzoic acid pen-
toside isomer I accumulated in both LPS chemotypes-treated WT, lbr2-2 and bak1-4, it was
detected earlier in bak1-4 only. The accumulation of both SAG and 2,5-dihydroxybenzoic
acid pentoside isomer II in LPS-treated bak1-4 suggests that inactive SA was more abun-
dant in bak1-4 mutant than WT and lbr2-2. While SA is involved in the defence response
against biotrophic pathogens, JA regulates infection of necrotrophic pathogens or herbiv-
orous insects, respectively, with some degree of antagonism reported between the two
phytohormones [72,73].

Another phytohormone, abscisic acid (ABA), was detected in Arabidopsis treated
by LPS in this study and in the study by Tinte et al. [11]. ABA accumulated in both
LPS chemotypes-treated WT, lbr2-2 and bak1-4 with increased intensity observed in the
mutants (lbr2-2 and bak1-4) compared to the WT. ABA is a sesquiterpene signalling molecule
that regulates pathways involved in plant responses to abiotic stresses, plant growth and
development [72]. An antagonistic interplay between ABA and the JA-ethylene signalling
pathway has been shown to regulate expression of plant defence genes and resistance to
diseases [74].

4. Materials and Methods
4.1. Plant Growth Conditions and Genotyping

Wild type (WT) Arabidopsis thaliana, ecotype Columbia (Col-0) and T-DNA insertion
lines (lbr2-2 (At3g20270, SALK_132326) were obtained from Arabidopsis Biological Re-
source Center (ABRC) (The Ohio State University, Columbus, OH, USA), while bak1-4
(At4g33430, SALK_116202) was a gift from Professor Thorsten Nürnberger (University of
Tübingen, Baden-Württemberg, Germany). The seeds were sown in plant growth trays
containing Germination Mix soil (Culterra, Muldersdrift, South Africa). All plants were
grown at 23 ◦C, 50% humidity and under 70 µmol/m−2/sec fluorescent illumination in a
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12 h light/12 h dark cycle. Distilled water and fertiliser (Nitrosol 1:250 (v/v)) were applied
to plants once every week. Eight-week-old plants were used for experiments.

For genotyping, a two-step PCR genotyping assay, as reported in [75], with minor
modifications was used to select mutant plants that were homozygous for the transferred
(T)-DNA insert, and also according to the guideline tools of the Salk Institute Genome
Analysis Laboratory (SIGnAL) (http://signal.salk.edu/tdnaprimers.2.html) accessed on
25 June 2018 (data not shown).

4.2. LPS Isolation and Characterisation

LPSs from Pst and Xcc were isolated using the hot phenol-water procedure [76], and
characterised for suitable purity, as described in Tinte et al. [11] (data not shown).

4.3. Plant Treatment and Harvesting

LPS (dissolved to a final concentration of 100 µg/mL in sterile 2.5 mM magnesium
chloride (MgCl2)) from Pst and Xcc was used to treat Arabidopsis WT and mutant (lbr2-2
and bak1-4) plants by gentle pressure-infiltration with a blunt syringe through the abaxial
side of the leaf. Three different plants were used for one biological replicate out of a total
of three, and the leaves were harvested after 0, 12, 18, and 24 h post-treatments, frozen
in liquid nitrogen to quench metabolic activity, and stored at –80 ◦C until use. Negative
control plants were treated with sterile 2.5 mM MgCl2 to account for responses that may be
generated by the MgCl2 solution (though it has been shown not to trigger any secondary
effects [11,12]) used to dissolve the LPS, as well as possible wounding upon LPS treatment.

4.4. Metabolite Extraction and Sample Preparation

A methanol (MeOH)-based extraction method that extracts semi-polar and some
non-polar metabolites was used to extract metabolites from the leaf tissue. Hot MeOH
(Romil SpS, Cambridge, UK) (65 ◦C) was used to quench myrosinase activity since this
enzyme degrades glucosinolate secondary metabolites that play vital roles in plant defence
against environmental stresses including pathogens [12]. Hot 80% MeOH (1:10 w/v)
was added to 1 g frozen leaf material in 50 mL Falcon tubes and homogenised with an
Ultraturrax homogeniser (IKA, Staufen, Germany) for 2 min. For extra lysis of cells, the
homogenate fraction was sonicated with a sonication probe (Sonopuls, Berlin, Germany)
set at 100% power, for 30 s. The mixture was centrifuged at 5 × 300 g for 20 min at 4 ◦C and
the supernatants were carefully transferred into new Falcon tubes. The supernatants were
evaporated to approximately 1 mL at 55 ◦C using a Büchi Rotavapor R-200, transferred
to 2 mL Eppendorf tubes, and then further evaporated to complete dryness using a dry
bath at 55 ◦C in a fume hood. Dried residue was re-suspended in 500 µL of 50% ultra-
high performance liquid-chromatography (UHPLC)-grade MeOH: milliQ water (1:1 v/v),
filtered through 0.22 µm nylon syringe filters into HPLC glass vials fitted with 500 µL
inserts and stored at 4 ◦C until ready for analysis. The quality control (QC) samples were
prepared by pooling and mixing aliquots of equal volumes from all samples and included
in the run order to monitor the stability of the samples and the instrument. Blank samples
(containing 50% MeOH used to re-suspend the samples) were included in the run to gauge
sample variance and monitor potential sample carryover.

4.5. Liquid Chromatography-Mass Spectrometry Analysis

Several LC-MS and hybrid analytical methods have shown improved sensitivity,
speed and repeatability, and therefore have been used successfully in the analysis and
detection of metabolome changes stemming from both biotic and abiotic stresses in plant
systems [77]. In this study, samples were analysed using an Acquity UHPLC system
coupled in tandem to a Synapt G1 high-definition (HD) quadrupole time-of-flight (qTOF)
mass spectrometer (UHPLC-qTOF-MS) system (Waters Corporation, Manchester, UK)
fitted with an Acquity HSS T3 C18 reverse-phase column (1.7 µm, 150 mm × 2.1 mm)
(Waters Corporation, Milford, MA, USA). Four microliters of each sample were injected
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into a column that is housed in a column oven thermostatted at 60 ◦C. Analysis was
conducted with a binary solvent system (solvent A: milliQ water and 0.1% formic acid
(Sigma Aldrich, Munich, Germany); solvent B: acetonitrile (Romil SpS, Cambridge, UK)
and 0.1% formic acid) at a constant flow rate of 0.4 mL/min for 30 min. The separation
conditions were: 2% B over 0.00–2.00 min, increased to 90% B over 1.00–25.00 min, increased
to 95% B over 25.00 min–25.10 min, held at 95% B over 25.10–27.00 min, decreased back
to 2% B over 27.00–28.00 min, and held at 2% B over 28.00–30.00 min. Separated analytes
were detected using a photodiode array (PDA) detector scanned from 200–500 nm with
1.2 nm resolution and a sampling rate of 20 spectra/s.

The chromatographic effluent was further analysed and detected using the MS com-
ponent of the SYNAPT G1 high definition qTOF-MS, used in V-optics and operated in the
electrospray ionisation positive (ESI+) and negative (ESI–) modes. The MS conditions were
also set up: a capillary voltage of 2.5 kV, sampling cone voltage at 30 V, trap collision 3 V
and the extraction cone at 4 V, scan time of 0.1 sec covering the 50 to 1200 Da mass-to-charge
(m/z) range, source temperature of 120 ◦C, desolvation temperature of 450 ◦C. N2 gas was
used as the nebulisation gas at a flow rate of 800 L/h. Leucine encephalin (50 pg/mL) was
used as the reference mass calibrant to obtain typical mass accuracies between 1–3 mDa.
The MS analysis file was set up in (MSE) mode to perform unfragmented as well as five
fragmenting experiments simultaneously by in-source collision energy from 3–40 eV.

To ensure experimental reproducibility, three independent biological replicates and
three instrumental technical replicates were analysed for each time point in a randomised
fashion. This generated n = 9, required for the multivariate data analysis of metabolomics
data [26]. As mentioned, blank and QC samples were randomly included in the run in
order to monitor instrument reproducibility.

4.6. Multivariate Data Analysis

UHPLC-qTOF-MS raw data was visualised and processed using MarkerLynx XSTM

software (Waters, Manchester, UK). Parameters set to analyse ESI (+) mode data were: reten-
tion time (Rt) range of 1.1–24.1 min of the MS chromatogram, mass range of 100–1200 Da,
Rt window of 0.3 min and mass tolerance of 0.05 Da. Those of ESI (−) mode data were: re-
tention time (Rt) range of 0.9–24.0 min of the MS chromatogram, mass range of 100–1200 Da,
Rt window of 0.3 min and mass tolerance of 0.05 Da. Peak detection and alignment were
achieved using the MarkerLynx patented ApexPeakTrack algorithm. Normalisation was
done using total ion intensities of each defined peak, while Savitzky-Golay smoothing and
integration was done before computing intensities. Only data matrices with noise levels
less than 50% were selected for downstream data analysis.

After data pre-processing and pre-treatment steps, the obtained data matrix of re-
tention time (Rt)-m/z variable pairs, with m/z peak intensity for all samples, were ex-
ported to ‘Soft independent modelling of class analogy’ (SIMCA) software, version 15
(Sartorius, Umea, Sweden) for statistical modelling. The first statistical modelling used
were unsupervised principal component analysis (PCA) and hierarchical clustering analysis
(HiCA) dendrogram models that show trends, clusters, differences and similarities between
samples. Thereafter, the statistical modelling used was a supervised model, orthogonal pro-
jection to latent structures discriminant analysis (OPLS-DA), which predefines the sample
groups to observe the extent to which the variables affect the separation between groups.
Selected discriminant ions for downstream metabolite identifications had a correlation
[p(corr)] of ≥ 0.5 and covariance of (p1) ≥ 0.05. For all statistical modelling, Pareto-scaling
was used to reduce the mask effect from the more abundant metabolites and, by doing so,
enhance the model’s predictive ability [78]. The different model validations used to gauge
model quality included evaluation of the model goodness-of-fit and predicted variation (R2

and Q2), and receiver operator classifier (ROC) plots. The OPLS-DA models were also vali-
dated using analysis of variance of the cross-validation predictive residuals (CV-ANOVA),
with a p-value of < 0.05 indicating a good model [79]. Only statistically valid models were
selected and used in data mining for metabolite annotation.
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4.7. Metabolite Annotation and Biological Interpretation

The statistically significant metabolite annotation was performed according to level 2
of the Metabolomics Standard Initiative (MSI) [26]. The accurate mass, fragmentation
patterns, elemental composition, Rt and online database searches were used to facilitate as-
signing the correct chemical structure to each detected feature. Using Markerlynx software,
fragment ion peaks were used to obtain elemental compositions which were searched on
databases for metabolites annotation. Online databases used for metabolite identification
were LIPID MAPS [80], MetaCyc [81] ChemSpider [82] and Dictionary of Natural Prod-
ucts [83]. Mass spectral information was also compared to available published literature
and metabolites were accordingly annotated (putative identification).

MetaboAnalyst version 5.0 (https://www.metaboanalyst.ca/) accessed on 12 August 2021,
a web-based tool for the analysis of metabolomics data sets, was used for further metabolic
data analysis and functional interpretation for heat map visualisation and pathway map-
ping [84]. Peak intensities of metabolomic data were imported into MetaboAnalyst,
transformed and Pareto-scaled to reduce systemic variance within the features. The av-
erage integrated peak intensities of the annotated metabolites were used to construct
the heat maps with the statistical analysis software available on MetaboAnalyst (https:
//www.metaboanalyst.ca/) accessed on 12 August 2021. The group averages were used
to show metabolite intensities from WT and mutants (lbr2-2 and bak1-4) under different
LPS chemotype treatments for all time points. Pathway analysis (PA) was performed by
the MetPA (Metabolomics Pathway Analysis), a component of the MetaboAnalyst suite
that uses the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways as
the backend knowledge base. For the PA, KEGG IDs of the annotated metabolites were
submitted to the MetaboAnalyst and significant mapped pathways were generated.

5. Conclusions

LPSs as a MAMP triggers defence responses in mammals and plants. The LPS per-
ception and signalling in mammals are established, whereas in plants the PRR and/or
co-receptor complex and the associated defence signalling are still unresolved. Understand-
ing the metabolite profiles and perturbed metabolic pathways in WT Arabidopsis and
mutants (lbr2-2 and bak1-4) treated with LPSs will provide useful insight into the mecha-
nism underlying plant defence responses against pathogens. The aim of the study was to
investigate how the lbr2-2 and bak1-4 Arabidopsis mutants respond to LPS treatment in com-
parison to the WT, using untargeted LC-MS-based metabolomics. In this regard, two LPS
chemotypes, originating from P. syringae and X. campestris (LPSPst and LPSXcc) that differ in
the chemical ‘molecular patterns’ of the LPS sub-moieties, were applied. Both chemotypes
were found to induce differential reprogramming of the metabolome in support of an
enhanced defensive state in the WT, as well as in the lbr2-2 and bak1-4 mutants. Most of the
annotated metabolites belong to the classes of ‘glucosinolates’, ‘benzoic–and HCA deriva-
tives’, ‘flavonoids’, ‘lignans’, ‘lipids, oxylipin and arabidopsides’ and ‘phytohormones’.
The presence and absence of certain metabolites as observed in the WT and mutants suggest
that they responded differently to the two LPS chemotype treatments as a consequence of
the functional LBR2 and BAK1 proteins in WT, but not in the respective mutants.

Furthermore, the Metabolomic Pathway Analysis (MetPA) of significantly anno-
tated metabolites from WT, lbr2-2 and bak1-4 showed distinct altered pathways that in-
clude flavone and flavanol biosynthesis, phenylpropanoid biosynthesis, alpha-linolenic
acid metabolism, and glucosinolate biosynthesis. The dissimilar metabolite profiles and
metabolic responses (as seen in the heat maps) observed in WT and mutant plants after
treatment with the two LPS chemotypes may be attributed to the distinct structures of the
tripartite LPS chemotypes. In addition, the involvement of functional LBR2 and BAK1
proteins in the WT, but not in the respective mutants, could have contributed to the different
metabolic responses of WT vs. lbr2-2 vs. bak1-4. Moreover, the increased accumulation of
defence-associated metabolites observed in the mutants indicates an inducible response to
the LPS chemotypes (albeit different from that of the WT), indicating prior perception of the

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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LPSs and subsequent signal processing. This might be attributable to a level of redundancy
in LPS perception and point to the presence of other LPS-interacting/co-receptors that are
participating/complementing the perception of intact LPS (or sub-moieties thereof) and
resulting signalling in the mutants. Untargeted metabolomics was thus found to generate a
wealth of information in monitoring plant biological systems such as profiling of differential
metabolite accumulation as part of the adaptation of the host’s ‘defensome’ in response
to pathogenic stresses, and these metabolites may thus serve as biomarkers in LPS:plant
interaction studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050379/s1. Figure S1: Representative UHPLC-MS
BPI chromatograms of methanolic extracts from WT Arabidopsis in ESI (−) data mode. Figure S2:
Unsupervised chemometric modelling of LC-MS-analysed Arabidopsis WT leaf extracts (ESI (−)
data). Figure S3: OPLS-DA modelling of Arabidopsis WT leaf extracts (ESI (+) data). Figure S4: OPLS-
DA modelling of Arabidopsis WT leaf extracts (ESI (+) data). Figure S5: A representative receiver
operator characteristic (ROC) plot summarising the performance of binary classifiers (OPLS-DA).
Figure 6: Heatmap presentation of significant annotated metabolites in ESI (+) mode. Figure S7:
Alpha-linolenic acid metabolism analysis by Metabolomic Pathway Analysis (MetPA). Figure S8:
Phenylpropanoid biosynthesis analysis by Metabolomic Pathway Analysis (MetPA). Figure S9:
Flavone and flavonol biosynthesis analysis by Metabolomic Pathway Analysis (MetPA). Figure
S10: Glucosinolate biosynthesis analysis by Metabolomic Pathway Analysis (MetPA). Table S1:
Diagnostic fragments of annotated metabolites and KEGG IDs in Table 1. Table S2: List of significant
metabolic pathways that were altered by the treatment of Arabidopsis WT with LPSPst and LPSXcc
as generated by Metabolomic Pathway Analysis (MetPA). Table S3: List of significant metabolic
pathways that were altered by the treatment of Arabidopsis lbr2-2 mutant with LPSPst and LPSXcc
as generated by Metabolomic Pathway Analysis (MetPA). Table S4: List of significant metabolic
pathways that were altered by the treatment of Arabidopsis bak1-4 mutant with LPSPst and LPSXcc as
generated by Metabolomic Pathway Analysis (MetPA).
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