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Abstract

Contact lens wear causes mutual interactions between the ocular surface and the lens,

which may affect comfort as well as vision. The aim of this study was to examine deforma-

tions in modern positive- and negative-powered silicone hydrogel soft contact lenses (SiH

SCLs) after 7 days of continuous wear. This pre-post interventional study included 64 eyes:

42 eyes with myopia of -3.00 D and 22 eyes with hyperopia of +3.00 D. All patients under-

went general ophthalmic examination, corneal topography/tomography, total corneal and

epithelial thickness mapping, and specular microscopy before and after the wearing period.

SiH SCLs made of senofilcon A were worn continuously for 7 days on all eligible eyes. The

geometry of the new and used lenses was measured 3 to 6 minutes after removal in two per-

pendicular planes using a custom-made swept source optical coherence tomography (SS-

OCT) system for in vitro measurements. The anterior and posterior radii of curvature

decreased in -3.00 D lenses in two perpendicular planes. This effect correlated significantly

with average keratometry of the cornea. Sagittal lens height was lower in +3.00 D lens after

wear, which correlated moderately with the corneal sagittal height. A significant decrease in

central corneal epithelial thickness was observed after wearing +3.0 D lenses. In conclusion,

SiH SCLs made of senofilcon A undergo minor deformations after 7-day continuous wear.

Geometry modifications are different for -3.00 D and +3.00 D lenses, and they imitate the

shape of the anterior eye surface. These geometric changes are accompanied by a

decrease in the central thickness of corneal epithelium after +3.00 D lens wear.

Introduction

More than 140 million people worldwide are estimated to wear contact lenses [1]. Soft contact

lenses (SCLs) make up approximately 90% of current fits and refits, and the rest include rigid

or hybrid contact lenses [2]. Contact lens wear causes mutual interactions between the ocular
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surface and the lens, inducing mechanical, biological, and chemical mechanisms, including

hypoxic stress, that are associated with discomfort and may lead to vision-threatening condi-

tions [3, 4]. Therefore, interaction between the eye and the contact lens impacts clinical toler-

ance of the lens.

Wearing SCLs can affect the anterior corneal curvature [5] but little is known about the

modification of SCL shape during wear on the ocular surface. The effects of changes to SCLs

during wear have been addressed in a few reports and include characteristics such as lens sur-

face roughness [6, 7], the refractive index [8, 9] and lens shape [10, 11]. The authors observed a

reduction in the overall lens diameter and the radius of curvature of the back optical zone in

conventional hydrogel SCLs. The observed effects were linked to the dehydration of lenses

during wear. However, modern silicone hydrogel (SiH) SCLs generally have lower water con-

tent and are less prone to variations in hydration [12, 13]. In these studies, the methodology

involved an instrument based on mechanical measurement of the projection of the lens

immersed in physiological NaCl solution, which limited the entire evaluation to the central

thickness of the lens, the total diameter of the lens, and the radius of curvature of the back opti-

cal zone [10, 11].

New technology based on optical coherence tomography (OCT) was recently introduced

for geometric inspection of SCLs. OCT has been very successful in ophthalmic diagnostics and

offers a number of potential advantages over existing methods of lens inspection, including

the ability to measure both sagittal depth and the thickness profile of the lens, and the ability to

provide high-resolution geometric information across the entire soft lens immersed in temper-

ature-controlled measurement solution [14–16]. The first commercial instrument based on

spectral domain OCT was validated recently [17]. This new modality allows more comprehen-

sive analysis of geometric changes in SCLs during wear, an issue that has very rarely been

examined.

The aim of this study was to determine wear-induced deformations of SiH SCLs using

OCT. To the best of our knowledge, the hypothesis that the change in SiH SCL shape after

wear may have plastic characteristic and may be influenced by the geometry of the ocular sur-

face of the eye has not yet been verified. This information may provide a scientific confirma-

tion of everyday observations of the practitioners and could be useful in developing new

materials and designs for contact lenses, especially in the face of an incipient revolution in con-

tact lens developments, including drug-eluting lenses or lenses containing electronic compo-

nents (e.g., sensors) [18–22].

Materials and methods

Study design

This is a prospective, pre-post interventional study conducted at the Division of Ophthalmology

and Optometry, Department of Ophthalmology, Collegium Medicum, Nicolaus Copernicus

University in Bydgoszcz, Poland, in accordance with the principles of the Declaration of Hel-

sinki, the International Conference on Harmonization Good Clinical Practice guidelines, and

all applicable laws and regulations. The study was approved by the Ethic Committee on Clinical

Investigation (Institutional Review Board) at Nicolaus Copernicus University, and informed

written consent was obtained from all patients before performing the measurements.

Participants

The study involved two groups of contact lens wearers. Forty-two eyes in 25 participants (17

women and 8 men) with myopia of -3.00 D were enrolled in the myopic group, and 22 eyes in

13 patients (6 women and 7 men) with hyperopia of +3.00 D were enrolled in the hyperopic
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group (Table 1). The eyes with corneal or refractive astigmatism >1.5 D were excluded from

the study. All patients were experienced contact lens users, without any ocular diseases or seri-

ous contact lens-related complications in their history. Minimal duration of SCL cessation

before the initial examination was 7 days.

Study protocol

All patients underwent a general ophthalmic examination, corneal topography/tomography

with a Placido / Scheimpflug instrument (Sirius, CSO, Italy), total corneal thickness and epi-

thelial thickness mapping with OCT (Avanti RTVue XR, Optovue, USA), and specular micros-

copy (EM3000, Tomey, Germany). The Placido / Scheimpflug instrument provided the

horizontal visible iris diameter (HVID), corneal sagittal height (CSH), and anterior segment

sagittal height (ASSH). CSH and ASSH were measured manually at HVID and a chord of 16

mm, respectively Subsequently, all eligible eyes wore SiH SCLs (Acuvue Oasys, Johnson and

Johnson, USA) continuously for 7 days (-3.00 D in myopic group or +3.00 D in the hyperopic

group; base curvature [BC] 8.4 mm, diameter [DIA] 14.0 mm). The lenses were made of seno-

filcon A, and the water content was 38%. The Young modulus was 0.7 MPa, central thickness

for the -3.00 D lens 0.07 mm, and oxygen transmissibility Dk/t of the lens 147×109. After the

subjects stopped wearing the contact lenses, the eyes were examined again. Contact lens geom-

etry was measured 3 to 6 minutes after removal in two perpendicular planes in a wet cell using

a swept source OCT (SS-OCT) prototype [16]. The measurements of five new (freshly

unpacked) contact lenses with the same design and power were considered a reference for sta-

tistical comparison.

SS-OCT system and SCL measurements

The measurement procedure has been described in detail elsewhere [16]. The contact lenses

were scanned using a custom-made SS-OCT system (Fig 1A) operating at a speed of 50 kHz

and central wavelength of 1310 nm (Axsun Technologies Inc., Billerica, USA). Interference

signals were digitized by a dual-channel acquisition board (Gage Applied Inc., Lockport, IL;

Gage Compuscope 14200, 200 MS/s, 14-bit resolution), enabling a free-space depth (axial)

range of 9.5 mm. A sensitivity of 110 dB was obtained when the sample was illuminated with a

light beam with a power of 7.5 mW. The axial and transverse resolutions were 6 μm (in air)

and 24.8 μm, respectively. The scan protocol allowed for generation of a three-dimensional

(3-D) volumetric data set and was composed of 300 B-scans each of 300 A-scans (Fig 1A).

The lens was placed in a wet cell filled with a 0.5% fat emulsion, made with Intralipid 10%

Table 1. Baseline characteristics of the enrolled eyes.

Characteristic Myopic group (-3.00 D) Hyperopic group (+3.00 D) p

n = 42 n = 22

Age, years 23.5 (22–25) 36.5 (21.5–45.5) 0.071

Keratometry average, mm 7.69 (0.17) 8.00 (0.28) <0.001

Horizontal visible iris diameter, mm 12.19 (11.92–12.51)) 12.08 (11.96–12.37) 0.369

Corneal sagittal height, mm 3.43 (0.27) 3.12 (0.24) <0.001

Sagittal height of the anterior segment, mm 4.51 (0.32) 3.97 (0.23) <0.001

Central corneal thickness, μm 548.1 (3.4) 544.7 (23.7) 0.843

Central epithelial thickness, μm 51.9 (3.6) 53.3 (3.8) 0.199

Endothelial cell count, /mm2 2855 (256) 2663 (305) 0.021

Data are given as mean (standard deviation) or median (Q1 –Q3)

https://doi.org/10.1371/journal.pone.0242095.t001
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(Fresenius Kabi, Germany) and 0.9% unpreserved saline solution at 20˚C ± 0.5˚C, which is in

line with ISO 18369–3:2017 except the additional fat emulsion. An auto-positioning method

based on the lateral capillary interactions between floating objects was utilized [16].

To obtain profilometric information about the SCL, the volumetric 3-D OCT data were

post-processed during a multistage procedure (Fig 1B). First, central averaged sections (hori-

zontal X and vertical Y scan) were extracted from 3-D data sets based on the en-face projection

view (Fig 1A). The interface of the scattering solution and both contact lens interfaces were

then segmented in both central cross-sections (Fig 1C). This allowed for a correction of the

images for light refraction using a ray-tracing technique with the following refractive indices:

intralipid solution, n1 = 1.378; senofilcon A, n2 = 1.42 measured before the study). The correc-

tion is crucial for obtaining the geometrically accurate shape of the imaged structures (Fig 1D).

Finally, a best-fit spherical surface over a 6-mm-diameter central zone was used to measure

the radii of the anterior and posterior curvatures in two perpendicular planes (X and Y) (Fig

1D). Before starting the actual study, a repeatability test of the method was performed by tak-

ing five measurements of new sample of Acuvue Oasys -3.00 D and +3.00 D SiH SCLs 3–6

minutes after removal from the blister. Repeatability was expressed by the coefficient of

Fig 1. Experimental SS-OCT set-up for quantitative inspection of SCLs. SC, scanner; OBJ, objective; CUV, cuvette

with the lens under investigation. (A) Central X and Y cross-section (plane) extracted from the three-dimensional data

set. (B) Central cross-sectional image of the lens in the cuvette with enhanced contrast. (C) Segmentation of the

intralipid solution interface and CL interfaces. (D) A refraction correction algorithm must be applied to the segmented

surfaces to obtain geometrically accurate lens parameters. R1, anterior radius of curvature; R2, posterior radius of

curvature; CT, central lens thickness.

https://doi.org/10.1371/journal.pone.0242095.g001
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variation, defined by the relative standard deviation (standard deviation [SD] divided by the

mean). All measurements were performed by a trained technician.

Statistical analysis

Experimental data along with the results of statistical analysis are given in S1 Table. The sum-

mary statistics for normally distributed continuous variables are presented as mean and SD or

as median and interquartile range for non-normally distributed variables. The normality of

distribution was assessed by visual inspection of histograms and by the Shapiro-Wilk normal-

ity test. The differences between continuous normally distributed variables were analyzed by

the t-test for independent samples or dependent samples by repeated-measures ANOVA. In

the case that data were not normally distributed, the differences were tested using the Wil-

coxon test when the samples were independent or the Friedman test for dependent samples.

Pearson’s correlation coefficient (r) was used to examine the dependencies between select con-

tinuous variables. The results were considered significant when p<0.05. Alternatively, the dif-

ferences between normally distributed variables were also reported in terms of Bayes factor

BF10 which quantifies the likelihood of the data under the alternative hypothesis relative to the

likelihood of the data under the null hypothesis. Bayes factor is a measure of the evidence for

the alternative hypothesis, compared to the null hypothesis [23, 24]. The statistical analysis was

performed using R software version 3.0.3 (The R Foundation) [25].

Results

Statistically significant differences in corneal keratometry, corneal sagittal height, sagittal

height of the anterior segment and endothelial cell count (Table 1, S1 Table). Fig 2 presents

two representative original OCT images of a new and used -3.00 D SCL immersed in the 0.5%

fat emulsion in 0.9% saline solution. Overlaying both images emphasizes the differences in the

lens geometries.

The measurements of new Acuvue Oasys -3.00 D and +3.00 D lenses are summarized in

Tables 2 and 3, respectively, as “before”. The coefficients of variation for the new -3.00 D lens

Fig 2. Superimposed cross-sectional SS-OCT images of a -3.00 D soft SiH SCL in a wet cell filled with solution of

increased reflectivity. A—new lens, immediately after removal from the blister pack (green); B—used lens,

immediately after removal from the eye after 7-day continuous wear (red); C—Meniscus of the solution of increased

reflectivity. �artefact of the central light reflex.

https://doi.org/10.1371/journal.pone.0242095.g002
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in two perpendicular planes were 0.16% and 0.08% for diameter, 1.5% and 0.77% for central

thickness, 0.07% and 0.15% for sagittal height, 0.5% and 0.48% for anterior radius of curvature,

and 0.86% and 0.56% for posterior radius of curvature (S1 Fig).

After 7 days of continuous wear, we found a significant decrease in the anterior and poste-

rior radii of curvature of -3.00 D SCLs (8.99 mm vs 8.26 mm, with BF10 > 150, which indicated

a very strong evidence for alternative hypothesis). However, the diameter and sagittal height

did not change significantly (Table 2, S1 Fig). A slight increase in the central lens thickness

was also observed. We also performed correlation analyses to study the changes in the mea-

sured parameters of the -3.00 D lens in two perpendicular planes and the corneal geometry.

We found a significant correlation between the changes in the anterior and posterior curvature

of the lens measured in the X and Y planes with the average keratometry (Kave). For the ante-

rior curvature in planes X and Y, the correlation coefficient was r = 0.43 (p = 0.005) and

r = 0.44 (p = 0.003), respectively, and in the posterior curvature it was r = 0.5 (p = 0.001) and

r = 0.5 (p = 0.001), respectively (S1 Fig).

In the hyperopic group, we found a significant decrease in the sagittal height of the lens

with BF10 > 150 indicating a very strong evidence for alternative hypothesis), but no change in

diameter, central thickness, or central curvature after 7 days of continuous lens wear (Table 3,

S2 Fig). Correlation analyses revealed a significant correlation between corneal sagittal height

Table 2. Changes in the measurements of -3.00 D contact lenses in two perpendicular planes.

Parameter Plane Before (n = 5) After (n = 42) Difference p

Diameter, mm X 14.16 (14.16–14.16) 14.24 (14.19–14.31) 0.078

Y 14.17 (14.17–14.17) 14.23 (14.17–14.32) 0.103

Central thickness, mm X 0.055 (0.001) 0.052 (0.006) 0.003 0.001

Y 0.056 (0.001) 0.051 (0.007) 0.005 <0.001

Sagittal height, mm X 3.54 (3.54–3.54) 3.54 (3.52–3.56) 0.959

Y 3.54 (3.54–3.55) 3.53 (3.5–3.55) 0.343

Anterior radius of curvature, mm X 8.99 (0.05) 8.26 (0.26) -0.73 <0.001

Y 9.01 (0.04) 8.39 (0.24) -0.62 <0.001

Posterior radius of curvature, mm X 8.51 (0.07) 7.89 (0.25) -0.62 <0.001

Y 8.54 (0.05) 8.02 (0.22) -0.52 <0.001

Data are given as mean (SD) or median (Q1 –Q3).

https://doi.org/10.1371/journal.pone.0242095.t002

Table 3. Changes in the measurements of +3.00 D contact lenses in two perpendicular planes.

Parameter Plane Before (n = 22) After (n = 22) Difference p

Diameter, mm X 14.23 (14.23–14.25) 14.24 (14.12–14.33) 0.626

Y 14.27 (14.27–14.32) 14.23 (14.14–14.31) 0.079

Central thickness, mm X 0.099 (0.003) 0.101 (0.005) 0.648

Y 0.1 (0.002) 0.101 (0.005) 0.576

Sagittal height, mm X 3.52 (3.51–3.52) 3.43 (3.41–3.44) -0.09 <0.001

Y 3.52 (3.51–3.52) 3.42 (3.41–3.44) -0.10 <0.001

Anterior radius of curvature, mm X 8.16 (0.30) 8.04 (0.26) 0.165

Y 8.16 (0.28) 8.21 (0.26) 0.632

Posterior curvature, mm X 8.51 (0.21) 8.41 (0.26) 0.207

Y 8.50 (0.16) 8.53 (0.28) 0.694

Data are given as mean (SD) or median (Q1 –Q3).

https://doi.org/10.1371/journal.pone.0242095.t003
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and the change in lens sagittal height measured in the X and Y planes (r = 0.44, p = 0.039 and

r = 0.51, p = 0.015, respectively). In addition, we found a significant correlation between the

change in lens diameter and Kave. For planes X and Y, r = 0.49 (p = 0.002) and r = 0.57

(p = 0.006), respectively, though the change in the median lens diameter was not significant

(S2 Fig).

Table 4 presents the modifications in basic corneal parameters after 7 days of continuous

wear. A significant decrease in the central epithelial thickness of 2.36 μm was observed after

wearing the +3.00 D lens. The Bayes factor BF10 = 45, which indicated a strong evidence for

alternative hypothesis. We also measured a slight but significant decrease in the endothelial

cell count in the myopic group (S1 Table, S3 Fig).

Discussion

Two or three decades ago, the fitting of SCLs made of hydrogel was much more complicated

than the current procedure. A practitioner had to select an appropriate diameter and base

curve to fit the eye. The majority of SCLs are currently manufactured in only one diameter

and base curve, and they are supposed to fit more than 95% of eyes. Consequently, we investi-

gated whether modern SCLs adjust their shape to the shape of the ocular surface on which the

lens is worn. One can also speculate that this adjustment is related to the contact lens design,

mostly the thickness profile, as well as the mechanical properties of the material used for

manufacturing the lenses.

The lenses investigated in this study are characterized by the same geometrical descriptors

like base curve and diameter. SCLs were of opposite power (±3.00 D), which means that posi-

tive-powered SCL is centrally thicker than negative-powered SCL. The mechanical properties

of the contact lenses are described by tensile (Young’s) modulus of the lens material [26]. The

tensile modulus of modern SCLs is within a range of 0.3 to 1.5 MPa. Although these values

come from in vitro measurements at room temperature (20˚C), they demonstrate a correlation

with the clinical performance of the lens. Higher tensile modulus values are more likely to

cause mechanically driven adverse events during SCL wear, such as mucin ball presence, cor-

neal erosions, superior epithelial arcuate lesions, lid wiper epitheliopathy, SCL-induced papil-

lary conjunctivitis, and meibomian gland dropout [27]. SCLs made of senofilcon A used in

this study are characterized by moderate tensile modulus (0.7 MPa). Senofilcon A belongs to

the second generation of SiH materials in which hydrophilic properties were introduced

through an internal wetting agent, poly(vinyl pirrolidone) [12]. Accordingly, the properties of

the SiH lens material enable better comfort and acceptance by the lens wearers.

In this study, we observed deformations of the SCLs as the result of continuous lens wear. It

has to be pointed out that the stability (and mobility) of the lens resting on the eye depends on

the complex balance between the forces at the interfaces between tear film, the lens and the

cornea [28]. During everyday usage, a repeated force is applied to the SCL by the eyelids with

Table 4. Changes in basic corneal parameters after 7 days of continuous wear.

Parameter Myopic group -3.00 D Hyperopic group +3.00 D

Before wear After wear Difference p Before wear After wear Difference p

Mean (SD) n = 42 Mean (SD) n = 42 Mean (SD) n = 22 Mean (SD) n = 22

Keratometry average, mm 7.69 (0.18) 7.73 (0.36) 0.431 8.00 (0.28) 8.00 (0.27) 0.919

Central corneal thickness, μm 548.1 (30.4) 545.7 (29.6) -2.4 0.042 544.7 (23.7) 543.2 (24.0) 0.206

Central epithelial thickness, μm 51.88 (3.59) 52.48 (4.10) 0.243 53.27 (3.75) 50.91 (3.33) -2.36 0.001

Endothelial cell count, /mm2 2855.5 (256.1) 2799.3 (260.4) -56.1 0.017 2662.9 (304.8) 2679.1 (308.4) 0.329

https://doi.org/10.1371/journal.pone.0242095.t004
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each blink, which causes reaction of the lens in terms of its instantaneous deformation [29]. In

addition to that, the eyelid exerts constant pressure on the cornea when the eye is closed. It has

been estimated that the eyelid pressure on the cornea is age-dependent and ranges between 5

and 30 mmHg, and the normal loads are in the millinewton (mN) range [30–33]. Therefore,

simulation of mechanical loads during wearing period may help in explaining the measured

effects. Other physical factors contributing to the lens deformations include hydration, osmo-

larity and temperature.

After 7 days of continuous lens wear, a significant decrease was measured in the anterior

and posterior radii of curvature of a -3.00 D contact lens within a central 6-mm-diameter

zone. Moreover, we found a moderate correlation between the amount of the decrease in the

central curvatures of the lens and Kave. The steeper the anterior surface of the central cornea

on which the lens was worn, the higher the deformation of the contact lens. On the other

hand, we did not observe any change in the central curvatures of the +3.00 D lens. This can be

explained by the flatter anterior corneal curvatures in the hyperopic group (see Table 4), or

more likely by the differences in the lens thickness in the center. Central thickness measured

for -3.00 D lens was 66 μm and decreased after wear to 61 μm, whereas for +3.00 D lens it was

100 μm and the change was statistically insignificant. Both permanent eyelid pressure during

the night and intermittent pressure with blinking may contribute to changes in the shape of

thin parts of SCLs, whereas the geometry of thicker fragments remains unaffected. Thick lens

power formula can be applied to estimate how the observed modifications of SCL parameters

influence the refractive power of the contact lens. The calculations showed that the absolute

value of the power change did not exceed 0.26 D. However, the impact of contact lens geome-

try changes on visual acuity could be fully determined if one takes into account additional fac-

tors such as lens material modifications and accumulation of deposits affecting the stability of

pre-lens tear film.

We did not observe any significant change in the diameter and sagittal height of -3.00 D

lenses after 7 days of continuous wear. It could be explained by flattening of peripheral zones

of the lenses. For +3.00 D lenses, we noticed a decrease in the median sagittal height. More-

over, we found a significant correlation between corneal sagittal height and the change in the

sagittal height of the lens. The lower the sagittal height of the cornea, the higher the decrease in

lens sagittal height. The direction of changes suggests that changes to the shape of +3.00 D

lenses occur to adjust to the low sagittal height of the hyperopic eye.

The total diameter of the SiH SCLs made of senofilcon A did not change after wear. How-

ever, the dispersion of the measurements increased after the wearing period, and we found a

significant correlation between changes in the diameter of the lens and Kave in the hyperopic

group. The flatter the cornea, the greater the increase in total lens diameter. Inversely, a

decrease in lens diameter was observed on steeper corneas. Previous studies on short-term

wearing of -3.00 D high water-content hydrogel SCLs reported a reduction in the overall diam-

eter of the lenses and a reduction in the radius of curvature of the back optical zone radius [2,

10, 11]. The change in diameter was evaluated in vivo using a video slit lamp. The authors

linked these changes with lens dehydration during wear. The water content of senofilcon A

lenses was 38% and changes in SiH SCL shape may also be caused, to some extent, by the

change in hydration of the lens material, however stable diameter does not support this

hypothesis. Ozkan at al. reported a decrease of both diameter and base curve equivalent of vari-

ety of SiH SCLs immediately upon removal measured at 35˚C. The reference measurements

were made at 21˚C and the authors conclude that the difference was mainly the result of the

increase of the temperature from 21˚C to 35˚C [34].

The study was performed for the SCLs with refractive powers of +/-3.00 D. The study was

designed to recruit groups of hyperopic and myopic eyes with symmetric absolute refractive
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errors. Although it is difficult to extend the results to the lenses with different range of power,

one can speculate that the modifications of thinner and thicker SCLs might be larger. The

hyperopic lenses with positive diopter have the thickest section at the optical axis and should

be the least affected by the external force. The observed SCL’s impact on the cornea can be also

especially important for the contact lenses with higher positive power values, which cause thin-

ning of the central corneal epithelium.

The lenses were measured after 3–6 minutes of rest in 0.9% saline solution to achieve

proper measurement temperature and hydration. The measurements of new and used lenses

were performed in line with ISO standards, except the addition of fat emulsion to increase

reflectivity during OCT measurements, which may be considered a limitation of the study. We

expected that keeping the lens in this solution for a prolonged period of time may cause some

changes in the lens material, which may also lead to shape changes. Therefore, we did not

repeat the measurements after several hours or days.

Quantitative description of the shape changes of SCLs was performed on two perpendicular

sections taken from 3-D data sets. However, volumetric data can provide with more detailed

insight into post-wear SCL topography alterations. Therefore, the approach used in this study

can be regarded as simplification of the problem but it was the easiest option to detect general

modifications of the curvature of the lenses.

Another interesting finding was a significant decrease in the central thickness of the corneal

epithelium immediately after removing the +3.00 D lens after 7 days of wear. In addition, this

change did not influence keratometry readings, which indicates that the change must have

been uniform over the central 3 mm zone. Hong et al. reported a decrease in epithelial thick-

ness in subjects after long-term wear of SCLs [35]. However, Lu et al. recently reported an

increase in the central epithelial thickness after overnight wear of -3.00 D SiH SCLs [36]. In

our cohort, we also observed some increase in epithelial thickness in the group wearing -3.00

D lenses, but it did not reach significance. For +3.00 D lenses, with a relatively thick center, the

decrease was significant and resembled the effect of orthokeratology [37]. However, in the case

of +3.00 D SCLs, thinning of the epithelium was smaller and over a wider area, which did not

influence keratometry readings.

Conclusions

SS-OCT system for in vitro measurements allows comprehensive analysis of SCLs geometry

and provides measurements with high repeatability. Modern SiH SCLs made of senofilcon A

undergo minor plastic deformations after 7 days of continuous wear. Both the anterior and

posterior central radii of curvature of a -3.00 D lens decrease after wear, which is more distinct

on steeper corneas. The change in central curvature is not observed for +3.00 D lenses, but the

sagittal height of the lens is reduced in correlation with small corneal sagittal height. The geo-

metric changes, to some extent, imitate the shape of the eye surface, and are accompanied by a

decrease in the central epithelial thickness in case of +3.00 D lens wear.

Supporting information

S1 Table. Experimental data and results of statistical analysis.

(XLSX)

S1 Fig. Changes in the measured parameters of -3.00 D contact lenses. (a) Lens diameter.

(b) Lens central thickness. (c) Anterior radius of curvature. (d) Posterior radius of curvature.

(e) Sagittal height.

(TIF)
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S2 Fig. Changes in the measured parameters of +3.00 D contact lenses. (a) Lens diameter.

(b) Lens central thickness. (c) Anterior radius of curvature. (d) Posterior radius of curvature.

(e) Sagittal height.

(TIF)

S3 Fig. Changes in corneal parameters after 7 days of continuous wear of soft contact

lenses. (a) Keratometry (radius of curvature). (b) Central corneal thickness. (c) Central epithe-

lial thickness. (d) Endothelial cell count.

(TIF)

S1 File. Data analysis code.

(PDF)
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