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Abstract
Background: Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis
(ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which
complex interactions between environmental and genetic susceptibility factors take place. The purpose of
this study was to approach genetic data with an innovative statistical method such as artificial neural
networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel
was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and
homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and
matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel
coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained
have been compared with those derived from the use of standard neural networks and classical statistical
analysis

Results: Advanced intelligent systems based on novel coupling of artificial neural networks and
evolutionary algorithms have been applied. The results obtained have been compared with those derived
from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a
strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the
data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear
Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%)
and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced
Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the
identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E
arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-
dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg.

Conclusion: This study provides an alternative and reliable method to approach complex diseases.
Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic
markers of sporadic ALS pointing out the existence of a strong genetic background.
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Background
Amyotrophic lateral sclerosis (ALS), the most common
form of motoneuron disease, is a relatively rare (inci-
dence: 1–3/100.000 per year), progressive and fatal dis-
ease characterised by neurodegeneration involving
primarily motor neurons of the cerebral cortex, brain stem
and spinal cord. To date, most studies have focused upon
the familial form of the disease, which accounts for less
then 10% of cases, and which is usually inherited as auto-
somal dominant inheritance. The gene coding for copper/
zinc superoxide dismutase 1 (SOD1) appears to be
mutated in 10–20% in the familial form [1].

Genetic risk factors for ALS have been extensively studied
and some "major genes", in addition to SOD1, have been
recognised as being responsible for the monogenic inher-
itance pattern. There are now at least six dominant inher-
ited adult onset ALS genes of which only three have been
identified so far [2]. However, most ALS cases seem to be
a typical multifactorial disease deriving from the interac-
tion between a number of genes and environmental fac-
tors, some of which are still not established as causing of
the disease, including brain and spinal cord trauma, stren-
uous physical activity, exposure to radiation [3].

Current hypotheses suggest a complex interplay between
multiple mechanisms including genetic risk factors, oxi-
dative stress, neuroexcitatory toxicity, mitochondrial dys-
function, intermediate neurofilament disorganization,
failure of intracellular mineral homeostasis involving
zinc, copper, or calcium, disrupted axonal transport,
abnormal protein aggregation or folding, and neuroin-
flammation [3,4]. Recently there has been growing inter-
est in the role played by non-neuronal neighbourhood
cells in the pathogenesis of motor neuron injury and in
the dysfunction of specific molecular signal pathways
[5,6].

Among the genetic factors that may predispose to sporadic
ALS, neurofilaments, apolipoprotein epsilon 4 genotype,
excitotoxicity genes, ciliary neurotrophic factor (CTNF),
cytochrome P450 debrisoquine hydroxylase CYP2D6,
apurinic apyrimidinic endonuclease (APEX), mitochon-
drial manganese superoxide dismutase SOD2, monoam-
ine oxidase allele B and paraoxonases, have been reported
in different studies, partly with contradictory results
[2,4,7-9]. Not all the published studies have been repli-
cated, probably because of the different populations ana-
lysed as well as insufficient sample size. On the other
hand, different studies have employed either tissue micro-
dissection or microarray technologies to search for other
"low penetrant" or "susceptibility" genes that are more
common in the population and often polymorphic and
the combination and interaction of these with environ-
mental factors may contribute to modulate individual risk

[10-12]. Recently, several genome-wide association stud-
ies have been performed with innovative approaches, i.e.
the Illumina platform, and the authors have identified
SNPs (single nucleotide polymorphisms) potentially
associated with ALS [13-16]. However most genome-wide
association studies have not confidently identified risk
genes that are replicated in every study. The most likely
causes are disease heterogeneity, allelic heterogeneity,
small effect sizes and probably, insufficient sample size.
However, so far no microarrays panel has been specifically
developed for ALS and the aetiology of the disease still
remains to be defined.

Some years ago our group had the opportunity of working
on another multifactorial complex disease such as venous
thrombosis and analysing the results by an innovative sta-
tistical approach, Artificial Neural Networks (ANNs) [17].
Indeed, ANNs promises to improve the predictive value of
traditional statistical data analysis. Initially, a known set
of data, from a given problem with a known solution, is
learned by the ANNs and subsequently the networks can
reconstruct the fuzzy rules which may be underlying a
complex set of data. ANNs have been successfully used in
many areas of medicine as recently illustrated in an exten-
sive review by Lisboa [18], as well as by Ritchie et al [19]
where neural networks were used for supervised pattern
recognition in genetic epidemiology, and also in SNPs
association studies [20-22]. Much effort has been spent to
adapt ANNs architectures and the ensembles to specific
problems to be solved. More specifically many novel com-
putational approaches have been developed and applied
with special attention to complex gene-gene, gene-envi-
ronment interactions and ANNs [19-23].

The literature data together with the impressive results we
obtained with ANNs, by which we were able to identify a
subset of polymorphisms related to the disease, prompted
us to employ the same approach also in ALS hoping to
discover specific genetic patterns underlying the sporadic
form of this disease. We applied a multiarray approach
including allelic variations in genes that could be involved
in the pathogenesis of ALS disease since it has been dem-
onstrated that inflammation, cellular adhesion, and lipid
pathways are linked to such a disease [10,11]. On the con-
trary, it has never been demonstrated that regulation of
blood pressure, coagulation, homocysteine metabolism
and matrix integrity pathways are directly linked to ALS
even though they could be indirectly.

Genotyping of ALS cases and controls was performed. We
applied advanced intelligent systems based on novel cou-
pling of artificial neural networks and evolutionary algo-
rithms and compared the results with those obtained by
linear discriminant analysis and a simple back propaga-
tion approach.
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Surprisingly, we discovered a novel strong genetic back-
ground allowing a correct classification of cases and con-
trols with a higher than 90% accuracy.

Methods
Subjects
The study population included subjects of Caucasian ori-
gin belonging to Italian ancestry and consisted of 54 spo-
radic ALS (SALS) patients and 208 control subjects.

Diagnostic Criteria for ALS disease were based on the
World Federation of Neurology El Escorial Revisited doc-
ument [24]. All patients diagnosed to have Definite, Prob-
able or Probably laboratory-supported ALS, who gave
their informed consent, were included in the study. The
diagnosis of Possible ALS was also accepted. According to
common clinical practice, our cases were subdivided into
bulbar and spinal onset on the basis of the first symptoms
reported by each patient. All patients, referred to the
Department of Neurology of Niguarda Hospital, Milan
from 2001 to 2005, were defined sporadic when the dis-
ease was present in a single member of the family and
when no mutations were present in SOD1 gene.

Control subjects were selected from a healthy control
population, randomly collected from healthy blood
donors admitted to the "Healthy Blood Donor Service" of
Niguarda Ca' Granda Hospital. We checked the absence of
personal and familial history of ALS in this group through
direct interview.

This study was approved by the local ethics committee.

Genotyping
DNA was extracted using a salting out procedures [25]. We
applied a multilocus assay, as previously described
[17,26], to genotype 60 biallelic polymorphisms within
35 genes that were selected from pathways of lipid and
homocysteine metabolism, regulation of blood pressure,
coagulation, inflammation, cellular adhesion and matrix
integrity. The following polymorphisms (SNPs) were gen-
otyped: LPA 93C/T, 121 G/A, APOA4 thr347ser,
glu360his, APOBthr71ile, APOC3 641C/A, 482C/T, 455
T/C, 1100 C/T, 3175 C/G, 3206 T/G, APOE cys112arg,
arg158cys, ADRB3 trp64arg, PPARγ pro12ala, LIPC 480C/
T, LPL 93 T/G, asp9asn, asn291ser, ser447term, PON1
met55leu, gln192arg, PON2 ser311cys, LDLR NcoI+/-,
CETP-631C/A, -629 C/A, ile405val, TNF beta thr26asn,
MTHFR 677 C/T, NOS3 -922 A/G, -690 C/T, glu298asp,
DCP1 IVS16 ins/del, AGTR1 1166A/C, AGT met235thr,
NPPA 664 G/A, NPPA 2238 T/C, ADD1 gly460trp,
SCNN1A trp493arg, ala663thr, GNB3 825 C/T, ADRB2
arg16gly, ADRB2 gln27glu, MMP3 (-1171) 5A/6A, FII
20210 G/A, FV arg506gln, FVII -230 10 bp del/ins,
arg353glu, PAI -675 G5/G4, 11053 G/T, FGB -455 G/A,

ITGA2 873 G/A, ITGB3 leu33pro, SELE ser128arg,
leu554phe, ICAM gly214arg, TNF alpha -376 G/A, -308G/
A, -244 G/A, -238 G/A.

The marker TNF beta thr26asn is twice present in the
arrays as a control for the multiplex PCR and the hybridi-
zation procedures.

All ALS subjects were screened for SOD1 mutation
through PCR amplification and direct sequencing accord-
ing to standard procedures [27].

Database
Each record related to a known clinical condition or to a
sample population, and comprised 62 variables corre-
sponding to the 60 SNPs plus case and control. We elimi-
nated from the database those markers for which only one
genotype was present (APOB Arg3500Gln, CBS Ile278Thr,
CETP Asp442Gly, 14G(+1) A and 14(+3) T ins) both in
cases and controls. All the analysed polymorphisms may
have three genotype classes: wild type, heterozygous and
homozygous status. The association of these variables
with ALS status was tested by ANNs and the results were
compared with those obtained by a linear discriminant
analysis. The models we used aimed at correct classifica-
tion of the subjects in two classes:

1) SALS patients (cases),

2) healthy subjects (controls).

No other specific genetic model potentially linked to the
analysed SNP was evaluated; ANNs are able to build a
model with a strong genetic basis just collecting all the
information included within the SNP without any a priori
definition. The mathematical approach of ANNs consists
in measuring the general dependence of random variables
related to a group of subject without making any assump-
tion about the nature of their underlying relationships.

Artificial neural networks analysis
In this study we applied supervised ANNs, in order to
develop a model able to predict with high degree of accu-
racy the diagnostic class starting from genotype data
alone.

Supervised ANNs are networks which learn by examples,
calculating an error function during the training phase
and adjusting the connection strengths in order to mini-
mize the error function. The learning constraint of the
supervised ANNs make their own output coincide with
the predefined target. The general form of these ANNs is:
y = f(x,w*), where w* constitutes the set of parameters
which best approximate the function.
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We employed the Back Propagation (BP) ANNs [28].
This type of ANN belongs to a very large family of ANNs,
that normally uses a specific kind of law of learning
named Feed Forward (FF). In the FF ANNs the signal pro-
ceeds from the input to the output of the ANN, crossing
all of the nodes once only. The architecture of these net-
works is characterized by different layers of intercon-
nected nodes (input, hidden and output nodes), which
processes the input signal according to a non-linear func-
tion (generally, of sigmoid type). The fundamental equa-
tion that characterizes the activation of a single node and,
therefore, the signal transfer from one layer to another is:

Learning, i.e. the modelling of the input-output relation
represented by data, occurs through minimization of the
error in output and retropropagation of this to the inter-
nal nodes, one hidden units, using the algorithm of the
descending gradient in the majority of cases. In particular
each weight is corrected by the formula:

where for the retropropagated error  we have:

for the last layer and:

for all the other layers.

In theory, a Back Propagation having a sufficient number
of hidden units is able to reconstruct any y = f(x) function.

The BP used in this work was intentionally improved
through the use of the SoftMax equation, specific for clas-
sification problems [29]:

and through the use of the Selfmomentum equation [30]
which appears as follows:

where the learning cycle is indicated by n.

From a practical point of view, the Selfmomentum equa-
tion allows the solution of all of the problems solved by
the Momentum, in a much faster way, maintaining the
unitary learning coefficient (Rate = 1).

The architecture of ANN BP-FF is an input layer according
to the number of selected variables, one hidden layer
according to the different input layer (min 2 nodes, max
12 nodes). The output layer consisting in one of two pre-
diction targets (SALS cases; control).

We employed as benchmark linear discriminant analysis
(LDA) applied on the same training and testing data sets
used for ANNs. For the analysis of LDA, the SAS version
6.04 (SAS Institute, Cary, NC, USA) using forward step-
wise procedure was employed.

Preprocessing methods and experimental protocols
Data preprocessing was performed using two different re-
sampling criteria of the global dataset.

- Random criterion
We employed the so-called 5 × 2 cross-validation protocol
[31]. In this procedure the study sample is five-times ran-
domly divided into two sub-samples, always different but
containing similar distribution of cases and controls: the
training one (containing the dependent variable) and the
testing one. During the training phase the ANNs learn a
model of data distribution and then, on the basis of such
a model, classify subjects in the testing set in a blind way.
Training and testing sets are then reversed and conse-
quently 10 analyses for every model employed are con-
ducted.

-Optimized criterion: TWIST system
The TWIST system is an ensemble of two algorithms:
"Training and Testing" (T&T) and "Imput Selection" (I.S.)
algorithm [32].

The T&T system is a robust data resampling technique that
is able to arrange the source sample into sub-samples that
all possess a similar probability density function. In this
way, the data is split into two or more sub-samples in
order to train, test and validate the ANN models more
effectively. The T&T is based on a population of n ANNs
managed by an evolutionary system. In its simplest form,
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this algorithm reproduces several distribution models of

the complete dataset DΓ (one for every ANN of the popu-

lation) in two subsets ( , the Training Set and , the

Testing Set). During the learning process each ANN,
according to its own data distribution model, is trained on

the subsample  and blind-validated on the subsample

.

The performance score reached by each ANN in the testing
phase represents its "fitness" value (i.e., the individual
probability of evolution). The genome of each "network-
individual" thus codifies a data distribution model with
an associated validation strategy. The n data distribution
models are combined according to their fitness criteria
using an evolutionary algorithm. The selection of "net-
work-individuals" based on fitness determines the evolu-
tion of the population; that is, the progressive
improvement of performance of each network until the
optimal performance is reached, which is equivalent to
the better division of the global dataset into subsets. The
evolutionary algorithm mastering this process, named
"Genetic Doping Algorithm" (GenD) (33) has similar
characteristics to a genetic algorithm but it's able to main-
tain an inner instability during the evolution, carrying out
a natural increase of biodiversity and a continuous "evo-
lution of the evolution" in the population. The elabora-
tion of T&T is articulated in two phases:

- preliminary phase: in this phase an evaluation of the
parameters of the fitness function that will be used on the
global dataset is performed. During this phase an inductor

 is configured, which consists of an ANN

with an algorithm (A) Back Propagation standard. For this
inductor the optimal configuration to reach the conver-
gence is stabilized at the end of different training trials on
the global dataset DΓ; in this way the configuration that

most "suits" the available dataset is determined: the
number of layers and hidden units and some possible
generalizations of the standard learning law. The parame-
ters thus determined define the configuration and the ini-
tialization of all the individual-networks of the
population and will then stay fixed in the following com-
putational phase. Basically, during this preliminary phase
there is a fine-tuning of the inductor that defines the fit-
ness values of the population's individuals during evolu-
tion.

The accuracy of the ANN performance with the testing set
will be the fitness of that individual (that is, of that

hypothesis of distribution into two halves of the whole
dataset).

- Computational phase: the system extracts from the glo-
bal dataset the best training and testing sets. During this
phase the individual-network of the population is run-
ning, according to the established configuration and the
initialization parameters. From the evolution of the pop-
ulation, managed by the GenD algorithm, the best distri-

bution of the global dataset D Γ into two subsets is
generated, starting from the initial population of possible

solutions . Preliminary experimental ses-

sions are performed using several different initialization
and configuration of the network in order to achieve the
best partition of the global dataset.

Parallel to T&T runs I.S. The IS system is an adaptive sys-
tem, which is also based on the evolutionary algorithm
GenD, and which is able to evaluate the relevance of the
different variables of the dataset in an intelligent way.
Therefore it can be considered on the same level as a fea-
ture selection technique. From a formal point of view, I.S.
is an artificial organism based on the GenD algorithm and
consists of a population of ANN, in which each one car-
ries out a selection of the independent variables on the
available database. The elaboration of I.S., as for T&T, is
developed in two phases:

- Preliminary phase: during this phase an inductor

 is configured to evaluate the parameters of

the fitness function. This inductor is a standard Back-
Propagation ANN. The parameters configuration and the
initialization of the ANNs are carried out with particular
care to avoid possible over-fitting problems that can be
present when the database is characterized by a high
number of variables that describe a low quantity of data.
The number of epochs E0 necessary to train the inductor is

determined through preliminary experimental tests.

- Computational phase: the inductor is active, according
to the stabilized configuration and the fixed initialization
parameters, to extract the most relevant variables of the
training and testing subsets. Each individual-network of

the population is trained on the training set  and

tested on the testing set .

The evolution of the individual-network of the popula-
tion is based on the algorithm GenD. In the I.S. approach
the GenD genome is built by n binary values, where n is
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the cardinality of the original input space. Every gene indi-
cates if an input variable is to be used or not during the
evaluation of the population fitness. Through the evolu-
tionary algorithm, the different "hypotheses" of variable
selection, generated by each ANNs of the population,
change over time, at each generation: this leads to the
selection of the best combination of input variables. As in
the T&T systems the genetic operators crossover and muta-
tion are applied on the ANNs population; the rates of
occurrence for both operators are self-determinated by the
system in adaptive way at each generation.

When the evolutionary algorithm no longer improves its
performance, the process stops, and the best selection of
the input variables is employed on the testing subset.

In order to improve the speed and the quality of the solu-
tions that have to be optimized, the GenD algorithm
makes the evolutionary process of the artificial popula-
tions more natural and less centered on the individual lib-
eralism culture.

The combined action of T&T and I.S. systems allow us to
solve two frequent problems in managing ANNs. Both
systems are based on a Genetic Algorithm, the Genetic
Doping Algorithm (GenD) developed at Semeion
Research Centre [33].

GenD was provided with 100 individuals, generated ran-
domly. Each individual represents a possible distribution
of the whole dataset into two subsets. Two independent
Multilayers Perceptrons (MLPs) with 4 hidden units, are
trained for 100 epochs and tested in blinded manner on
the two subsets. A function of the testing results of the two
independent MLPs defines the fitness of each individual.

A crossover function is applied on the populations of 100
individuals and new individuals are generated. A muta-
tion operator is applied to the new individuals and to the
individuals whose fitness is weakest. In the GenD algo-
rithm the rate of crossover and the rate of mutation are
self-determined by the system in adaptive way at each gen-
eration. This loop is applied for at least 300 generations,
or stopped when the system does not show any significant
improvement at least from 50 generations. The individual
whose distribution of the whole dataset into two subsets
is the best one from the blind testing results is saved and
then used as optimal distribution to train and test more
sophisticated ANNs.

We implemented both algorithms in C language and we
used a Pentium III CPU to run the system on real data.
Around 48 hours were spent for each run. We remind that
T&T and I.S. algorithms have to be used only once to train

the system. Once trained, the system can answer on line to
any new pattern.

After this processing, the features that were most signifi-
cant for the classification were selected and at the same
time the training set and the testing set were created with
a function of probability distribution similar to the one
that provided the best results in the classification.

A supervised Multi Layer Perceptron, with four hidden
units, was then used for the classification task.

Results
Study populations
We collected 54 patients (mean age at onset of disease
59.62 years; range 53.7 – 65.5 years): 28 males (56.4
years; 46.9 – 65.8) and 26 females (62.9 years; 57.8 –
67.9) with a male/female ratio 1.1:1. The site of clinical
onset was spinal in 61.1% (33/54) and bulbar in 38.9%
(21/54) of cases. The mean disease duration at the time of
observation was 3.2 years (range 1–10 years). The fre-
quency of bulbar onset in females (16/29) resulted greater
than in males (5/28).

All patients were previously screened for SOD1 gene
mutation by sequence analysis and no genetic variations
were found.

Control subjects were 144 males and 67 females; age
range 21 to 75 years, (average 38.94).

Genotyping analysis
Table 1 summarizes the distribution of the SNPs in the
two groups of patients and controls. The reliability of the
whole molecular procedure (multiplex and hybridization
steps) was checked by the TNF beta thr26asn polymor-
phism that gave the same results in both strips A and B for
the same subject analyzed (see 17 and 26 for details).

Classification performances with ANNs
Results obtained with Linear Discriminant Analysis were
compared with those obtained with a simple Back Propa-
gation approach (Table 2 and 3).

In these experiments we applied the random criterion to
divide the dataset five times in training and testing sub-
sets applying the 5 × 2 Cross Validation protocol.

The predictive accuracy obtained with Linear Discrimi-
nant Analysis and standard artificial neural networks
ranged from 70% to 79% (average 75.31%) and from
69.1 to 86.2% (average 76.6%) respectively.

With the TWIST approach, every experiment was con-
ducted in a blind and independent manner in two direc-
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Table 1: Genotype distribution at each marker locus: wild type (WT); heterozygous type (Hetero); homozygous type (Homo).

Cases: 54 Controls: 208

Frequency

rs number WT Homo Hetero WT Homo Hetero f (A) f (a)

LPA 93 C/T rs1853021 45 0 9 161 6 41 0,872596 0,127404
LPA 121 G/A rs1800769 33 1 20 166 3 39 0,891827 0,108173
APOA4 thr347ser rs675 32 1 21 135 8 65 0,805288 0,194712
APOA4 gln360his rs5110 44 0 10 183 1 24 0,9375 0,0625
APOB thr71ile rs1367117 35 5 14 100 20 88 0,692308 0,307692
APOC3 -641C/A rs2542052 17 6 31 74 21 113 0,627404 0,372596
APOC3 -482 C/T rs2854117 23 2 29 104 13 91 0,71875 0,28125
APOC3 -455 T/C rs2854116 16 7 31 74 24 110 0,620192 0,379808
APOC3 1100 C/T rs4520 30 3 21 104 24 80 0,692308 0,307692
APOC3 3175 C/G rs5128 47 1 6 170 2 36 0,903846 0,096154
APOC3 3206 T/G rs4225 21 13 20 72 37 99 0,584135 0,415865
APOE cys112arg rs429358 49 0 5 175 1 32 0,918269 0,081731
APOE arg158cys rs7412 45 1 8 186 1 21 0,944712 0,055288
ADRB3 trp64arg rs4994 45 0 9 185 0 23 0,944712 0,055288
PPAR pro12ala rs1801282 48 0 6 170 1 37 0,90625 0,09375
LIPC -480 C/T rs1800588 29 9 16 146 11 51 0,824519 0,175481
LPL -93 T/G rs1800590 54 0 0 201 0 7 0,983173 0,016827
LPL asp9asn rs1801177 54 0 0 201 0 7 0,983173 0,016827
LPL asn291ser rs268 53 0 1 202 0 6 0,985577 0,014423
LPL ser447term rs328 47 0 7 164 3 41 0,887019 0,112981
PON1 met55leu rs854560 2 19 33 31 84 93 0,372596 0,627404
PON1 gln192arg rs662 26 10 18 102 26 80 0,682692 0,317308
PON2 ser311cys rs6954345 33 2 19 131 6 71 0,800481 0,199519
LDLR NcoI +/- rs5742911 28 5 21 98 19 91 0,689904 0,310096
CETP -631 C/A rs1800776 45 0 9 168 2 38 0,899038 0,100962
CETP -629 C/A rs1800775 6 16 32 49 60 99 0,473558 0,526442
CETP ile405val rs5882 20 9 25 86 30 92 0,634615 0,365385
TNFbeta thr26asn rs1041981 31 7 16 113 12 83 0,742788 0,257212
MTHFR 677 C/T rs1801133 19 12 23 60 35 113 0,560096 0,439904
NOS3 -922 A/G rs1800779 9 11 34 57 52 99 0,512019 0,487981
NOS3 -690 C/T rs3918226 40 2 12 164 3 41 0,887019 0,112981
NOS3 glu298asp rs1799983 18 11 25 75 36 97 0,59375 0,40625
DCP1 IVS16 ins/del rs1799752 24 8 22 38 70 100 0,423077 0,576923
AGTR1 1166 A/C rs5186 31 5 18 99 10 99 0,713942 0,286058
AGT met235thr rs699 14 4 36 67 46 95 0,550481 0,449519
NPPA 664 G/A rs5063 52 0 2 194 0 14 0,966346 0,033654
NPPA 2238 T/C rs5065 31 3 20 149 3 56 0,850962 0,149038
ADD1 gly460trp rs4961 36 3 15 145 4 59 0,838942 0,161058
SCNN1A trp493arg rs5742912 54 0 0 186 0 22 0,947115 0,052885
SCNN1A ala663thr rs2228576 27 3 24 94 18 96 0,682692 0,317308
GNB3 825 C/T rs5443 30 5 19 103 19 86 0,701923 0,298077
ADRB2 arg16gly rs1042713 11 21 22 31 84 93 0,372596 0,627404
ADRB2 gln27glu rs1042714 24 7 23 89 22 97 0,661058 0,338942
MMP3(-1171) 5A/6A rs3025058 9 14 31 34 59 115 0,439904 0,560096
FII 20210 G/A rs1799963 53 0 1 200 0 8 0,980769 0,019231
FV arg506gln rs6025 53 0 1 204 0 4 0,990385 0,009615
FVII del/ins rs5742910 41 1 12 144 4 60 0,836538 0,163462
FVII arg353gln rs6046 40 1 13 152 3 53 0,858173 0,141827
PAI (-675) 5G/4G rs1799768 8 21 25 40 52 116 0,471154 0,528846
PAI 11053 G/T rs7242 13 12 29 39 66 103 0,435096 0,564904
FGB -455 G/A rs1800790 34 2 18 121 8 79 0,771635 0,228365
ITGA2 873 G/A rs1062535 22 7 25 72 27 109 0,608173 0,391827
ITGB3 leu33pro rs5918 37 1 16 159 6 43 0,867788 0,132212
SELE ser128arg rs5361 45 0 9 168 2 38 0,899038 0,100962
SELE leu554phe rs5355 47 0 7 180 1 27 0,930288 0,069712
ICAM gly214arg rs1799969 54 0 0 171 0 37 0,911058 0,088942
TNF alpha-376 G/A rs1800750 51 0 3 204 0 4 0,990385 0,009615
TNF alpha-308 G/A rs1800629 44 0 10 158 1 49 0,877404 0,122596
TNF alpha-244 G/A rs673 54 0 0 207 0 1 0,997596 0,002404
TNF alpha-238 G/A rs361525 52 0 2 192 0 16 0,961538 0,038462

Deviations of the genotype frequencies from the Hardy-Weinberg equilibrium were tested in the control group with chi-squared statistics (p values ranging from 0.2 to 1.0). 
Allele frequencies at each marker locus were calculated from the genotype frequencies of the control group under the null hypothesis of Hardy-Weinberg equilibrium. Allele 
frequencies at each marker locus are reported.
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tions: training with sub-sample A and blind testing with
sub-sample B vs training with sub-sample B and blind
testing with sub-sample A. The results from the best five
applications of TWIST procedures are reported in Table 4.
This advanced intelligent system, through the final selec-
tion of a subgroup of 25–27 variables along ten independ-
ent applications, provided the highest predictive
performance with a sensitivity ranging from 92.0% to
100% (average 96.75%), and a specificity ranging from
91.67% to 98.81% (average 95.78%) and with an overall
accuracy ranging from 94.4 to 97.6% (average 96.0%). In
all the TWIST system experiments the 90% overall accu-
racy threshold was exceeded whereas Back Propagation
and Linear Discriminant Analysis never exceeded the 80%
threshold.

Genetic variants selected by the five TWIST procedures
Seven genetic variants were always independently selected
by the five TWIST procedures: apolipoprotein E (APOE)
(chromosome 19q13.2) arg158cys; hepatic lipase (LIPC)
(chromosome 15q21-23) -480 C/T; endothelial nitric
oxide synthase (NOS3) (chromosome 7q36) 690 C/T and
glu298asp; vitamin K-dependent coagulation factor seven
(F7) (chromosome 13q34) arg353glu, glycoprotein Ia/IIa
(ITGA2) (chromosome 5q23-q31) 873 G/A; E-selectin
(SELE) (chromosome 1q22-q25) ser128arg.

Table 5 gives the results obtained with ANNs using only
the input data derived from these variants.

Genetic variants independently selected by four TWIST procedures
The number of genetic variants selected four times over
five experiments consisted of: peroxisome proliferator
activated receptor gamma (PPARG) pro12ala (chromo-

Table 3: Results obtained applying the random criterion and classifying with a simple back propagation.

ANN ALS Controls A. Mean Acc W. Mean Acc Errors

FF_Bp(1ab) 74% 85% 79% 82% 23
FF_Bp(1ba) 89% 84% 86% 85% 20
FF_Bp(2ab) 82% 83% 82% 82% 23
FF_Bp(2ba) 78% 83% 80% 82% 24
FF_Bp(3ab) 56% 94% 75% 86% 18
FF_Bp(3ba) 63% 88% 76% 83% 22
FF_Bp(4ab) 67% 84% 75% 80% 26
FF_Bp(4ba) 59% 85% 72% 80% 26
FF_Bp(5ab) 63% 80% 71% 76% 31
FF_Bp(5ba) 52% 86% 69% 79% 27

Mean 68% 85% 77% 82% 24

The second and third columns report the percentage of patients correctly classified as belonging to cases or controls. The fourth and fifth columns 
report the accuracy obtained by the model as arithmetic mean and weighted mean. The number of errors is reported in the last column. The last 
row reports the mean values of all the columns.

Table 2: Results obtained applying the random criterion and classifying with the linear discriminant analysis.

LDA ALS Controls A. Mean Acc W. Mean Acc Errors

LDA(1ab) 78% 78% 78% 78% 29
LDA(1ba) 93% 70% 81% 74% 33
LDA(2ab) 82% 78% 80% 79% 28
LDA(2ba) 82% 79% 80% 79% 27
LDA(3ab) 63% 81% 72% 77% 30
LDA(3ba) 74% 74% 74% 74% 34
LDA(4ab) 78% 71% 75% 73% 36
LDA(4ba) 67% 81% 74% 78% 29
LDA(5ab) 82% 67% 75% 70% 39
LDA(5ba) 59% 73% 66% 70% 39

Mean 76% 75% 75% 75% 32

The second and third columns report the percentage of patients correctly classified as belonging to cases or controls. The fourth and fifth columns 
report the accuracy obtained by the model as arithmetic mean and weighted mean. The number of errors is reported in the last column. The last 
row reports the mean values of all the columns.
Page 8 of 12
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some 3p25), lipoprotein lipase (LPL) asp9asn (chromo-
some 8p22), paraoxonase 1 (PON1) met55leu and
paraoxonase 2 (PON2) ser311cys (chromosome 7q21.3),
tumor necrosis factor beta (TNF beta) thr26 asn (chrom
6p21.3), methylenetetrahydrofolate reductase (MTHFR)
677 C/T (chrom 1p36.3), angiotensin II receptor type1
(AGTR1) 1166 A/C (chromosome 3q21-25), atrial natriu-
retic peptide (NPPA) 664 G/A (chrom 1p36-21), epithe-
lial Na channel subunit (SCNN1A) trp493arg,
(chromosome 12p13), FVII -232 ins/del, SELE
leu554phe, Tumor Necrosis Factor alpha (TNFalpha) -
376 G/A and -308 G/A (chromosome 6p21.3).

The TNF beta thr26asn was used as further control. First it
was selected by four TWIST systems and later, since the
information linked to such a variation was already
recruited, none of the TWIST systems selected this SNP.

Genetic variants never selected by any TWIST procedures
The following gene/genetic variants were never selected by
the five TWIST procedures: apolipoprotein A4 (APOA4)
(chromosome 11q23) thr347ser; apolipoprotein C3
(APOC3) (chromosome 11q23.1-q23.2) -641 C/A and
482 C/T; beta 3 adrenergic receptor (ADRB3) trp64arg
(8p12-p11.2); LPL ser447term; PON1 gln192arg; low

density lipoprotein receptor (LDLR) (chromosome
19p13.3) exon 18 NcoI +/-; cholesteryl ester transfer pro-
tein (CETP) -631 C/A and -629 C/A (chromosome
16q21); NOS3 922 A/G; G-protein beta 3 subunit (GNB3)
825 C/T (chromosome 12p13); beta 2 adrenergic receptor
(ADBR2) arg16gly (chromosome 5q31-q32); beta fibrin-
ogen (FGB) -455 G/A (chromosome 4q28); TNF alfa -238
G/A and TNF beta thr26asn.

Discussion
The mechanism of neurodegeneration in ALS remains an
enigma. The major problem is that little is known about
the disease mechanism, making candidate gene selection
difficult and haphazard. It follows that an unconventional
approach of making no a priori assumptions about the
location of the variants of interest might be appropriate,
provided that a similarly unconventional statistical
approach is available to manage the data complexity.

Comparison of results obtained using three different ana-
lytical approaches (classical statistics, standard neural net-
works and advanced artificial neural networks), points
out the need to employ systems that are really able of han-
dling the disease complexity instead of treating the data
with reductionist approaches unable to detect multiple

Table 5: Results obtained with ANNs using only the seven genetic variants selected by TWIST procedure.

ANN ALS Control A. Mean Acc W. Mean Acc Errors

FF_Bp(ab) 93% 87% 90% 88% 16
FF_Bp(ba) 89% 74% 82% 78% 28

Mean 91% 81% 86% 83% 22

The second and third columns report the percentage of patients correctly classified as belonging to cases or controls. The fourth and fifth columns 
report the accuracy obtained by the model as arithmetic mean and weighted mean. The number of errors is reported in the last column. The last 
row reports the mean values of all the columns.

Table 4: Results of ten experiment obtained applying TWIST procedure in an independent manner to the whole dataset.

Experiment ALS Controls A. Mean Acc W. Mean Acc Errors

TWIST 1ab 96% 97% 96.5% 96% 6
TWIST 1ba 98% 95% 97.5% 96% 4
TWIST 2 ab 100% 94% 97% 96% 5
TWIST 2 ba 100% 96% 98% 96% 5
TWIST 3 ab 97% 99% 98% 97% 4
TWIST 3 ba 95% 99% 97% 96% 3
TWIST 4 ab 98% 90% 95% 93% 9
TWIST 4 ba 100% 94% 97% 94% 7
TWIST 5 ab 92% 96% 94% 96% 5
TWIST 5 ab 92% 98% 96% 96% 5

Mean 97% 96% 96% 96% 5

In the first column ab means training on subset a and testing on subset b; ba means the opposite. The second and third columns report the 
percentage of patients correctly classified as belonging to cases or controls. The fourth and fifth columns report the accuracy obtained by the model 
as arithmetic mean and weighted mean. The number of errors is reported in the last column. The last row reports the mean values of all the 
columns.
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(page number not for citation purposes)



BMC Bioinformatics 2008, 9:254 http://www.biomedcentral.com/1471-2105/9/254
genes of smaller effect in predisposing to the disease. The
possibility of obtaining high diagnostic accuracy from
limited and selected genetic information using these new
analytical tools, shows that even in so-called sporadic ALS
the genetic background plays a fundamental role.

Another important obstacle in approaching the molecular
basis of a rare disease like ALS in a conventional manner,
is related to the difficulty of finding a homogeneous sam-
ple population large enough to be analysed for a wide
number of genetic variants. Artificial neural networks, at
variance with the classical statistical tests, can manage
complexity even with relatively small samples and the
subsequent unbalanced ratio between variables and
records. In this connection, it is important to note that
adaptive learning algorithms of inference, based on the
principle of a functional estimation like artificial neural
networks, overcome the problem of dimensionality.

Internal validation of the prediction accuracy is one of the
most important problems in neural networks analysis. In
fact, the restriction of training procedures to only a part of
the dataset, generally half of it, causes a potential loss of
power to recognize hidden patterns. In this study optimi-
zation of the training and testing procedures were
addressed using the evolutionary training and testing
algorithm, which ensured that the two halves of the data-
set contained the same amount of relevant information.
Thus, the best division of the whole dataset into a training
and a testing set was reached after a finite number of gen-
erations. Finally ANNs were able to identify gene combi-
nations (allelic variants) that are likely to produce
accurate predictions of ALS for a single individual, regard-
less of some possible limitations such as Male/Female
ratio and age differences among the case and control
groups. This study enrolled more than 50 medical cases
with an accurate diagnosis of ALS and we were able to test
them for 69 SNPs in 35 genes. Although the SALS patients
analyzed represent a small cohort, it is nevertheless really
representative from an epidemiological point of view (e.g.
male/female ratio, bulbar/spinal ratio).

Besides, all ALS patients were previously screened for
SOD1 gene mutations with negative results, thus confirm-
ing the sporadic nature of the disease. However, the sam-
ple size of 54 cases analysed for more than 60 SNPs,
prompted us to look for valid, powerful and efficient sta-
tistical tools to approach and evaluate our data.

On the basis of the observed results some information
related to the methodological approaches used can be
assumed. The multiarray approach was previously vali-
dated by ourselves [17] and others [26] and contains TNF
beta as the internal control.

Indeed, ApoE arg158cys was selected by all the five
TWISTs while the ApoE cys112arg was selected only once.
For NOS variants, the position -922 in the promoter
region was never selected while the -690 variant in the
promoter region too and the non synonymous variant in
position 698 were both selected by all the five TWISTs.
The two Factor VII and Selectin (SELE) genetic variants
both containing the information necessary for the correct
attribution to the disease vs healthy status, were selected
five times (FVII arg353glu and SELE ser128arg) and four
times (FVII del/ins and SELE leu554phe), respectively.
The role of the paroxonase in predisposing to ALS disease
appears to be confirmed: PON1 met 55leu and PON2
ser311cys were chosen four times, whereas PON1
gln192arg was never. PPARγ pro12ala was chosen four
times: we can assume a generic role of this receptor on ALS
disease since PPARγ is at the crossroads between lipid
metabolism and innate immune response [34]. In addi-
tion, we noticed, for example, that in the same TNF locus,
6p21.3, lies also the HFE gene for hemocromatosis and
the peripherin gene, both previously involved in ALS dis-
ease [35].

Few genetic variants were never selected by any of the
TWIST procedures. One possible reason is that some
information had already been picked up by the systems,
e.g. for PON1, NOS and TNF. Moreover, regarding APOA4
and APO C3 variants we observed that they lie on chro-
mosome 11 which may not be at all involved in the dis-
ease. Indeed, a very recent paper on genome wide
genotyping in ALS [13], found no SNPs associated with
the disease on chromosome 11.

From a biological point of view, the identified gene varia-
tions confirm some of the already known results (ApoE
and PON for example) and identify new gene/genetic var-
iations not known to be involved in the disease. Our
results strengthen the involvement of oxidative stress as
well as angiogenesis (NOS) and immune response (TNF)
pathways. Besides, our results shed light on the involve-
ment of lipid pathways (LIPC, PPARγ). Indeed, a role for
polyunsaturated fatty acids has been postulated for the
misfolding protein aggregations in several neurodegener-
ative diseases including familial ALS [36]. Furthermore
polyunsaturated fatty acids could be enzymatically con-
verted into various lipid mediators such as leukotriene
and prostaglandins which have a strong biological activity
in several signalling pathways [37].

Conclusion
Our study has a major focus on disentangling the effect of
interacting multiple low penetrance alleles on complex
diseases. We analysed genetic variables within genes pos-
sibly involved in the ALS disease and thanks to artificial
intelligence agents such as those employed in this study,
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on the basis of a subset of genetic data only, we were are
able to conveniently differentiate ALS cases from control
subjects. We still do not know which specific variation
within the subset of SNP is linked to the disease, however
ANNs are able to discriminate among cases and controls
with only seven genetic SNPs.

We are aware that this is an exploratory study and that it
should be replicated in another and much larger sample
size, nevertheless this study offers new insight into genetic
markers of sporadic ALS pointing out the existence of a
strong genetic background. The data provide useful infor-
mation to direct future research on the complexity of the
genetic profile of ALS subjects.
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