
ORIGINAL RESEARCH
published: 31 July 2018

doi: 10.3389/fninf.2018.00047

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2018 | Volume 12 | Article 47

Edited by:

Hans Ekkehard Plesser,

Norwegian University of Life Sciences,

Norway

Reviewed by:

Werner Van Geit,

École Polytechnique Fédérale de

Lausanne, Switzerland

Pablo Martinez-Cañada,

Universidad de Granada, Spain

*Correspondence:

Kim T. Blackwell

kblackw1@gmu.edu

†Present Address:

Zbigniew Jȩdrzejewski-Szmek,

Red Hat Poland, Warsaw, Poland

Joanna Jȩdrzejewska-Szmek,

Department of Neurophysiology,

Nencki Institute of Experimental

Biology, Warsaw, Poland

Received: 01 March 2018

Accepted: 06 July 2018

Published: 31 July 2018

Citation:

Jȩdrzejewski-Szmek Z, Abrahao KP,

Jȩdrzejewska-Szmek J, Lovinger DM

and Blackwell KT (2018) Parameter

Optimization Using Covariance Matrix

Adaptation—Evolutionary Strategy

(CMA-ES), an Approach to Investigate

Differences in Channel Properties

Between Neuron Subtypes.

Front. Neuroinform. 12:47.

doi: 10.3389/fninf.2018.00047

Parameter Optimization Using
Covariance Matrix
Adaptation—Evolutionary Strategy
(CMA-ES), an Approach to
Investigate Differences in Channel
Properties Between Neuron Subtypes
Zbigniew Jȩdrzejewski-Szmek 1†, Karina P. Abrahao 2, Joanna Jȩdrzejewska-Szmek 1†,

David M. Lovinger 2 and Kim T. Blackwell 1,3*

1 Krasnow Institute of Advanced Study, George Mason University, Fairfax, VA, United States, 2 Laboratory for Integrative

Neuroscience, Section on Synaptic Pharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of

Health, Rockville, MD, United States, 3Department of Bioengineering, Volgenau School of Engineering, George Mason

University, Fairfax, VA, United States

Computational models in neuroscience can be used to predict causal relationships

between biological mechanisms in neurons and networks, such as the effect of blocking

an ion channel or synaptic connection on neuron activity. Since developing a biophysically

realistic, single neuron model is exceedingly difficult, software has been developed

for automatically adjusting parameters of computational neuronal models. The ideal

optimization software should work with commonly used neural simulation software;

thus, we present software which works with models specified in declarative format for

the MOOSE simulator. Experimental data can be specified using one of two different

file formats. The fitness function is customizable as a weighted combination of feature

differences. The optimization itself uses the covariance matrix adaptation-evolutionary

strategy, because it is robust in the face of local fluctuations of the fitness function, and

deals well with a high-dimensional and discontinuous fitness landscape. We demonstrate

the versatility of the software by creating several model examples of each of four types of

neurons (two subtypes of spiny projection neurons and two subtypes of globus pallidus

neurons) by tuning to current clamp data. Optimizations reached convergence within

1,600–4,000model evaluations (200–500 generations× population size of 8). Analysis of

the parameters of the best fitting models revealed differences between neuron subtypes,

which are consistent with prior experimental results. Overall our results suggest that this

easy-to-use, automatic approach for finding neuron channel parameters may be applied

to current clamp recordings from neurons exhibiting different biochemical markers to help

characterize ionic differences between other neuron subtypes.

Keywords: striatum, globus pallidus, MOOSE, neuronal model, biophysics, ion channels

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00047
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00047&domain=pdf&date_stamp=2018-07-31
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kblackw1@gmu.edu
https://doi.org/10.3389/fninf.2018.00047
https://www.frontiersin.org/articles/10.3389/fninf.2018.00047/full
http://loop.frontiersin.org/people/542493/overview
http://loop.frontiersin.org/people/54358/overview
http://loop.frontiersin.org/people/17628/overview
http://loop.frontiersin.org/people/622/overview
http://loop.frontiersin.org/people/2574/overview

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

INTRODUCTION

Computational models of neurons and networks are being
used increasingly to test hypotheses regarding causation of
biological mechanisms, e.g., ion channels, on neuron function.
For example, the effect of blocking an ion channel on neuron
activity (Tucker et al., 2012; Qian et al., 2014), the effect
of a synaptic connection on network activity (Prinz et al.,
2004; Damodaran et al., 2015), or the effect of morphology
on neuron firing patterns (Schaefer et al., 2003; Meza et al.,
2018) can be tested by computational models. Unlike in wet
lab experiments, neither non-specific effects of drugs nor
compensatory effects during development confound the results.
Computational models also can be used to determine whether
the observed differences in voltage trajectory (e.g., action
potential width or firing rate) between neuron classes correspond
to differences in ion channel conductances (Rumbell et al.,
2016).

Whereas the simulation experiments (comparison of control
and treatment models) are relatively simple, creation of the
control model is exceedingly difficult. Developing a biophysically
realistic, single neuron model requires equations describing ionic
channel kinetics developed from voltage clamp data (Gurkiewicz
and Korngreen, 2007; Taylor et al., 2009), cell morphology (Segev
and London, 2000; Van Ooyen et al., 2002), and then ionic
channel conductances are adjusted to match firing properties
of the target neuron. The number of parameters and the non-
linear interactions between ionic channels makes adjusting the
parameters an extremely difficult problem. Furthermore, changes
in current density of an outward current can be compensated by
similar changes to inward current density or opposite changes
to other outward currents (Marder and Goaillard, 2006). Thus, a
single neuron class has numerous sets of parameters that produce
the same observed physiology.

Several approaches have been developed recently for
automatically adjusting parameters of computational neuronal
models. Given the increase in computing power, the number of
publications is increasing; thus, for brevity, we will mostly discuss
the recent publications and refer the reader to a previous review
of earlier publications (Van Geit et al., 2008). These methods vary
not only in the search technique (i.e., the method of sampling the
parameter space), but also in the fitness function used and the
data used to fit the model. Perhaps the most successful approach
is to fit a model to simulated data (Vanier and Bower, 1999;
Brookings et al., 2014). The advantage of this approach is that a
known solution exists. The disadvantage is that the goal of most
parameter optimization is to fit electrophysiology data, which is
a more difficult undertaking.

All optimization algorithms use one or more fitness functions
(also called cost functions), which are measures of similarity
between the model and the experiment. Comparing simulated
and experimental voltage traces directly is a difficult problem,
because a millisecond change in spike time, which misaligns
the spikes, may produce a large difference in Euclidean
distance between traces (though only a minor change in
perceived similarity). A clever solution to this problem is
to apply an adjustment in the simulation values, based on

the difference between experimental and simulated values,
to promote alignment of the traces (Abarbanel et al., 2009;
Brookings et al., 2014). If multiple data traces are being fit,
the similarity of each trace needs to be weighted to calculate
an overall similarity value. A more common solution is to
extract features of the voltage traces, such as spike width and
firing rate, and then either combine them into a single objective
(Holmes et al., 2006; Rumbell et al., 2016) or use a multi-objective
optimization method (Druckmann et al., 2007; Hay et al., 2011;
Rumbell et al., 2016; Neymotin et al., 2017). Feature extraction
avoids the problem of spike alignment, but compounds the
problem of how to weight the different features when combined
into a single-objective.

Most of the modern search methods use variants of
evolutionary algorithms (Vanier and Bower, 1999; Keren et al.,
2005; Hendrickson et al., 2011b; Brookings et al., 2014; Martínez-
Álvarez et al., 2016; Rumbell et al., 2016; Martínez-Cañada et al.,
2017; Neymotin et al., 2017). The covariance matrix adaptation
evolutionary strategy is a modern evolutionary algorithm that
works quite well for large numbers of parameters (Hansen
and Kern, 2004). CMA-ES combines an evolutionary approach
with a model of the fitness landscape. In an evoluationary
approach, a population of sample points (a sample point is
the set of parameters that describe an individual model) is
used to generate a new set of points to test, and the subset of
points with the best fitness survives to the next generation. In
CMA-ES the differences in average fitness between subsequent
populations are used to evolve the center of the population
toward the optimum.Moreover, knowledge about the interaction
between parameters is iteratively gathered in a covariance matrix,
which is used to allocate new sampling points so that points
are close together in the directions which are well described
and further apart in other directions. Because a derivative is
never calculated, and just the ranking between solutions is
used, this method is resilient to local fluctuations in the fitness
landscape.

To simplify model creation, parameter tuning and
reproducibility, the parameter optimization algorithm should
work with models specified by a declarative model specification.
Creation of neuronal models is a time consuming and error
prone process, and model code all too often is written in a
fashion that impedes reproducibility and extensibility (Gewaltig
and Cannon, 2014). A declarative model specification, which
separates the model parameters from the simulation itself,
e.g., NeuroML (Gleeson et al., 2010; Cannon et al., 2014) or
NineML (Raikov et al., 2011; Richmond et al., 2014) simplifies
model development and enhances reproducibility. Furthermore,
to enhance utility of a parameter optimization algorithm,
setting up the optimization and specification of parameters
to vary should be independent of the model specification
itself.

We describe a versatile software tool, written in Python for
theMOOSE simulator (Ray and Bhalla, 2008), for model creation
and automatic parameter optimization that can be used by
experimentalists and theoreticians alike to automatically fit a
model to experimental traces for different neuron types without
delving into simulator-specific details.

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 1 | Types and subtypes of neurons used in the simulations.

Type Subtypes Names

Striatal Spiny Projecton

(SP) neurons

Dopamine D1 receptor containing

spiny projection neuron

D1-SPN

Dopamine D2 receptor containing

spiny projection neuron

D2-SPN

Globus Pallidus (GPe)

neurons

Arkypallidal neuron ArkyN

Prototypical neuron ProtoN

METHODS

Overview
We created multi-compartment, multi-conductance models of
two neuron types. Table 1 lists the two subtypes of neurons of the
external globus pallidus (GPe): arkypallidal neuron (ArkyN) and
prototypical neuron (ProtoN); and the two subtypes of striatal
neurons: dopamine D1 receptor containing spiny projection
neurons (D1-SPN) and dopamine D2 receptor containing spiny
projection neurons (D2-SPN). To facilitate model development
and inspection, we use a declarative parameter specification
to create the models. Python scripts interpret the parameters
to create and simulate the multi-compartmental, multi-ion
channel model using the MOOSE simulator. For the parameter
optimization, the simulated voltage response to current injection
is compared to experimentally measured membrane potential
using a feature-based fitness function. The parameters are
optimized using the covariance matrix adaptation evolutionary
strategy (https://github.com/CMA-ES/pycma).

Model Specification
To facilitate reproducibility, re-use and extension, the declarative
model specification uses a modular format. The ion channel
kinetics are specified in one file: (https://github.com/neurord/
moose_nerp/blob/master/moose_nerp/d1d2/param_chan.py),
e.g.,

param_chan.py

from moose_nerp.prototypes.util import

NamedDict

from moose_nerp.prototypes.chan_proto

import (

SSTauQuadraticChannelParams,

AlphaBetaChannelParams,

TauInfMinChannelParams,

ChannelSettings,

TypicalOneD)

qfactNaF = 2.5

Na_m_params = SSTauQuadraticChannelParams(

SS_min = 0.0,

SS_vdep = 1.0,

SS_vhalf = -25e-3,

SS_vslope = -10e-3,

taumin = 0.1e-3/qfactNaF,

tauVdep = 2.1025e-3/qfactNaF,

tauVhalf = -62e-3,

tauVslope = 8e-3)

Na_h_params = TauInfMinChannelParams(

T_min = 2*0.2754e-3/qfactNaF,

T_vdep = 2*1.2e-3/qfactNaF,

T_vhalf = -42e-3,

T_vslope = 3e-3,

SS_min = 0.0,

SS_vdep = 1.0,

SS_vhalf = -60e-3,

SS_vslope = 6e-3)

NaFparam = ChannelSettings(Xpow=3, Ypow=1,

Zpow=0, Erev=50e-3, name='NaF')

KDr_X_params = AlphaBetaChannelParams(

A_rate = 28.2,

A_B = 0,

A_C = 0.0,

A_vhalf = 0,

A_vslope = -12.5e-3,

B_rate = 6.78,

B_B = 0.0,

B_C = 0.0,

B_vhalf = 0.0,

B_vslope = 33.5e-3)

KDr_Y_params = []

KDrparam = ChannelSettings(Xpow=1, Ypow=0,

Zpow=0, Erev=-90e-3, name='KDr')

Channels = NamedDict(

'Channels',

Krp = TypicalOneD(KDrparam, KDr_X_params

, KDr_Y_params),

NaF = TypicalOneD(NaFparam, Na_m_params,

Na_h_params),

)

Both the morphology file (either standard GENESIS .p files
or .swc files are supported by MOOSE) and conductances (in
units of Siemens/m2) are specified in a separate file (https://
github.com/neurord/moose_nerp/blob/master/moose_nerp/
d1d2/param_cond.py), e.g.,

param_cond.py

from moose_nerp.prototypes.util import

NamedDict

morph_file = {'D1':'MScell-Entire.p',

'D2': 'MScell-Entire.p'}

NAME_SOMA='soma'

prox = (0, 26.1e-6) #units are meters

med = (26.1e-6, 50e-6)

dist = (50e-6, 1000e-6)

_D1 = NamedDict(

'D1',

KDr = {prox:150.963, med:70.25,

dist:77.25},

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2018 | Volume 12 | Article 47

https://github.com/CMA-ES/pycma
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_chan.py
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_chan.py
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_cond.py
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_cond.py
https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/param_cond.py
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

NaF = {prox:130e3, med:1894, dist:927},

)

_D2 = NamedDict(

'D2',

KDr = {prox:177.25, med:177.25, dist:27

.25},

NaF = {prox:150.0e3, med:2503, dist:1073

},

)

Condset = NamedDict(

'Condset',

D1 = _D1,

D2 = _D2,

)

Explicit spines, calcium dynamics, and synaptic channels are
each optional and specified in separate files. Calcium dynamics
can be specified either with a single time constant of decay or
utilizing various mechanisms such as calcium buffers, pumps
and diffusion. Model stimulation, creation of output elements
and model simulation are clearly and explicitly separated from
the model creation. Parameter specification files are imported in
https://github.com/neurord/moose_nerp/blob/master/moose_
nerp/d1d2/__init__.py:

__init__.py

from .param_chan import (VMIN, VMAX, VDIVS,

CAMIN, CAMAX, CADIVS,

qfactNaF,

Channels)

from .param_cond import (ghKluge,

neurontypes,

ConcOut, Temp,

morph_file,

Condset)

spineYN = False

synYN = False

calYN = True

Given these parameter files, the model creation and
simulation procedures are implemented in __main__.py,
e.g.:

__main__.py

from moose_nerp.prototypes import

(cell_proto,

inject_func,

standard_options)

from moose_nerp import d1d2

import moose

option_parser = standard_options

.standard_options()

param_sim = option_parser.parse_args()

syn,neuron= cell_proto.neuronclasses(d1d2)

neuron_paths = {ntype:[neuron.path] for

(ntype, neuron) in neuron.items()}

pg = inject_func.setupinj(d1d2,

param_sim.injection_delay,

param_sim.injection_width,

neuron_paths)

for injection_current in param_sim.

injection_current:

pg.firstLevel = injection_current

moose.reinit()

moose.start(param_sim.simtime) # this

runs simulation for 'simtime'

We made the simplifying assumption that both subtypes of
GPe neurons had similar kinetics and differed only in channel
conductance, as previously suggested (Gunay et al., 2008).
Similarly, both subtypes of SP neurons differed only in channel
conductance. In contrast, channel kinetics of the GPe neurons
differed from that of SP neurons. Models were simulated with
PyMoose version 3.1.0 using the hsolve numerical solver. The
complete model specification is available at https://github.com/
neurord/moose_nerp/, with moose_nerp/d1d2 specifying the SP
model parameters and moose_nerp/gp specifying the GPe model
parameters.

Experimental Data
All animal handling and procedures were in accordance with the
National Institutes of Health animal welfare guidelines and were
approved by the George Mason University IACUC committee,
or the National Institute on Alcohol Abuse and Alcoholism
Animal Care and Use Committee. The experimental data used
for the optimizations are part of the python package waves,
available at https://github.com/neurord/waves. The data consists
of recordings from identified external globus pallidus neurons
and unidentified striatal spiny projection neurons. As the data
was collected for other purposes, the current injection protocol
was implemented only once per neuron.

Globus pallidus neuron data was obtained from recordings
performed for a prior publication (Abrahao et al., 2017). Briefly,
mouse coronal GPe slices, ages P23-P45, were prepared in
sucrose cutting solution (in mM: 194 sucrose, 30 NaCl, 4.5
KCl, 26 NaHCO3, 1.2 NaH2PO4, 10 D-glucose, 1 MgCl2, and
saturated with 95%O2/5% CO2). Slices were equilibrated for 30–
40min at 32◦C in carbogen-bubbled aCSF (in mM: 124 NaCl,
4.5 KCl, 26 NaHCO3, 1.2 NaH2PO4, 10 D-glucose, 1 MgCl2,
and 2 CaCl2). Slices were then incubated at room temperature.
Recordings were performed at 30–32◦C using micropipettes (2–
4 M�) filled with internal solution (in mM: 140 K-gluconate,
10 HEPES, 0.1 CaCl2, 2 MgCl2, 1 EGTA, 2 ATP-Mg, and 0.2
GTP-Na, pH 7.25, 300–305 mOsm. Neurons were visualized
using an upright microscope (Scientifica, Uckfield, East Sussex,
UK) with a LUMPlanFL N × 40/0.80W objective (Olympus,
Waltham, MA). Recordings were obtained using a Multiclamp
700A amplifier, Digidata 1322A digitizer and analyzed using

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2018 | Volume 12 | Article 47

https://github.com/neurord/moose_nerp/blob/master/moose_nerp/d1d2/__init__.py
https://github.com/neurord/moose_nerp/
https://github.com/neurord/moose_nerp/
https://github.com/neurord/waves
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

pClamp 10.3 software (Molecular Devices, Sunnyvale, CA).
A low-pass filter of 2 kHz and sampling frequency of 10 kHz
were used. We used the spontaneous firing with no current
injection during the 5th min of recording after breakthrough
and the response to 1 s hyperpolarizing current injection (from
−200 to −50 pA in 50 pA increments). Depolarizing current
injection was not used since these neurons fire spontaneously.
When recording in slices from wild-type C57BL/6J mice, 1%
Neurobiotin (Vector Laboratories, Burlingame, CA) was added
into the internal solution for post hoc immunocytochemistry of
Parvalbumin (PV), a marker for fast spiking prototypical GPe
neurons (ProtoN). Though the fast firing, PV+ neurons generally
are considered prototypical neurons (four were used for the
optimization), the low firing, PV− neurons (three were used for
the optimization) are likely a mixture of arkypallidal and other
neuron types. Nonetheless, for the purpose of evaluating subtype
differences, we are labeling the three low firing, PV− neurons as
ArkyN.

Spiny projection neuron data was collected in current clamp
from dorso-lateral striatum of ex vivo brain slices of C57Bl6
male and female mice, ages P20–P28. Briefly, brain slices
were extracted following decapitation of mice anesthetized with
isoflurane. Brains were sliced using a VT1000S vibratome (Leica)
in oxygenated ice-cold slicing solution (in mM: KCl 2.8, Dextrose
10, NaHCO3 26.2, NaH2PO4 1.25, CaCl2 0.5, Mg2SO4 7, Sucrose
210). Slices were incubated in aCSF (in mM: NaCl 126, NaH2PO4

1.25, KCl 2.8, CaCl2, Mg2SO4 1, NaHCO3 26.2, Dextrose 11)
for 30min at 33◦C, then removed to room temperature (21–
24◦C) for at least 90 more minutes before use. For whole cell
recording, a single hemislice was transferred to a submersion
recording chamber (ALA Science) gravity-perfused (at 1–2
ml/min) with oxygenated aCSF containing 50µM picrotoxin
(Tocris Bioscience). Temperature was maintained at 30–32◦C
(ALA Science) and was monitored with an external thermister.
Pipettes were pulled from borosilicate glass on a laser pipette
puller (Sutter P-2000) and fire-polished (Narishige MF-830) to
a resistance of 3–7 M�. Pipettes were filled with a potassium
based internal solution (in mM: K-gluconate 132, KCl 10,
NaCl 8, HEPES 10, Mg-ATP 3.56, Na-GTP 0.38, Biocytin
0.77) for all recordings. Intracellular signals were collected in
current clamp and filtered at 3 kHz using an Axon2B amplifier
(Axon instruments), and sampled at 10–20 kHz using an ITC-
16 (Instrutech) and Pulse v8.80 (HEKA Electronik). Series
resistance (6–30 M�) was manually compensated. Voltage
responses were collected using 400ms hyperpolarizing current
injection from −500 to −0 in 50 pA increments, and using
400ms depolarizing current injections, starting from 100 or
200 pA increasing in 20 pA increments. Striatal neurons were
identified as being SP neurons (as opposed to fast spiking or
low-threshold-spiking interneurons) by their inward rectifier,
shallow afterhyperpolarization (AHP), and long latency to fire
an action potential in response to current injection. When
recording from SP neurons identified using D1Cre- or D2Cre-
GFP (green fluorescent protein), the D2Cre-GFP neurons have a
lower rheobase current (Chan et al., 2012). Thus, for the purpose
of evaluating subtype differences, SP neurons with a rheobase
below 200 pA were considered D2-SPN (3 neurons used), and SP

neurons with a rheobase above 300 pA were considered D1-SPN
(3 neurons used).

Fitness Function
We compared multiple characteristics of spiking and non-
spiking activity between simulation and experiment. The spiking
characteristics include action potential (AP) time, width, height,
number, AHP depth, AHP shape, and (for SP neurons) latency to
spike in response to depolarizing current injection. Spike height
is calculated with respect to the spike threshold, defined as the
point where the membrane potential derivative exceeds 5% of the
maximum. Spike height is the difference between spike threshold
and the peak membrane potential, and spike width is full width
at half height. The non-spiking characteristics include resting
potential (both pre- and post-current injection), steady-state
voltage response to current injection, time course of membrane
potential (falling curve time constant), and rectification (sag
caused by inward rectifier, which is the difference between
steady state response and the minimum membrane potential
deflection during negative current injection). Feature extraction
functions are specified in https://github.com/neurord/ajustador/
blob/master/ajustador/features.py, and they are combined into
a fitness function in https://github.com/neurord/ajustador/blob/
master/ajustador/fitnesses.py. To minimize simulation time, for
each GPe neuron we used 2 hyperpolarizing traces and 1
trace with no current injection (which contained spontaneously
generated action potentials); and for each SP neuron we used
1 hyperpolarizing and 3 depolarizing traces (one of which did
not produce action potentials). The difference in feature values
between model and data was normalized by dividing by the sum
of the model and data response. This normalization converted
the feature difference to a fractional, unitless difference. In
their multi-objective normalization (Druckmann et al., 2007),
divided by the standard deviation of the experimental data.
Unfortunately this is not possible for us because our experimental
data set is not large enough. We calculated a single fitness value
from the weighted sum of the normalized feature differences. A
user can further normalize the features by standard deviation by
setting the weights equal to the multiplicative inverse of standard
deviation, calculated either within neuron if multiple traces are
collected or across neurons of a single type. For the simulations
reported here, the weights on most features were equal to 1, with
several exceptions to produce better fits visually (Table 2 gives
weight on each feature, and Figure 2 illustrates experimental
and simulated voltage traces for visual inspection of various
features).

Parameter Optimization
In the optimization loop, the ajustador.optimize.

Optimizer class is used as a wrapper for the actual fitting
algorithm. Maximum conductances and passive electrical
properties may be specified as parameters to vary. Each
parameter is assigned an initial value and a permitted range
of values (e.g., a minimum value of 0 prevents negative
parameters). Appending _0, _1, or _2 to the channel name
allows different conductances in the different neuron regions,
corresponding to the regions specified in param_cond.py,

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2018 | Volume 12 | Article 47

https://github.com/neurord/ajustador/blob/master/ajustador/features.py
https://github.com/neurord/ajustador/blob/master/ajustador/features.py
https://github.com/neurord/ajustador/blob/master/ajustador/fitnesses.py
https://github.com/neurord/ajustador/blob/master/ajustador/fitnesses.py
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 2 | Weights on feature values to create fitness function.

Feature D1-SPN and D2-SPN ArkyN and ProtoN

Baseline pre 1 0

Baseline post 1 1

Rectification 0 2

Falling curve 1 1

Voltage response 1 1

Latency 1 0

Spike time 0 0.5

Spike width 1 1

Spike height 1 0.5

Spike count 1 1

AHP depth 1 1

AHP curve 4 1

Histogram 1 1

AHP curve was weighted higher for SPN to avoid the optimizer creating models with
large, sharp AHPs. For the GPe models, spike height weight was reduced to avoid
the optimizer producing an extreme mismatch in other features while trying to reduce
spike height to the unusually small values observed experimentally. Spike time was
reduced for both GPe and SPN models reflecting the high variability of this value between
neurons of the same type. A weight of zero means to not use the feature, e.g., latency
is not defined for a spontaneously spiking neuron. Features are further described in
the online documentation (https://neurord.github.io/ajustador/features.html and https://
neurord.github.io/ajustador/fitnesses.html). “histogram” is a root-mean-square of the
difference between cumulative histograms of membrane potential-values in the two
recordings.

otherwise the conductance in all neuron regions are made the
same value. For the simulations reported, the initial values
were conductances from a roughly hand-tuned model to start
the optimization in an area that exhibits spiking behavior
(Supplementary Figure 1, also available at https://github.
com/neurord/ajustador/tree/master/FrontNeuroinf/FigSuppl_
initialconditions.jpg). Each neuron of the same type started
with the same initial value; thus any differences between
neuron subtypes cannot be due to different initial conditions.
The CMA-ES loop was started with a high initial estimate of
variance, so that a diverse set of parameter values would be
explored.

import ajustador as aju

P = ajustador.optimize.AjuParam

params = ajustador.optimize.ParamSet(

P('RA', 12.004, min=0, max=100),

P('RM', 9.427, min=0, max=10),

P('CM', 0.03604, min=0, max=0.10),

P('Cond_KDr', 14.5, min=0, max=100),

P('Cond_NaF_0', 192000, min=0, max=1e6),

P('Cond_NaF_1', 65300, min=0, max=1e6),

P('Cond_NaF_2', 2500, min=0, max=1e6),

P('morph_file', 'GP1_41comp.p', fixed=1),

P('neuron_type', 'proto', fixed=1),

P('model', 'gp', fixed=1))

The optimization object uses the specified parameter set,
experimental traces, fitness function, and directory for storing the
simulation results:

import gpedata_experimental as gpe

dataname='proto079'

exp_to_fit = gpe.data[dataname+'-2s'][[0,2,

4]]

fitness = aju.fitnesses.combined_fitness(

'empty',

baseline =1,

rectification=2,

spike_width=1,

spike_latency=0,

spike_ahp=1

)

Experimental data can be specified using one of two different
file formats: Igor binaries or comma separated values. The
traces for the experiments are placed in a separate subdirectory,
e.g., gpedata_experimental, and the class Param in the python
package waves (https://github.com/neurord/waves) specifies the
onset and offset time of the injection current, as well as the time
frame for measuring baseline membrane potential and steady
state depolarization. Since the data specification is a separate
module, adding support for other file formats is straightforward.

It is also necessary to specify which type of model (GPe or
SP neurons), which neuron subtype to optimize (e.g., for GPe
either arkyN or protoN), and that the simulation is a MOOSE
simulation:

ntype='proto'

modeltype='gp'

fit1 = aju.optimize.Fit(tmpdir,

exp_to_fit,

modeltype, ntype,

fitness, params,

_make_simulation=aju.optimize.

MooseSimulation.make,

_result_constructor=aju.

optimize.

MooseSimulationResult)

Functions in ajustador.basic_simulation are used
by the parameter optimization to run the MOOSE simulation.
They implement only the key model creation and simulation
commands from __main__.py, thereby simplifying the interface
between creation of neuron model and parameter optimization.

After the optimization is configured with this information, the
optimization is performed for a specified number of generations,
using a specified population size for each generation. The total
number of model evaluations is the product of population
size and generations. The simulations reported herein used the
default population size of 8, but the user can specify other
population sizes. Similarly, the user can specify the simulation
seed to be used by the do_fit function:

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2018 | Volume 12 | Article 47

https://neurord.github.io/ajustador/features.html
https://neurord.github.io/ajustador/fitnesses.html
https://neurord.github.io/ajustador/fitnesses.html
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf/FigSuppl_initialconditions.jpg
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf/FigSuppl_initialconditions.jpg
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf/FigSuppl_initialconditions.jpg
https://github.com/neurord/waves
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

generations=300

popsiz=8

fit1.load()

fit1.do_fit(generations, popsize=popsiz)

The python package ajustador is available at https://github.
com/neurord/ajustador, and the scripts used to run the
simulations are at https://github.com/neurord/ajustador/tree/
master/FrontNeuroinf.

In many mathematical optimization scenarios, the calculation
of the fitness of a single point (individual model) is quick,
and the optimization loop is the important part. Here, as often
in computational neuroscience, the simulation of each point
is a lengthy process, requiring instantiation of the MOOSE
interpreter, loading of the model, actual simulation, saving
of the result to a file, and finally generating a fitness value
from those results. The Optimizer class communicates with
the implementation of CMA-ES to retrieve a set of points,
perform simulations and calculate the fitness for all of them,
feed the results back, so that the numerical algorithm can
generate a new set of points to execute. Actual simulation is
parallelized at a high level to speed up the whole process:
although each individual simulation is single-threaded, during
optimization multiple parameter combinations are evaluated
together, and for each of those, multiple traces corresponding
to different experimental conditions, e.g., different injection
currents, need to be simulated. This means that we can
take full advantage of available computational power by
parallelizing at the level of whole simulations, one simulation
per available processor core using a simple queue of jobs.
We used Python’s multiprocessing module (https://docs.
python.org/3/library/multiprocessing.html) to schedule jobs on
a single machine, and IPython’s ipyparallel (https://
ipyparallel.readthedocs.io/en/latest) on multiple machines in a
local network. In both cases, the results were saved to disk
to a directory with a file containing a copy of the simulation
parameters, and files for the simulation results (typically, voltage
traces over time). In the multi-machine case a network file system
was used to access the storage area. Saving directly to disk
provided a mechanism to introspect the running simulation and
to retrieve the results for any previously-simulated parameter
combination.

When the optimization is complete, the results include the
set of parameters, the normalized feature differences, and the
overall fitness value for each individual model. The fitness history
is the plot of overall fitness value vs. model evaluations (each
generation evaluates a population size of models).

To analyze whether parameters are predictive of different
neuron subtypes, we used a two-step statistical analysis applied
to the parameter values using SAS version 9.4. In step one,
a stepwise discriminant analysis was performed (procedure
STEPDISC), using the parameter values normalized by standard
deviation (procedure STDIZE), to identify the parameters that
could perform the best linear separation of the two neuron
subtypes. In addition, we plotted one parameter value vs. a
second parameter value, for all parameters, and inspected these

graphs to visualize which parameters segregated and clustered
the two neuron subtypes. In step two, a cluster analysis was
performed using those variables identified in step one, to assess
the extent to which the neuron subtypes segregated. Two
methods of cluster analysis were performed. First the procedure
CLUSTER was used to determine the optimum number of
clusters. Then, the procedure FASTCLUS was used, on the
data normalized with STDIZE and with the number of clusters
determined by CLUSTER, to calculate the distance between
clusters of same and different neuron subtypes. The procedure
FREQ was appied to the output of the cluster analysis to generate
the confusion matrices.

RESULTS

Declarative Model Specification
We created a python module called moose_nerp (moose
neuron prototype) to simplify and standardize the creation
and simulation of neuron models using the MOOSE software.
The declarative framework facilitates reproducibility, re-use and
extension of MOOSE models of neurons and networks. Each
set of neuron models has a set of parameter files specifying (1)
channel kinetics, (2) channel conductances and morphology, (3)
synaptic channel parameters, (4) calciummechanism parameters,
and (5) spine parameters. Spines, synapses and calcium dynamics
can be included or excluded with a simple parameter switch, e.g.,
calYN = True and spineYN = False. Parameter specifications
for channel kinetics and conductances use similar organization,
keywords and parameter types as NeuroML version2, facilitating
conversion, whereas the parameters for calcium dynamics, such
as buffer and pump specifications, do not yet have NeuroML
version2 equivalents.

Two subtypes of each of two types of neuron models were
created for use with the parameter optimization. Models of the
two subtypes of neurons in the globus pallidus were developed,
representing arkypallidal (low firing rate, PV−, ethanol sensitive)
and prototypical (high firing rate, PV+, ethanol insensitive) by
creating a set of parameter files. In addition, models of the two
subtypes of striatal spiny projection neurons in the striatum were
developed (called D1-SPN and D2-SPN, representing the direct
pathway neurons that contain dopamine D1 receptors and the
indirect pathway neurons that contain dopamine D2 receptors)
by creating a second set of parameter files specifying channel
kinetics, conductances, etc. Channel kinetics for the GPe neuron
models were adapted from Hendrickson et al. (2011a); both
arkyN and protoN neurons used the same channel kinetics and
morphology. Channel kinetics for the SP neuron models were
adapted from Jedrzejewska-Szmek et al. (2017); both D1-SPN
and D2-SPN used the same morphology and channel kinetics.
Both models used single time constant of decay for calcium
dynamics, though calcium buffers, pumps and diffusion have
been implemented in the SP neuron models and can be specified
with a parameter switch.

Parameter Optimization Using CMA-ES
Parameter optimization was run on a 16-core Linux workstation
with Intelr Xeonr CPU E5-2650 processors. Each of the four

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2018 | Volume 12 | Article 47

https://github.com/neurord/ajustador
https://github.com/neurord/ajustador
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf
https://github.com/neurord/ajustador/tree/master/FrontNeuroinf
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://ipyparallel.readthedocs.io/en/latest
https://ipyparallel.readthedocs.io/en/latest
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 1 | Fitness history shows the fitness values rapidly reach good fits (within 1,000 model evaluations/sample points) and reaches an asymptote typically within

2,000 model evaluations/sample points). (A) Fitness vs. model evaluation for GPe neurons of (A1) prototypical type and (A2) arkypallidal type. (B) Fitness vs. model

evaluation for SP neurons of (B1) D1 type and (B2) D2 type. Note that GPe neuron fitness values reached considerably lower values than SP neuron fitness values.

Right panels show fitness vs. model evaluation for the 1st set of optimizations and left panels show the mean and standard deviation of the fitness values of the last

25 generations of the 2nd set of optimizations (which used a different random seed). The number above the bar gives the number of model evaluations to

convergence for the 2nd set of optimizations.

neuron models was optimized to 3–4 sets of voltage traces,
each set from a different, experimentally recorded neuron. For
each recorded neuron, traces both with and without action

potentials were utilized in a single optimization. Optimizations
were run until the fitness value reached an asymptote, typically
within 200–500 generations using a population size of 8

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 3 | Characteristics of optimization simulations.

SP GPe

Number of compartments 189 41

Number of experimental traces used 4 3

Duration of trace 0.9 s 2 s

Simulation time* 12.4 ± 1.03 h per

1,000 models

8.5 ± 0.16 h per

1,000 models

Evaluations to convergence# 2,100 ± 500 3,514 ± 1,007

Evaluations till fitness value is within

5% of minimum

867 ± 1,185 2,482 ± 1,133

*Reported simulation time (mean and standard deviation) is for the second simulation
seed. #Evaluations to convergence (mean and standard deviation) is for the second
simulation seed; one of the GP simulations did not reach convergence within 5,000 model
evaluations, yet reached a minimum fitness of 0.26.

(Figure 1, Table 3). The convergence was determined from
the change in mean fitness: the slope of the mean fitness
across 25 generations must be <0.002 and the standard
deviation of mean fitness across 25 generations must be
less than 0.06 (implemented in https://github.com/neurord/
ajustador/tree/master/ajustador/helpers/converge.py). For each
optimization, all current injections are simulated in parallel. In
general, each simulation job is submitted to a scheduler, and
started when resources are available. The result is returned to
the optimization algorithm when all requested points have been
finished.

The parameter algorithm was able to find reasonable
parameters for most of the data sets. We defined the feature
funtions in a way that would give values on the order of one, so
that when multiple features were combined with equal weights,
all features could contribute significantly to the total. The
optimizations were originally performed using equal weighting,
and then repeated once or twice after visual comparison of
simulations and experiments and adjusting the weights (Table 2)
to de-emphasize spike time and improve the fit to shape of the
AHP. Figure 1 shows total fitness value vs. model evaluation for
GPe neurons (A) and SP neurons (B). Most combined fitness
values decreased to ∼0.4 or less for the seven GPe neurons and
to ∼1.0 or less for the SP neurons. Simulations were repeated
using a different random seed, with similar results: the change in
minimum total fitness reached was 0.018 (6.4%) for GPe neurons
and−0.041 (4.4%) for SP neurons.

Figure 2 shows an overlay of the model traces and
experimental data for the optimizations in Figure 1 to illustrate
similarity between model and experiments. Figures 2A,B show
optimizations of two different arkypallidal neurons from the
external globus pallidus. For both neurons, the shape of the AHP
and the amplitude of the sag match quite well. On the other
hand, the fit to arky N 120 shows the difficulty in fitting to
neurons with short action potentials (similar results are obtained
with a spike height weight of 1.0). Figure 2C shows the fit to
a prototypical neuron, which fires at a much faster rate than
the arkypallidal neurons. The ability to match the shape of the
AHPs is illustrated in Figure 2C2 which expands the time scale
of the plot. Figures 2D,E show optimizations of one D1-SPN and

one D2-SPN. Again, AP characteristics and AHP shape fit quite
well.

One motivation for using a multi-objective optimization is
the observation that improvement in the fit of one feature often
comes at the expense of another feature (Druckmann et al.,
2007; Rumbell et al., 2016; Neymotin et al., 2017). To evaluate
to what extent this trade-off occurs in these single objective
optimizations, we evaluated the correlation between various
feature functions for the 2.5% best fitting (lowest total fitness
value) models (or the last 50 of the best fitting models if more
than 2,000 evaluations were performed). The feature fitnesses and
total fitness value for (mean over the 50 best models) for each data
set is provided in Tables 4A,B. Figures 3A–C, 4A–E shows that
very few trade-offs are evident between the features that comprise
the fitness function. For the GPe neurons, spike height improves
as spike width worsens, but this relationship does not hold for the
SP neurons (Figure 4E). Several positive correlations are notable.
An increase in AHP curve fitness is correlated with an increase
in spike count fitness (Figure 3C), and an increase in voltage
response fitness is correlated with an increase in spike time fitness
(Figure 3B) for GPe neurons. For the SP neuron optimization,
trade-offs are less apparent, and instead the charging curve fitness
is positively correlated with the spike width fitness (Figure 4A),
though negatively correlated with AHP curve (Figure 4B) fitness.
In addition, the voltage response fitness is positively correlated
with spike height fitness (Figure 4C). As the long latency to 1st
spike in SP neurons is attributed to transient potassium currents,
which also can produce large AHPs, we examined AHP curve
vs. 1st spike latency (Figure 4D), but the correlation between
these two features is quite small. Graphs of single features vs.
total fitness (Figures 3D–F, 4F–H) demonstrate that most single
features are either not correlated with the total fitness, or explain
very little of the variance, e.g., voltage response for the GPe
neurons (Figure 3D), and spike latency (R = 0.05) and spike
count (R=−0.31) for SP neurons. A summary of all correlations
is provided for GPe neurons in Figure 3G. The lack of correlation
reflects that the total fitness is calculated from the combination
of multiple features. An exception to this is the high correlation
between AHP curve and total fitness for SP neurons, likely due
to the high weight of this feature in the total fitness (Figure 4H).
Curiously, in some cases feature fitness is negatively correlated
with total fitness, such as spike width for both GPe neurons
(Figure 3F) and SP neurons (Figure 4F), and charging curve
for SP neurons (Figure 4G).This shows that strong fitting of a
specific feature can result in a model that is weak when other
features are considered, possibly because the model is not flexible
enough to provide a good fit on all of those features.

Non-linear systems are often difficult to find parameters for
because a unique set of parameters may not exist. Prior studies
(Golowasch et al., 2002; Prinz et al., 2003a) have observed that
higher outward conductances can be compensated by higher
inward, or different potassium conductances can compensate
for each other. To examine to what extent this occurs in
our optimizations, we evaluated the correlation between the
different conductances from the same best models as used above.
Figure 5 illustrates the conductances for the best GPemodels and
demonstrates several types of compensation. In the GPe neurons,

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2018 | Volume 12 | Article 47

https://github.com/neurord/ajustador/tree/master/ajustador/helpers/converge.py
https://github.com/neurord/ajustador/tree/master/ajustador/helpers/converge.py
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 2 | Comparison of simulated and experimental traces. In all panels, simulations are in shades of turquoise and experimental data in shades of magenta. (A)

Fit to arkypalidal cell #140 (minimum fitness = 0.29). Spike height, timing and AHP are all fit quite well. (B) Fit to arkypallidal cell #120 (minimum fitness = 0.29). This

example shows the difficulty in fitting to spike height when spikes are shorter than usual. (C) Fit to protoypical cell #144 (minimum fitness = 0.25). C1 shows fit to

entire 1 sec of current injection, whereas C2 zooms in to illustrate match to AHP shape. (D) Fit to D1R type of SP neuron (minimum fitness 0.78). (E) Fit to D2R type of

SP neuron (minimum fitness 0.88). Both (D,E) show good fit to AP shape, AHP shape and long latency to fire.

an increase in the slow sodium current (NaS) is compensated by a
decrease in the fast sodium current (NaF) in the axon (Figure 5A)
or an increase in the KCNQ potassium current (Figure 5B).
Similarly, an increase in the fast sodium current is compensated
by an increase in the Kv3 potassium current (Figure 5C) or
an increase in the fast transient potassium (KAF) current
(Figure 5D). There is a tradeoff between somatic and axonal
transient potassium (KAS) currents (Figure 5E). In contrast
to these compensatory correlations, Figure 5F demonstrates
a non-compensatory correlation: the dendritic KAS current
positively correlates with the dendritic Kv3 current. A similar
range of correlations is apparent for the SP optimizations
(Figure 6). Figures 6A–C shows inward currents compensating
for outward currents. Figure 6D shows the slow transient

potassium current (KAS) compensating for the fast transient
potassium current (KAF) in the soma; whereas Figures 6E,F

shows non-compensatory correlations: A correlated increase in
two inward currents (Figure 6E), or a decrease in a calcium
current correlated with an increase in a potassium current
(Figure 6F).

Approach to Identifying Mechanisms
Underlying Difference Between Cell Types
CMA outputs provide parameters for generating sets of good
models instead of the parameters for the single best fit model.
This has the advantage of providing sets of good models
for performing simulation experiments and demonstrating
robustness to parameter variations. In addition, the parameters

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 4A | Mean feature fitnesses of the 50 best models for each of the globus pallidus neurons.

GPe proto154F proto144F proto122F proto079F arky140F arky138F arky120F

Voltage response 0.367 ± 0.022 0.154 ± 0.085 0.289 ± 0.057 0.272 ± 0.081 0.240 ± 0.093 0.565 ± 0.076 0.273 ± 0.116

Baseline post 0.086 ± 0.034 0.093 ± 0.050 0.084 ± 0.047 0.125 ± 0.098 0.050 ± 0.036 0.066 ± 0.049 0.079 ± 0.055

Rectification 0.261 ± 0.107 0.324 ± 0.130 1.318 ± 0.015 0.705 ± 0.267 0.540 ± 0.037 0.853 ± 0.146 0.511 ± 0.241

Falling curve 0.222 ± 0.090 0.132 ± 0.074 0.298 ± 0.075 0.321 ± 0.173 0.227 ± 0.037 0.256 ± 0.113 0.155 ± 0.087

Spike time 0.058 ± 0.007 0.065 ± 0.038 0.075 ± 0.011 0.118 ± 0.015 0.052 ± 0.011 0.164 ± 0.015 0.087 ± 0.019

Spike width 0.450 ± 0.042 0.548 ± 0.028 0.325 ± 0.027 0.277 ± 0.077 0.455 ± 0.036 0.464 ± 0.089 0.278 ± 0.069

Spike height 0.075 ± 0.042 0.089 ± 0.042 0.332 ± 0.025 0.258 ± 0.089 0.077 ± 0.036 0.156 ± 0.065 0.287 ± 0.029

Spike count 0.144 ± 0.023 0.148 ± 0.047 0.121 ± 0.062 0.378 ± 0.121 0.103 ± 0.039 0.306 ± 0.087 0.326 ± 0.088

AHP amplitude 0.070 ± 0.033 0.112 ± 0.052 0.104 ± 0.047 0.115 ± 0.084 0.074 ± 0.035 0.104 ± 0.077 0.094 ± 0.083

AHP curve 0.693 ± 0.032 0.516 ± 0.022 0.534 ± 0.042 0.904 ± 0.046 0.616 ± 0.033 0.714 ± 0.032 0.712 ± 0.033

Histogram 0.299 ± 0.039 0.239 ± 0.092 0.329 ± 0.049 0.478 ± 0.110 0.146 ± 0.052 0.332 ± 0.096 0.271 ± 0.074

Total 0.316 ± 0.007 0.281 ± 0.015 0.484 ± 0.005 0.448 ± 0.026 0.310 ± 0.006 0.445 ± 0.016 0.348 ± 0.026

TABLE 4B | Mean feature fitnesses of the 50 best models for each of the striatal spiny projection neurons.

D1_051811 D1_042811 D1_010612 D2_081011 D2_051311 D2_010612

Voltage response 0.996 ± 0.021 0.057 ± 0.032 0.228 ± 0.121 0.243 ± 0.121 0.414 ± 0.038 0.944 ± 0.025

Baseline pre 0.018 ± 0.001 0.072 ± 0.003 0.044 ± 0.007 0.110 ± 0.026 0.015 ± 0.001 0.073 ± 0.001

Baseline post 0.016 ± 0.001 0.057 ± 0.002 0.039 ± 0.008 0.004 ± 0.003 0.013 ± 0.001 0.061 ± 0.001

Falling curve 0.233 ± 0.039 0.058 ± 0.026 0.273 ± 0.084 0.393 ± 0.053 0.294 ± 0.111 0.076 ± 0.018

Spike width 0.253 ± 0.028 0.171 ± 0.022 0.055 ± 0.040 0.141 ± 0.030 0.040 ± 0.022 0.241 ± 0.016

Spike height 0.203 ± 0.008 0.096 ± 0.007 0.123 ± 0.005 0.187 ± 0.004 0.191 ± 0.010 0.191 ± 0.004

Spike latency 0.207 ± 0.017 0.311 ± 0.027 0.332 ± 0.086 0.339 ± 0.070 0.153 ± 0.017 0.313 ± 0.016

Spike count 1.077 ± 0.011 1.066 ± 0.001 1.021 ± 0.067 0.958 ± 0.044 0.946 ± 0.000 0.908 ± 0.004

AHP amplitude 0.187 ± 0.015 0.019 ± 0.013 0.342 ± 0.003 0.184 ± 0.014 0.256 ± 0.003 0.170 ± 0.013

AHP curve 2.434 ± 0.147 2.618 ± 0.062 3.750 ± 0.023 3.336 ± 0.032 3.437 ± 0.025 2.744 ± 0.019

Charging curve 0.147 ± 0.024 0.174 ± 0.025 0.056 ± 0.022 0.094 ± 0.026 0.058 ± 0.023 0.170 ± 0.030

Histogram 0.591 ± 0.011 0.075 ± 0.007 0.357 ± 0.019 0.392 ± 0.036 0.601 ± 0.010 0.441 ± 0.009

Total 0.851 ± 0.036 0.826 ± 0.016 1.142 ± 0.003 1.027 ± 0.0093 1.060 ± 0.006 0.899 ± 0.004

themselves can be analyzed to determine whether certain
parameters are predictive of different cell types and capture
the feature differences between neuron subtypes (Table 5). To
address this latter question, we used a multi-step statistical
analysis (discriminant analysis followed by cluster analysis)
applied to the 50 best fitting models.

For the GPe neurons, graphical analysis revealed that
capacitance (CM) and the large conductance, calcium dependent
potassium current (BK) in soma and dendrite as the variables
that best separate the data. The discriminant analysis similarly
identified capacitance, but did not identify the BK conductance.
Instead, it identified the slow transient potassium current (KAS)
in the soma. A plot of these parameter values (Figures 7A,B)
demonstrate that the arkyN have either a higher somatic or
dendritic BK conductance, and also have a higher capacitance.
Inspection of the panels in Figures 5, 7C,D confirm that most of
the other parameters do not separate the data by neuron class.

We performed a cluster analysis using these identified
parameters (CM and either BK or KAS). Because the BK
conductance was elevated in either the soma or the dendrite,

but not always both, we used the sum of the somatic and
dendritic BK conductance as one of the variables. Two types
of cluster analyses were performed. The first analysis used the
SAS CLUSTER procedure, which performs a hierarchical cluster
analysis without the need to specify either the number of clusters
or the cluster size. This procedure provides a measure of the
goodness of separation vs. number of clusters. Using the number
of clusters suggested by the 1st cluster analysis, the second cluster
analysis, which implements a disjoint cluster analysis using the
SAS FASTCLUS procedure, then provides a measure of the
distance between the clusters. This second procedure allowed
quantification of the difference between neuron subtypes.

The disjoint cluster analysis using the 3 clusters suggested
by the hierarchical cluster analysis correctly classifies all but
two of the neuron parameter sets correctly (Table 6), regardless
of whether BK or KAS was used. This suggests that the
parameters identified may represent subtype differences. The
BK conductance in particular has already been demonstrated
to differ between arkypallidal and prototypical GPe neurons.
Because the parameter optimizations used the same morphology

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 3 | Comparison of feature fitnesses for 50 best models for GPe neuron optimizations. (A) Spike height vs. spike width shows that improvements in spike

height come at expense of worsening of spike width. In contrast to this trade-off, (B) steady state voltage response vs. spike time and (C) AHP curve vs. spike count

show that two features can improve simultaneously. (D–E) contribution of voltage response (D), spike height (E) and spike width (F) to the total fitness. Despite the

significant positive correlation for two of the features, no one feature appears to control the fit. R is the Pearson’s R correlation; all illustrated correlations are significant

at P < 0.0001. Symbols corresponding to different neurons are the same in all panels and indicated in C. (G) Pairwise Pearson’s R correlation between all features

illustrated as image plot. AP: spike.

for arkyN and protoN, the difference in CM values suggests that
the morphology of these two neurons differ, with arkypallidal
neurons having either a larger number of dendrites or a greater
number of spines. The greater conductance of the slow transient

potassium channel may be producing the shallower AHPs in
arkyN as compared to protoN (e.g., compare Figure 2B with
Figure 2C2). The Euclidean distance between centroids of the
two arkyN clusters (1.78) is smaller than the distance between

Frontiers in Neuroinformatics | www.frontiersin.org 12 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 4 | Comparison of feature fitnesses for 50 best models for SP neuron optimizations. The positive correlations for (A) spike width vs. charging curve fitness

and (C) voltage response vs. spike height show that two features can improve simultaneously. With some features, such as (B) AHP curve vs. charging curve fitness,

there is a trade-off between these two features.(D) AHP curve is not correlated with 1st spike latency (P = 0.052). (E) Spike height vs. spike width does not appear to

be correlated in the SP neurons, though reaching statistical significance (P < 0.0001). (F–H) Contribution of spike width (F), charging curve (G), and AHP curve (H) to

the total fitness. Improvement in spike width is negatively correlated with total fitness. The strong correlation of AHP curve to total fitness is likely caused by strong

weight on AHP curve in the fitness function. R is the Pearson’s R correlation; Correlations above 0.7 are significant at P < 0.0001. Symbols corresponding to different

neurons are the same in all panels and indicated in H.

centroids of the arkyN and protoN clusters (2.95 and 2.27).When
the analysis was repeated on the best models from the second set
of GPe optimizations, a similar KAS conductance was identified,

but instead of the CM or the BK conductance, KAF, NaF, and
KDr were identified. The difference in these two sets of variables
suggests that a larger set of optimizations is needed (with fewer

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 5 | Compensation and other correlations among channel conductances for GPe neurons. (A) A decrease in fast sodium conductance in the axon can be

compensated by an increase in the slow sodium conductance in the soma. (B–D) An increase in conductance of various potassium channels can be compensated by

an increase in sodium conductance. (E) An increase in the transient potassium current in the soma is correlated with a decrease in the axon. (F) A non-compensatory

correlation: an increase in KAS type of potassium conductance is associated with an increase in the Kv3 potassium conductance. R is the Pearson’s R correlation; all

illustrated correlations are significant at P < 0.0001. Symbols corresponding to different neurons are the same in all panels and indicated in F.

models per optimization) for accurate identification of differing
channel conductances.

DISCUSSION

We created python code for automatic parameter optimization of
single neuron models simulated using the MOOSE software. In
order to facilitate development and reuse of multi-compartment,
multi-conductance models, we used a declarative parameter
specification to create the models, and then demonstrated
its utility by creating two subtypes of two neuron types:
striatal spiny projection neurons, and external globus pallidus

neurons. We demonstrated the utility of the covariance
matrix adaptation evolutionary strategy by tuning each model
type to several sets of experimentally measured membrane
potential responses to current injection. Each optimization
required ∼1 day of simulation time and only 1,600–4,000
evaluations, suggesting that a powerful supercomputer could
be used to tune models to large data sets reasonably quickly.
Statistical analysis of the resulting parameter sets revealed a
small set of parameters that varied between neuron subtypes,
indicating that this data-driven modeling approach would be
a useful technique for identifying differences between neuron
subtypes.

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 6 | Compensation and other correlations among channel conductances for SP neurons. (A–C) An increase in potassium channel conductance is

compensated by an increase in inward channel conductance (sodium or calcium channels). (D) An increase in fast transient (KAF) potassium channel conductance is

compensated by a decrease in slow transient (KAS) potassium channel conductance in in the soma. (E,F) Two non-compensatory correlations between channel

conductances. (E) An increase in the fast sodium current in the soma is associated with an increase in the R type calcium channel (CaR) conductance. (F) An increase

in delayed rectifier potasium channel is correlated with a decrease in N type calcium current in the soma. R is the Pearson’s R correlation; all illustrated correlations are

significant at P < 0.0001. Symbols corresponding to different neurons are the same in all panels and indicated in E.

The use of declarative model specification instead of
procedural model specification is considered best practice in
model development (Gewaltig and Cannon, 2014). A declarative
model specification simplifies inspection of the model, and
facilitates re-use and extension of the model. The most
comprehensive declarative model specification language for
multi-compartment, multi-channel models is NeuroML version
2 (Gleeson et al., 2010; Cannon et al., 2014). Its support
by both MOOSE and NEURON would simplify exchange of
models between simulators. One limitation with NeuroML
is that the declarative specification for calcium dynamics is
not yet developed; hence the difficulty in using the current
NeuroML for our MOOSE models. Nonetheless, implementing
a declarative parameter specification with organization and
keywords similar to NeuroML will facilitate translation into

NeuroML in the near future. A second key feature of our
parameter optimization software is to have the optimization
wrapped around existing models, similar to some existing
optimization algorithms (Friedrich et al., 2014). An advantage
of our optimization wrapper is that it keeps the declaration
of the parameters and morphology declarative, in contrast
to some other approaches (e.g., Brookings et al., 2014; Van
Geit et al., 2016). In other words, the parameters for tuning
are specified separately from the base model code, both
for MOOSE models and for signaling pathway models that
are specified and simulated in NeuroRD (https://github.com/
neurord/neurord_fit). This approach eliminates the need either
to re-specify the model using optimization specific annotations
or to insert parameter ranges directly into the base model
code.

Frontiers in Neuroinformatics | www.frontiersin.org 15 July 2018 | Volume 12 | Article 47

https://github.com/neurord/neurord_fit
https://github.com/neurord/neurord_fit
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

TABLE 5 | Mean feature properties of data.

arky (N = 3) proto (N = 4)

AP count 33.67 ± 14.50 134.25 ± 38.66

Spike Height 0.0623 ± 0.0094 0.0675 ± 0.0100

Spike Width 0.00045 ± 0.00008 0.00028 ± 0.00008

Spike AHP −0.0506 ± 0.0028 −0.0581 ± 0.0040

Baseline Vm −0.0446 ± 0.0023 −0.0496 ± 0.0044

Rectification (at −200pA) 0.00787 ± 0.00289 0.00298 ± 0.00299

deltaV (at −100pA) −0.0272 ± 0.0039 −0.0114 ± 0.0043

deltaV (at −200pA) −0.0430 ± 0.0068 −0.0229 ± 0.0029

Falling curve 0.0129 ± 0.0022 0.0072 ± 0.0014

Distinguishing features include number of action potentials, spike width, deltaV (input
resistance), falling curve.

TABLE 6 | Confusion matrix for cluster analysis using CM and total BK

conductance.

Cell Cluster 1 (protoN) Cluster 2 (arkyN) Cluster 3 (arkyN)

Arky120 1* 48 1

Arky138 0 0 50

Arky140 0 50 0

Proto079 50 0 0

Proto122 50 0 0

Proto144 50 0 0

Proto154 50 0 0

Note that labeling the clusters was performed post-hoc, based on the composition of the
clusters. *Indicates the incorrectly classified parameter set.

One limitation of our current optimization software is the
inability to adjust half activation and time constants of channel
gating for the ionic channels. An initial set of optimizations of
the GPe neurons (results not shown) revealed that activation of
the hyperpolarization activated cyclic-nucleotide gated (HCN)
current in response to hyperpolarizing currents produced a “sag”
that was much faster than observed experimentally. To improve
this aspect of the fit, the time constant of one of the HCN
currents was increased, and the optimizations illustrated all used
this slower HCN channel. Given the number of ionic channels
activated during action potentials, this hand-tuning approach is
not practical for depolarization activated channels. The inability
to tune channel characteristics may have contributed to the
lower quality fits for the SP neurons. Currently, the software
can adjust half activation of one of the channels; thus it will be
straight forward to add the capability for all channels. Adding
in these parameters should improve the ability to fit the model
(Hendrickson et al., 2011b; Brookings et al., 2014; Neymotin
et al., 2017), though it would double the number of parameters
to tune.

CMA-ES was selected because it has properties which make
it appropriate for fitting of complicated and slow-to-simulate
models to experimental data: it is robust in the face of local
fluctuations of the fitness function, deals well with a high-
dimensional and discontinuous fitness landscape, and finally,

is frugal with the number of required evaluations, especially
compared to other evolutionary algorithms. CMA-ES has been
applied to determine protein conformation (Bourquard et al.,
2015), and parameters for spiking neuron models (Rossant et al.,
2011). A benefit of this algorithm is its fast convergence time,
even with large numbers of parameters. Though some parameter
optimization algorithms suffer severe slowdowns when the
number of parameters is increased, CMA-ES does not suffer
from this problem until parameter numbers reach hundreds to
thousands (Hansen and Kern, 2004; Hendrickson et al., 2011b;
Friedrich et al., 2014; Neymotin et al., 2017). An approach to limit
the number of parameters is to perform optimizations in several
steps, such as optimizing the passive properties first and spiking
activity second (Rumbell et al., 2016), optimizing parameters for
proximal conductances to data collected from a neuron with
the apical dendrite occluded (Bahl et al., 2012), or using data
collected from somatic followed by dendritic recordings (Hay
et al., 2011). Though this stepwise approach could facilitate
parameter fitting using CMA-ES, avoiding a multi-step approach
has the advantage of simplifying the model fitting procedure
(conserving the work required from the scientist), and avoids
the pitfall where various parameters are strongly correlated
and the result of a multi-step fit differs from a single-step fit.
Furthermore, fitting to passive properties can underestimate
membrane resistance when channels have some activity at resting
potential (Keren et al., 2009).

Several studies demonstrate that additional sources of data
better constrain the fits. In other words, using measures at
two spatial locations (Keren et al., 2009; Hay et al., 2011)
or with pinched dendrite (Bahl et al., 2012) better constrains
the data. Another data source is calcium dynamics, with
simultaneous measures of calcium dynamics and electrical
activity (Nevian and Sakmann, 2004; Day et al., 2008; Johenning
et al., 2015; Ryu et al., 2017) providing dual contraints. When
creating models of calcium dynamics, typically the buffer and
pump properties (analogous to channel kinetics) are known
(Lee et al., 2000), but pump density and buffer quantity are
unknown and need to be adjusted (analogous to channel
density). Given the ability of the software to model calcium
dynamics, a logical extension would be to optimize to both
electrical activity and calcium dynamics measurements. Adding
in the calcium dynamics optimization includes reading in
calcium imaging data and adapting the fitness function to
calcium.

One of the difficult aspects of optimization is designing a
fitness function that captures the perceived similarity between
simulated and measured voltage traces (or calcium dynamics).
One approach is to perform a point-by-point match to the
voltage trace. This measure is problematic for neuron activity
due to the narrow time window of spikes. A clever approach
to avoid this problem has been implemented (Abarbanel et al.,
2009; Brookings et al., 2014) and avoids sensitivity to the
fitness functions selected. Unfortunately, the custom code to
implement this approach is not written for an existing simulator;
however, it would be interesting to incorporate that approach
into a fitness function for use with MOOSE. A second approach
is to use features of the data, such as spike time, width,

Frontiers in Neuroinformatics | www.frontiersin.org 16 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

FIGURE 7 | A small number of parameters separate the two subtypes of GPe neurons. (A) The large conductance, calcium dependent potassium conductance (BK)

in soma and dendrite are larger in arkyN than in protoN. (B) Capacitance (CM), and (to a lesser extent) the slow transient potassium channel conductance are greater

in arkyN than in protoN (C–D) No systematic differences are observed in HCN conductance (C) or in Kv3 or KAF (D) between arkyN and protoN. Symbols

corresponding to different neurons are the same in all panels and indicated in A.

height, AHP shape as well as non-spiking features. The large
number of features can be combined into a single feature,
used individually in multi-objective optimization (Druckmann
et al., 2007; Rumbell et al., 2016; Neymotin et al., 2017),
or combined into one (or a few) combined features (Keren

et al., 2009; Rumbell et al., 2016). One rationale for performing
a multi-objective optimization is that an overall best match
may not be possible; instead a multi-objective optimization
provides a set of optimal solutions that represent the best
trade-offs between conflicting objectives. Using multi-objective

Frontiers in Neuroinformatics | www.frontiersin.org 17 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

optimization also avoids the process of assigning weights to
features, which by definition are to some extent arbitrary.
Nevertheless, after obtaining the set of optimal solutions from a
multi-objective optimization, finding one solution that achieves
a good fit of all features may be difficult. We opted to
combine multiple objectives (features) into a single fitness
value, effectively preferring solutions that performed moderately
well on all measures to those which were optimized toward
some specific subset of features. Early explorations using multi-
objective optimization yielded models that indeed fitted some
features well, but at the same time were divergent enough
in other characteristics that if observed experimentally, such
neurons would be classified as a different type. For real neurons,
natural variability exists between inviduals of the same type, and
also between repeated measurements, yet the defining features
are common to all neurons of a certain type. We feel that
fitting very precisely to some characteristics of an invidual
experimental measurement is less useful than fitting all features
approximately.

An important concept utilized by multi-objective
optimization is weighting the various feature fitnesses by variance
across the data, under the assumption that more variable features
should be less constrained. Weighting by variance (i.e., dividing
by the standard deviation) also removes dimensionality from the
data (e.g., dividing a difference of 10mV by a standard deviation
of 1mV yields the dimensionless number of 10). This procedure
allows fitness values of features with both small values (e.g.,
spike width measured in seconds) and large values (e.g., spike
height measured in mV) to contribute meaningfully to the total
fitness. Whereas the variance for the spike characteristics can be
calculated within a neuron, a better variance estimate requires
recordings of multiple trials or multiple neurons (Hendrickson
et al., 2011b). Our algorithm removes dimensionality from the
feature fitnesses by dividing the difference between data and
simulations by the mean. The software also allows a weight
to be specified, which could be (the inverse of) the variance
between neurons. Clearly, another improvement to the software
would be to add a module to calculate and use the variance
between neurons either when current injection protocols
are repeated several times or when multiple data sets are
available.

A major concern with using parameter optimization to
identify differences between neuron types is that unique
parameter sets do not exist (Golowasch et al., 2002; Prinz et al.,
2003b; Olypher and Calabrese, 2007; Hay et al., 2011). Instead
there are multiple valid parameter sets with parameter co-
variation, which hinders the ability to classify neurons based
on these conductance parameters. Though CMA-ES takes into
account these correlations during the optimization, CMA-ES
does not find all parameter sets, since it continually seeks
a (single) global minimum. In principal, CMA-ES could be
initiated from different points in parameter space to find
multiple local minima. Even with a single run of CMA-
ES per neuron recording, analysis of the best parameter
sets revealed several correlations between conductances when

all models of a neuron subtype were considered. The most
common correlations were compensatory, with increases in
inward currents correlated with increases in outward currents,
or increases in one type of potassium current correlated
with a decrease in a different type of potassium current.
Interestingly, most correlations were not observed for a
single neuron, but were observed across the set of neurons,
suggesting that differences in that set of conductances may
represent natural variation within neuron subtypes (Taylor et al.,
2009).

Optimization of several exemplars allowed us to evaluate
differences between neuron subtypes. Experimentally, low
frequency firing neurons of the globus pallidus, such as the
arkypallidal neurons, show a slight increase of firing rate
when the BK channel is blocked (Abrahao et al., 2017). In
addition, ethanol (which directly targets the BK channel) does
not affect the firing rate of high frequency firing, prototypical
neurons of the globus pallidus; but does decrease the firing
rate of low frequency GPe neurons by increasing the open
probability of BK channels (Abrahao et al., 2017). These
experimental data suggest that arkypallidal and prototypical
neurons have different conductance of BK channels, as suggested
by statistical analysis of the arkyN and protoN parameters.
ArkyN and protoN neuron models also differed in transient
potassium conductance, which has been reported experimentally
(Hernández et al., 2015). The HCN channel also has been
characterized in arkypallidal and prototypical neurons, with one
report of a difference (Hernández et al., 2015) and one report
of no difference (Mastro et al., 2014). Our observation of no
difference in HCN currents between subtypes is consistent with
the latter publication, but it is not inconsistent with the data
from the former which shows that strong hyperpolarization
is required to observe the greater sag ratio of PV− vs. PV+
neurons.

The optimization also reported that ArkyN had higher
capacitance than ProtoN, a difference that is not supported
experimentally. One possible cause of this discrepancy is the use
of the same morphology for all GPe optimizations, since using
a different morphology changes the fitted passive parameters
(Holmes et al., 2006). The neurons from which electrophysiology
data were obtained have not been reconstructed, precluding
using the morphology that matches the data. In addition,
the optimization may have (incorrectly) increased the ArkyN
capacitance to produce shallow AHPs, to compensate for the
present inability to adjust time constants and half activation
values of the potassium currents. Note that the classification
of arkypallidal vs. prototypical neurons is based on firing
characteristics, with recent attempts to identify these neurons
based on biochemical markers. There is broad agreement than
PV+ neurons are prototypical, but PV− neurons can be
prototypical cells, expressing Lhx6 (Mastro et al., 2014), or
arkypallidal cells, expressing Npas1+ or FoxP2+ (Dodson et al.,
2015; Hernández et al., 2015; Glajch et al., 2016). In fact, there are
both similarities (HCN conductance) and differences (transient
potassium current) between the Npas1+ and Lhx6+ neurons.

Frontiers in Neuroinformatics | www.frontiersin.org 18 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

Future parameter optimization of morphlogically reconstructed
neurons exhibiting these different markers may better determine
ionic conductance differences among all these neuron types.
Ideally, easy-to-use, automatic approaches for identifying
neuron channel parameters may facilitate experiments used to
characterize such differences.

AUTHOR CONTRIBUTIONS

ZJ-S: modeling and optimization software development,
manuscript preparation; JJ-S: modeling software development,
manuscript preparation; KA: GPe experiments, manuscript
preparation; DL: GPe experiments, manuscript preparation;
KB: SP experiments, modeling software development, model
simulation and analysis, manuscript preparation.

FUNDING

This work was supported by the joint NIH-NSF CRCNS program
through NIAAA grant R01DA03889 and NSF grant 1515686.

ACKNOWLEDGMENTS

Thanks to Rebekah Evans for collecting the SP experimental
data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00047/full#supplementary-material

REFERENCES

Abarbanel, H. D. I., Creveling, D. R., Farsian, R., and Kostuk,M. (2009). Dynamical
state and parameter estimation. SIAM J Appl. Dyn. Syst 8, 1341–1381.
doi: 10.1137/090749761

Abrahao, K. P., Chancey, J. H., Chan, C. S., and Lovinger, D. M. (2017).
Ethanol-sensitive pacemaker neurons in the mouse external globus pallidus.
Neuropsychopharmacology 42, 1070–1081. doi: 10.1038/npp.2016.251

Bahl, A., Stemmler, M. B., Herz, A. V., and Roth, A. (2012). Automated
optimization of a reduced layer 5 pyramidal cell model based on experimental
data. J. Neurosci. Methods 210, 22–34. doi: 10.1016/j.jneumeth.2012.04.006

Bourquard, T., Landomiel, F., Reiter, E., Crépieux, P., Ritchie, D. W.,
Azé, J., et al. (2015). Unraveling the molecular architecture of a G
protein-coupled receptor/β-arrestin/Erk module complex. Sci. Rep. 5, 1–13.
doi: 10.1038/srep10760

Brookings, T., Goeritz, M. L., and Marder, E. (2014). Automatic parameter
estimation of multicompartmental neuron models via minimization of
trace error with control adjustment. J. Neurophysiol. 112, 2332–2348.
doi: 10.1152/jn.00007.2014

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E.,
et al. (2014). LEMS: a language for expressing complex biological models in
concise and hierarchical form and its use in underpinning NeuroML 2. Front.
Neuroinform. 8:79. doi: 10.3389/fninf.2014.00079

Chan, C. S., Peterson, J. D., Gertler, T. S., Glajch, K. E., Quintana, R. E.,
Cui, Q., et al. (2012). Strain-specific regulation of striatal phenotype
in Drd2-eGFP BAC transgenic mice. J.Neurosci. 32, 9124–9132.
doi: 10.1523/JNEUROSCI.0229-12.2012

Damodaran, S., Cressman, J. R., Jedrzejewski-Szmek, Z., and Blackwell, K.
T. (2015). Desynchronization of fast-spiking interneurons reduces -band
oscillations and imbalance in firing in the dopamine-depleted striatum. J.
Neurosci. 35, 1149–1159. doi: 10.1523/JNEUROSCI.3490-14.2015

Day, M., Wokosin, D., Plotkin, J. L., Tian, X., and Surmeier, D.
J. (2008). Differential excitability and modulation of striatal
medium spiny neuron dendrites. J. Neurosci. 28, 11603–11614.
doi: 10.1523/JNEUROSCI.1840-08.2008

Dodson, P. D., Larvin, J. T., Duffell, J. M., Garas, F. N., Doig, N. M., Kessaris,
N., et al. (2015). Distinct developmental origins manifest in the specialized
encoding of movement by adult neurons of the external globus pallidus.Neuron
86, 501–513. doi: 10.1016/j.neuron.2015.03.007

Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., and Segev,
I. (2007). A novel multiple objective optimization framework for constraining
conductance-based neuron models by experimental data. Front. Neurosci. 1,
7–18. doi: 10.3389/neuro.01.1.1.001.2007

Friedrich, P., Vella, M., Gulyás, A. I., Freund, T. F., and Káli, S. (2014). A flexible,
interactive software tool for fitting the parameters of neuronal models. Front.
Neuroinform. 8:63. doi: 10.3389/fninf.2014.00063

Gewaltig, M. O., and Cannon, R. (2014). Current practice in software development
for computational neuroscience and how to improve it. PLoS Comput. Biol.

10:e1003376. doi: 10.1371/journal.pcbi.1003376
Glajch, K. E., Kelver, D. A., Hegeman, D. J., Cui, Q., Xenias, H. S., Augustine, E.

C., et al. (2016). Npas1+ pallidal neurons target striatal projection neurons. J.
Neurosci. 36, 5472–5488. doi: 10.1523/JNEUROSCI.1720-15.2016

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,
M., et al. (2010). NeuroML: a language for describing data driven models of
neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815
Golowasch, J., Goldman, M. S., Abbott, L. F., and Marder, E. (2002). Failure

of averaging in the construction of a conductance-based neuron model. J.
Neurophysiol. 87, 1129–1131. doi: 10.1152/jn.00412.2001

Günay, C., Edgerton, J. R., and Jaeger, D. (2008). Channel density distributions
explain spiking variability in the globus pallidus: a combined physiology
and computer simulation database approach. J. Neurosci. 28, 7476–7491.
doi: 10.1523/JNEUROSCI.4198-07.2008

Gurkiewicz, M., and Korngreen, A. (2007). A numerical approach to ion channel
modelling using whole-cell voltage-clamp recordings and a genetic algorithm.
PLoS Comput. Biol. 3:e169. doi: 10.1371/journal.pcbi.0030169

Hansen, N., and Kern, S. (2004). Evaluating the CMA evolution strategy on
multimodal test functions. Parallel Probl. Solv. Nat. PPSN 2004, 282–291.
doi: 10.1007/978-3-540-30217-9_29

Hay, E., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2011).
Models of neocortical layer 5b pyramidal cells capturing a wide range of
dendritic and perisomatic active properties. PLoS Comput. Biol. 7:e1002107.
doi: 10.1371/journal.pcbi.1002107

Hendrickson, E. B., Edgerton, J. R., and Jaeger, D. (2011a). The capabilities and
limitations of conductance-based compartmental neuron models with reduced
branched or unbranched morphologies and active dendrites. J.Comput.

Neurosci. 30, 301–321. doi: 10.1007/s10827-010-0258-z
Hendrickson, E. B., Edgerton, J. R., and Jaeger, D. (2011b). The use of

automated parameter searches to improve ion channel kinetics for neural
modeling. J. Comput. Neurosci. 31, 329–346. doi: 10.1007/s10827-010-
0312-x

Hernández, V.M., Hegeman, D. J., Cui, Q., Kelver, D. A., Fiske, M. P., Glajch, K. E.,
et al. (2015). Parvalbumin+ neurons and Npas1+ neurons are distinct neuron
classes in the mouse external globus pallidus. J. Neurosci. 35, 11830–11847.
doi: 10.1523/JNEUROSCI.4672-14.2015

Holmes, W. R., Ambros-Ingerson, J., and Grover, L. M. (2006). Fitting
experimental data to models that use morphological data from public
databases. J. Comput. Neurosci. 20, 349–365. doi: 10.1007/s10827-006-7189-8

Jedrzejewska-Szmek, J., Damodaran, S., Dorman, D. B., Blackwell, K. T.,
et al. (2017). Calcium dynamics predict direction of synaptic plasticity
in striatal spiny projection neurons. Eur. J. Neurosci. 45, 1044–1056.
doi: 10.1111/ejn.13287

Frontiers in Neuroinformatics | www.frontiersin.org 19 July 2018 | Volume 12 | Article 47

https://www.frontiersin.org/articles/10.3389/fninf.2018.00047/full#supplementary-material
https://doi.org/10.1137/090749761
https://doi.org/10.1038/npp.2016.251
https://doi.org/10.1016/j.jneumeth.2012.04.006
https://doi.org/10.1038/srep10760
https://doi.org/10.1152/jn.00007.2014
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1523/JNEUROSCI.0229-12.2012
https://doi.org/10.1523/JNEUROSCI.3490-14.2015
https://doi.org/10.1523/JNEUROSCI.1840-08.2008
https://doi.org/10.1016/j.neuron.2015.03.007
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.3389/fninf.2014.00063
https://doi.org/10.1371/journal.pcbi.1003376
https://doi.org/10.1523/JNEUROSCI.1720-15.2016
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1152/jn.00412.2001
https://doi.org/10.1523/JNEUROSCI.4198-07.2008
https://doi.org/10.1371/journal.pcbi.0030169
https://doi.org/10.1007/978-3-540-30217-9_29
https://doi.org/10.1371/journal.pcbi.1002107
https://doi.org/10.1007/s10827-010-0258-z
https://doi.org/10.1007/s10827-010-0312-x
https://doi.org/10.1523/JNEUROSCI.4672-14.2015
https://doi.org/10.1007/s10827-006-7189-8
https://doi.org/10.1111/ejn.13287
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jȩdrzejewski-Szmek et al. Parameter Optimization Using CMA-ES

Johenning, F. W., Theis, A. K., Pannasch, U., Rückl, M., Rüdiger, S., and Schmitz,
D. (2015). Ryanodine receptor activation induces long-term plasticity of spine
calcium dynamics. PLOS Biol. 13:e1002181. doi: 10.1371/journal.pbio.1002181

Keren, N., Bar-Yehuda, D., and Korngreen, A. (2009). Experimentally guided
modelling of dendritic excitability in rat neocortical pyramidal neurones. J.
Physiol 587, 1413–1437. doi: 10.1113/jphysiol.2008.167130

Keren, N., Peled, N., and Korngreen, A. (2005). Constraining compartmental
models using multiple voltage recordings and genetic algorithms. J.

Neurophysiol. 94, 3730–3742. doi: 10.1152/jn.00408.2005
Lee, S. H., Schwaller, B., and Neher, E. (2000). Kinetics of Ca2+ binding

to parvalbumin in bovine chromaffin cells: implications for [Ca2+]
transients of neuronal dendrites. J. Physiol. 525(Pt 2), 419–432.
doi: 10.1111/j.1469-7793.2000.t01-2-00419.x

Marder, E., and Goaillard, J. M. (2006). Variability, compensation and
homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574.
doi: 10.1038/nrn1949

Martínez-Álvarez, A., Crespo-Cano, R., Díaz-Tahoces, A., Cuenca-Asensi, S.,
Ferrández Vicente, J. M., and Fernández, E. (2016). Automatic tuning
of a retina model for a cortical visual neuroprosthesis using a multi-
objective optimization genetic algorithm. Int. J. Neural Syst. 26:1650021.
doi: 10.1142/S0129065716500210

Martínez-Cañada, P., Morillas, C., Plesser, H. E., Romero, S., and Pelayo, F.
(2017). Genetic algorithm for optimization of models of the early stages in
the visual system. Neurocomputing 250, 101–108. doi: 10.1016/j.neucom.2016.
08.120

Mastro, K. J., Bouchard, R. S., Holt, H. A., and Gittis, A. H. (2014). Transgenic
mouse lines subdivide external segment of the globus pallidus (GPe) neurons
and reveal distinct GPe output pathways. J. Neurosci. 34, 2087–2099.
doi: 10.1523/JNEUROSCI.4646-13.2014

Meza, R. C., López-Jury, L., Canavier, C. C., and Henny, P. (2018). Role
of the axon initial segment in the control of spontaneous frequency
of nigral dopaminergic neurons in vivo. J. Neurosci. 38, 733–744.
doi: 10.1523/JNEUROSCI.1432-17.2017

Nevian, T., and Sakmann, B., (2004). Single spine Ca2+ signals evoked by
coincident EPSPs and backpropagating action potentials in spiny stellate cells
of layer 4 in the juvenile rat somatosensory barrel cortex. J Neurosci. 24,
1689–1699. doi: 10.1523/JNEUROSCI.3332-03.2004

Neymotin, S. A., Suter, B. A., Dura-Bernal, S., Shepherd, G. M., Migliore, M.,
and Lytton, W. W. (2017). Optimizing computer models of corticospinal
neurons to replicate in vitro dynamics. J. Neurophysiol. 117, 148–162.
doi: 10.1152/jn.00570.2016

Olypher, A. V., and Calabrese, R. L. (2007). Using constraints on neuronal activity
to reveal compensatory changes in neuronal parameters. J. Neurophysiol. 98,
3749–3758. doi: 10.1152/jn.00842.2007

Prinz, A. A., Billimoria, C. P., and Marder, E. (2003a). Alternative to hand-tuning
conductance-based models: construction and analysis of databases of model
neurons. J. Neurophysiol. 90, 3998–4015. doi: 10.1152/jn.00641.2003

Prinz, A. A., Bucher, D., and Marder, E. (2004). Similar network activity
from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352. doi: 10.1038/
nn1352

Prinz, A. A., Thirumalai, V., and Marder, E. (2003b). The functional
consequences of changes in the strength and duration of synaptic inputs to
oscillatory neurons. J. Neurosci. 23, 943–954. doi: 10.1523/JNEUROSCI.23-03-
00943.2003

Qian, K., Yu, N., Tucker, K. R., Levitan, E. S., and Canavier, C. C. (2014).
Mathematical analysis of depolarization block mediated by slow inactivation
of fast sodium channels in midbrain dopamine neurons. J. Neurophysiol. 112,
2779–2790. doi: 10.1152/jn.00578.2014

Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter, E., et al.
(2011). NineML: the network interchange for neuroscience modeling language.
BMC Neurosci. 12:P330. doi: 10.1186/1471-2202-12-S1-P330

Ray, S., and Bhalla, U. S. (2008). PyMOOSE: Interoperable Scripting in Python for
MOOSE. Front Neuroinformatics. 2:6. doi: 10.3389/neuro.11.006.2008

Richmond, P., Cope, A., Gurney, K., and Allerton, D. J. (2014). From model
specification to simulation of biologically constrained networks of spiking
neurons. Neuroinformatics 12, 307–323. doi: 10.1007/s12021-013-9208-z

Rossant, C., Goodman, D. F., Fontaine, B., Platkiewicz, J., Magnusson, A. K., and
Brette, R. (2011). Fitting neuron models to spike trains. Front. Neurosci. 5:9.
doi: 10.3389/fnins.2011.00009

Rumbell, T. H., Draguljić, D., Yadav, A., Hof, P. R., Luebke, J. I., and Weaver, C.
M. (2016). Automated evolutionary optimization of ion channel conductances
and kinetics in models of young and aged rhesus monkey pyramidal neurons.
J. Comput. Neurosci. 41, 65–90. doi: 10.1007/s10827-016-0605-9

Ryu, C., Jang, D. C., Jung, D., Kim, Y. G., Shim, H. G., Ryu, H. H.,
et al. (2017). STIM1 regulates somatic Ca2+ signals and intrinsic firing
properties of cerebellar Purkinje neurons. J. Neurosci. 37, 8876–8894.
doi: 10.1523/JNEUROSCI.3973-16.2017

Schaefer, A. T., Larkum, M. E., Sakmann, B., and Roth, A. (2003). Coincidence
detection in pyramidal neurons is tuned by their dendritic branching pattern.
J. Neurophysiol. 89, 3143–3154. doi: 10.1152/jn.00046.2003

Segev, I., and London, M. (2000). Untangling dendrites with quantitative models.
Science 290, 744–750. doi: 10.1126/science.290.5492.744

Taylor, A. L., Goaillard, J. M., and Marder, E. (2009). How Multiple conductances
determine electrophysiological properties in a multicompartment model. J.
Neurosci. 29, 5573–5586. doi: 10.1523/JNEUROSCI.4438-08.2009

Tucker, K. R., Huertas, M. A., Horn, J. P., Canavier, C. C., and Levitan,
E. S. (2012). Pacemaker rate and depolarization block in nigral dopamine
neurons: a somatic sodium channel balancing act. J. Neurosci. 32, 14519–14531.
doi: 10.1523/JNEUROSCI.1251-12.2012

Van Geit, W., De Schutter, E., and Achard, P. (2008). Automated neuron
model optimization techniques: a review. Biol. Cybern. 99, 241–251.
doi: 10.1007/s00422-008-0257-6

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller,
E. B., et al. (2016). BluePyOpt: leveraging open source software and
cloud infrastructure to optimise model parameters in neuroscience. Front.
Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017

Van Ooyen, A., Duijnhouwer, J., Remme, M. W., and Van Pelt, J. (2002). The
effect of dendritic topology on firing patterns in model neurons.Netw. Comput.

Neural Syst. 13, 311–325. doi: 10.1088/0954-898X/13/3/304
Vanier, M. C., and Bower, J. M. (1999). A comparative survey of automated

parameter-search methods for compartmental neural models. J. Comput.

Neurosci. 7, 149–171. doi: 10.1023/A:1008972005316

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

At least a portion of this work is authored by David M. Lovinger on behalf of the U.S.

Government and, as regards Dr. Lovinger and the US government, is not subject to

copyright protection in the United States. Foreign and other copyrights may apply.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 20 July 2018 | Volume 12 | Article 47

https://doi.org/10.1371/journal.pbio.1002181
https://doi.org/10.1113/jphysiol.2008.167130
https://doi.org/10.1152/jn.00408.2005
https://doi.org/10.1111/j.1469-7793.2000.t01-2-00419.x
https://doi.org/10.1038/nrn1949
https://doi.org/10.1142/S0129065716500210
https://doi.org/10.1016/j.neucom.2016.08.120
https://doi.org/10.1523/JNEUROSCI.4646-13.2014
https://doi.org/10.1523/JNEUROSCI.1432-17.2017
https://doi.org/10.1523/JNEUROSCI.3332-03.2004
https://doi.org/10.1152/jn.00570.2016
https://doi.org/10.1152/jn.00842.2007
https://doi.org/10.1152/jn.00641.2003
https://doi.org/10.1038/nn1352
https://doi.org/10.1523/JNEUROSCI.23-03-00943.2003
https://doi.org/10.1152/jn.00578.2014
https://doi.org/10.1186/1471-2202-12-S1-P330
https://doi.org/10.3389/neuro.11.006.2008
https://doi.org/10.1007/s12021-013-9208-z
https://doi.org/10.3389/fnins.2011.00009
https://doi.org/10.1007/s10827-016-0605-9
https://doi.org/10.1523/JNEUROSCI.3973-16.2017
https://doi.org/10.1152/jn.00046.2003
https://doi.org/10.1126/science.290.5492.744
https://doi.org/10.1523/JNEUROSCI.4438-08.2009
https://doi.org/10.1523/JNEUROSCI.1251-12.2012
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.1088/0954-898X/13/3/304
https://doi.org/10.1023/A:1008972005316
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Parameter Optimization Using Covariance Matrix Adaptation—Evolutionary Strategy (CMA-ES), an Approach to Investigate Differences in Channel Properties Between Neuron Subtypes
	Introduction
	Methods
	Overview
	Model Specification
	Experimental Data
	Fitness Function
	Parameter Optimization

	Results
	Declarative Model Specification
	Parameter Optimization Using CMA-ES
	Approach to Identifying Mechanisms Underlying Difference Between Cell Types

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

