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Abstract
Background: The ATP levels of an organism are an important physiological parameter that is
affected by genetic make up, ageing, stress and disease.

Results: We have generated luminescent C. elegans through ubiquitous, constitutive expression of
firefly luciferase, widely used for in vitro ATP determination. We hypothesise that whole animal
luminescence reflects its intracellular ATP levels in vivo. To test this, we characterised the
bioluminescence response of C. elegans during sublethal exposure to, and recovery from azide, a
treatment that inhibits mitochondrial respiration reversibly, and causes ATP depletion. Consistent
with our expectations, in vivo luminescence decreased with increasing sublethal azide levels, and
recovered fully when worms were removed from azide. Firefly luciferase expression levels, stability
and activity did not influence the final luminescence. Bioluminescence also reflected the lowered
activity of the electron transport chain achieved with RNA interference (RNAi) of genes encoding
respiratory chain components.

Conclusion: Results indicated that C. elegans luminescence reports on ATP levels in real-time. For
the first time, we are able to directly assess the metabolism of a whole, living, multicellular organism
by determination of the relative ATP levels. This will enable genetic analysis based on a readily
quantifiable metabolic phenotype and will provide novel insights into mechanisms of fitness and
disease that are likely to be of relevance for other organisms, as well as the worm.

Background
The physiology of model organisms is often less well
understood than their genetics (phenotypic gap), but is
essential to the understanding of gene function. We argue
that the ATP levels of an organism are a relevant physio-
logical parameter that is amenable for phenotypic analy-
sis. Perturbation of an organism's ATP levels is an early
indication of metabolic and physiological effects of dis-

ease, genetic make-up and stress. For example, one of the
first manifestations of Alzheimer's is a decrease in energy
metabolism in parts of the brain that correlates with a spe-
cific decrease in the activity of a key mitochondrial elec-
tron transport chain (ETC) enzyme, cytochrome c oxidase
[1]. Deficiencies in energy metabolism are associated with
other age-related metabolic and neurodegenerative dis-
eases [2,3]. Impaired ATP production is a feature of Fried-
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reich's ataxia [4] and Parkinson's disease (PD) [5,6]. A
systemic defect in mitochondrial complex I is implicated
in PD, and its pathological features have been reproduced
by chronic exposure of mice to rotenone, a pesticide that
specifically inhibits complex I [6].

The "steady state" ATP levels of an organism also reflect
genetic factors. Knockdown of ETC genes in C. elegans
resulted in decreased in vitro ATP levels [7], and deletion
of genes in the insulin signalling pathway resulted in
higher ATP levels [8,9]. In addition, there is an environ-
mental influence, with exposure to stress, such as heat-
shock [10], metabolic and oxidative stress [11-13], anoxia
[14], and starvation [11,15,16] shown to decrease ATP
levels and increase the AMP: ATP ratio.

Stress induced changes in ATP concentrations are often
rapid and transient. Depending on the severity of stress,
compensatory mechanisms aimed at restoring ATP levels
are quickly activated [17]. Therefore stress responses are
better studied in real-time. We describe here a novel sen-
sor for real-time in vivo assessment of relative ATP levels in
C. elegans.

We modified C. elegans to express firefly luciferase consti-
tutively and ubiquitously throughout development. The
enzyme is widely used in vitro to report on ATP levels: it
catalyses the oxidation of luciferin in a reaction that con-
sumes ATP and generates light and AMP [18]. Because C.
elegans is transparent the luc-marked strains emit light
when provided with exogenous luciferin. We have previ-
ously demonstrated a link between light levels and the
worm's health upon exposure to environmental stress
[19]. In this study, we generated highly luminescent
strains of C. elegans that contained a luciferase gene, luc+,
fused to the green fluorescent protein (GFP) gene, and
specifically addressed the hypothesis that whole animal
luminescence reflects its intracellular ATP levels in vivo. To
test this hypothesis we characterised the bioluminescence
response of C. elegans during sublethal exposure to, and
recovery from sodium azide (NaN3), a treatment that
inhibits mitochondrial respiration reversibly, and causes
ATP depletion [3]. Consistent with our hypothesis, in vivo
luminescence decreased with increasing sublethal azide
concentration, and recovered fully when azide was
removed. We then targeted mitochondrial respiratory
chain components by RNAi, and have shown a decrease in
luminescence that was consistent with the drop in in vitro
ATP reported by Dillin et al. [7].

Although previously achieved at the single cell level
[20,21], this is the first report to show that luminescence
can be used for assessment of ATP in a living multicellular
organism. This will enable genetic analysis based on a
readily quantifiable metabolic phenotype and has the

potential to further our understanding of the many
genetic pathways involved in diverse aspects of C. elegans
physiology, such as metabolism, ageing, disease and stress
response. Since many of the C. elegans genes are well con-
served [22], the significance of these findings will extend
well beyond this organism.

Results
Strain characterisation and effect of sodium azide (NaN3) 
exposure
We have generated two independently integrated lumi-
nescent strains, PE255 (feIs5) and PE254 (feIs4). The data
we show were obtained with feIs5. Ubiquitous cytoplas-
mic expression of LUC+::GFP is shown by luminescent
strains throughout development (Figure 1). Expression is
strongest in the pharynx region and the tail area. Lumines-
cence was detectable during late embryogenesis, all subse-
quent larval stages and in the adult (data not shown).
Addition of luciferin was required for luminescence: the
background signal prior to luciferin addition was negligi-
ble. Luminescence was enhanced 2.5 times through the
addition of 1% DMSO and 0.05% triton-X (data not
shown), provided to increase the permeability of the cuti-
cle to luciferin [19].

We tested the effect of azide on worm bioluminescence.
Exposure to 1–15 mM NaN3 led to a pronounced decrease
in luminescence, without lethality (Figure 2A). All the
tested concentrations of NaN3 stopped the pharynx activ-
ity as observed microscopically using a fluorescent micro-
sphere assay. Microspheres were found only in the

Bioluminescent C. elegans expressing the LUC+::GFPFigure 1
Bioluminescent C. elegans expressing the 
LUC+::GFP. A. Strain with luminescence array feIs5 in a 
glp-4(bn2) genetic background, displaying widespread in vivo 
luminescence. Image captured in complete darkness with 10 
sec integration, after adding luminescence buffer plus 200 μM 
levamisole. Scale bar represents 100 μm. B. Image of a feIs5 
worm shows that GFP expression is strongest in the pharynx 
and the tail areas. Widespread green fluorescence is shown 
by the glp-4(bn2); feIs5 strain. 
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pharynx and intestinal tract of control worms not exposed
to azide (Figure 2B–C). At concentrations above 1 mM
NaN3 the worms were paralysed but alive, as assessed by
their ability to regain movement within 4 h of removal of
azide. Survival was 100% in each of the experimental con-
ditions, proving that the drop in observed luminescence
was not a result of lethality. To rule out the possibility that
NaN3 affected LUC+::GFP expression, we measured the
fluorescence intensity of worms exposed to NaN3. Up to
10 mM NaN3 there was little change in the intensity of flu-
orescence which reported on the GFP module of
LUC+::GFP. In contrast, bioluminescence of worms
exposed to the same concentrations of azide was
depressed, falling to approximately 20% of its maximum
values in worms exposed to 10 mM NaN3.

In vitro determination of luciferase levels
To control for potential effects of NaN3 on luciferase pro-
tein levels, or its function, luciferase activity was measured
in lysates of worms that were exposed to azide under the
same conditions as for in vivo experiments (Figure 2D). A
commercial kit that provided saturating levels of exoge-
nous ATP and luciferin was used for this purpose. Luci-
ferase activity was normalised to protein content of
sample. No significant trend was observed between luci-
ferase activity and NaN3 concentration (regression coeffi-
cient not significantly different from zero; P = 0.623466),
therefore, under our experimental conditions the level
and activity of luciferase did not account for the reduced
light output in response to NaN3 (Figure 2D).

Recovery from 30 min exposure to azide
One characteristic of NaN3 is that its effects on ATP levels
are reversible. To further establish the link between ATP
levels and luminescence we have tested for recovery of
synchronised L3 worms, young adults and gravid adults
from exposure to 10 mM NaN3. Luminescence was meas-
ured as quickly as possible over time, after washing worms
from NaN3 (Figure 3A–C) and following 3 min incuba-
tion with luciferin in each case. Rising luminescence was
observed when worms were removed from azide, with full
recovery within 30 min, as established by comparison
with controls not exposed to NaN3. Younger worms (L3)
recovered faster than older worms (gravid adults), possi-
bly due to their smaller size and faster diffusion of azide
from the nematode's tissues. In parallel, the in vitro ATP
levels of wild-type N2 worms were measured prior to,
after 30 min treatment, and following recovery from 10
mM NaN3 (Figure 3D). ATP levels, normalised to protein,
were significantly reduced by azide (ANOVA, P < 0.001),
but after 30 min recovery were restored to the levels meas-
ured prior to azide treatment (ANOVA, P > 0.05). Thus,
the recovery of luminescence was consistent with the in
vitro ATP results, showing a return to normal ATP levels
once NaN3 was removed.

Exposure of PE255 worms to the respiratory inhibitor sodium azide (NaN3) for 30 minFigure 2
Exposure of PE255 worms to the respiratory inhibitor sodium azide 
(NaN3) for 30 min. A. Luminescence (in vivo) and fluorescence as a % of controls 
not exposed to NaN3. Luminescence decreased markedly with increasing concentra-
tion of NaN3, whereas survival remained 100% throughout (not shown). Fluores-
cence intensity tracked the GFP module of LUC+::GFP and was indicative of 
expression levels of the fused protein. It remained fairly constant throughout, except 
for 15 mM NaN3 where a small decrease was observed. The drop in luminescence 
was consistent with decreased ATP levels caused by NaN3. Synchronised L4 larval 
stage worms (from 45 h post hatch liquid cultures) were used. Error bars show the 
SEM. The pooled number of worms was 1200 (± 81) per tested condition. B. As a 
result of not feeding, a nematode treated with 1 mM azide for 30 min does not show 
red fluorescing microspheres in its pharynx. C. Red microspheres accumulate in the 
pharynx of control nematodes exposed to 0 mM azide. D. Luciferase activity (meas-
ured by in vitro luminescence) in lysates of worms exposed to NaN3, expressed as % 
of control values and normalised to protein content. There were no significant 
changes in luciferase activity with increasing NaN3 concentrations (Regression not sig-
nificant; P = 0.623466), so that luciferase activity did not influence final in vivo lumines-
cence. Error bars show the standard error of the mean (SEM). The pooled number of 
worms was 4000 (± 169) per tested condition.
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RNAi knockdown of respiratory chain genes
To deplete ATP levels without addition of exogenous
chemicals, components of the mitochondrial respiratory
chain were targeted by RNAi, and the outcome was
assessed by luminescence. RNAi for respiratory chain
genes caused a decrease in both worm size and lumines-
cence in relation to controls (empty RNAi vector), there-
fore to control for the reduced size luminescence was
normalised to length of worms (Figure 4). The relative
body proportions were maintained by nematodes that
showed reduced size and thus length was a suitable
descriptor of body size. Knocking down gfp reduced fluo-
rescence and luminescence dramatically whilst not affect-
ing size of worms. This was indicative of decreased
expression of LUC+::GFP and was the only instance where
the intensity of fluorescence was decreased, as observed
microscopically. We found that RNAi for: cyc-1, a cyto-
chrome c reductase (complex III) gene, reduced lumines-
cence to 28% of maximum levels observed for empty
vector control; cco-1, a gene encoding a subunit of cyto-
chrome c oxidase (complex IV), reduced luminescence to
69%; and atp-3, encoding a mitochondrial ATP synthase
(complex V) gene, reduced luminescence to 14%. Thus,
we have shown that reducing expression of respiratory
chain genes has an effect on bioluminescence that is con-
sistent with reported changes in ATP levels under similar
conditions.

Discussion
In C. elegans, assessment of ATP levels has until now been
carried out in vitro [7-9,23], a method which is accurate
but implies the destruction of worms, limits the scalability
of the analysis and cannot be carried out in real-time. We
report on the construction of a luminescent transgenic C.
elegans strain and have tested the hypothesis that light
emitted by living C. elegans is a reflection of its ATP pools.
We used two approaches: i) exposure to and recovery from
sodium azide, a specific mitochondrial inhibitor, and ii)
RNAi towards genes that are essential for mitochondrial
function. Azide inhibits complex IV of the mitochondrial
respiratory chain by binding reversibly to cytochrome c
oxidase [24], this arrests the flow of electrons and leads to
a decrease in ATP synthesis. Because the inhibition is
reversible azide has been widely used as a C. elegans anaes-
thetic [25]. Changes in bioluminescence upon exposure
to, and recovery from, sublethal concentrations of azide
were consistent with reversible ATP depletion caused by
azide. Recovery in bioluminescence occurs within 30 min
of removing worms from azide. Similarly, recovery of ATP
depletion resulting from anoxia occurs within 45 min of
reversal of anoxia [14]. Luciferase expression and activity
levels stayed constant in the azide experiments and there-
fore did not contribute to observed changes in biolumi-
nescence.

Recovery from 30 min exposure to 10 mM sodium azide (NaN3)Figure 3
Recovery from 30 min exposure to 10 mM sodium azide (NaN3). A. L3 
stage worms (PE255), B. Young adults (PE255), C. Gravid adults (PE255). Lumines-
cence (in vivo) increased rapidly from the time NaN3 was removed and reached the 
level of worms exposed to 0 mM NaN3 within 30 min. This fast recovery is consistent 
with recovery in ATP production, following removal of the respiratory inhibitor 
NaN3. Luminescence was expressed as a % of controls exposed to 0 mM NaN3. At 
each time point, the luminescence of independent samples was read following 3 min 
incubation with luciferin. Error bars show the SEM. The pooled number of worms 
was 2400 (± 198) per time point. D. In vitro ATP levels of N2 worms before, after 30 
min exposure to 10 mM NaN3, and after 30 min recovery from 30 min exposure to 
10 mM NaN3. Azide caused a significant (**, ANOVA, P < 0.001) reduction in the lev-
els of in vitro ATP normalised to protein content. These levels returned to the levels 
of worms exposed to 0 mM NaN3 within 30 min of washing worms from the chemi-
cal (ANOVA, P > 0.05). Error bars show the SEM. The pooled number of worms was 
4000 (± 429) per tested condition.
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The substrate luciferin has to be present intracellularly for
light emission. It is not known how luciferin enters C. ele-
gans. It is possible that it passes through the permeabilised
cuticle. Alternatively, it may be ingested through the phar-
ynx. If an active pharynx was a requirement for luciferin
entry, then substrate availability could be a limiting factor
for luminescence under experimental conditions that alter
the pumping rate, such as toxin exposure [26]. However,
in this work, although exposure to azide stopped pharynx
activity, the worms were able to emit light when provided
with the substrate, indicating that luciferin was able to
cross the permeabilised cuticle. Luciferin has been
deemed to be poorly taken up by cells [27], however,
empirical data suggest that luciferin uptake occurs readily.
Luciferin crossed the blood-brain barrier in mice easily,
passing through endothelial cells that are amongst the
least permeable cells in the mouse [28]. Studies in other
organisms such as Drosophila [29], zebra fish [30] and Ara-
bidopsis [31] also indicated that diffusion and permeabil-
ity of luciferin did not limit bioluminescence.
Furthermore, we have observed that luciferin was capable
of crossing the shell of unhatched C. elegans embryos,
considered poorly permeable to chemicals, resulting in
bioluminescence. We have also captured images of wide-
spread luminescence in the worm's tissues, contrary to
what would be expected if luciferin was poorly taken up
by cells.

Inhibition of respiratory chain components by RNAi pro-
vided a means of depleting ATP levels without exogenous
chemicals. The response measured by bioluminescence is
in agreement with in vitro data. In vitro ATP was reduced to
20–40% when cyc-1 or atp-3 were knocked down, and to
40–60% for cco-1 RNAi [7]. All experimental data were
consistent with the hypothesis that C. elegans lumines-
cence reflects its ATP pools. Additionally, the RNAi exper-
iments illustrate bioluminescence as a phenotype that
could be the basis for genetic analysis.

Wildtype firefly luciferase is targeted to peroxisomes [32]
and has a 3 h half-life [27,33]. In this study, the nema-
todes were transformed with a modified firefly luciferase
gene luc+ fused to gfp, which is not targeted to the peroxi-
somes. Luc+ is expressed in the cytosol and has a half-life
of 10 h in human breast cancer cells [34]. The half-life of
GFP is 26 h [35] and therefore should not contribute to
instability of the fusion protein. The greater stability of
Luc+ is an advantage for studies where ATP changes may
be tracked over time, as opposed to the requirement for a
short half-life when luciferase reports on gene expression.

One critical aspect that will affect the luminescence read-
ings is the levels of firefly luciferase present, this may vary
for example between different strains and developmental
stages. Hence, the exact relationship between light output
and ATP concentrations will depend on the experimental
conditions, ruling out precise determination of ATP con-
tent. We propose this strain as a relative sensor of ATP lev-
els which can be applied to interrogate mitochondrial
function and metabolism of living worms in a non-
destructive, real-time and scalable manner. This will have
broad appeal as sublethal physiological parameters are
often difficult to quantify, especially on a large scale. Per-
haps the most exciting developments will be the identifi-
cation of novel genes and pathways underlying
physiological response, as well as a better understanding
of classical pathways. The integrated luc+:: gfp fusion we
described can be crossed into available strains carrying
gene deletions or into new mutants generated by muta-
genesis. Alternatively, any of the worm's genes can be tar-
geted for inactivation by RNAi and bioluminescence will
provide an easily quantifiable metabolic phenotype. The
luciferase gene may also be placed under promoters that
will drive its expression in specific tissues and allow for
relative assessment of ATP levels in that tissue. Ballistic
transformation methods will enable expression of the
transgene in the germline where required. The transgenic
strains described here offer a unique opportunity to
explore the links between physiology and genetics of C.
elegans and many other organisms with which it shares
homologue genes, including humans [22].

Bioluminescence response following RNAi of respiratory chain genesFigure 4
Bioluminescence response following RNAi of respiratory chain genes. 
Decrease in Luminescence was consistent with reported changes in in vitro ATP lev-
els. Animals [glp-4(bn2); feIs5] were exposed to dsRNA from the L1 larval stage, for 4 
days, at 25°C. Luminescence was normalised to average length of worms. Differences 
in intensity of fluorescence were only evident when gfp was targeted by RNAi. Luci-
ferase expression is also lowered with the gfp RNAi clone, as the luc+ and gfp genes 
are fused. Error bars show the SEM. The pooled number of worms was 480 (± 26) 
per tested condition.
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Conclusion
We have described the construction of highly luminescent
strains of C. elegans and have shown that emitted light is
a reflection of their ATP pools. Changes in biolumines-
cence upon exposure to, and recovery from, sublethal
concentrations of a respiratory inhibitor were consistent
with the levels of ATP determined in vitro for similar con-
ditions. Luciferase activity levels remained stable through-
out and consequently did not contribute to the measured
changes in bioluminescence. We also presented evidence
that luciferin crossed the permeabilised worm cuticle.

We used RNAi towards ETC components to reduce ETC
activity and lower ATP synthesis. For the first time mito-
chondrial function of a whole multicellular organism was
determined by in vivo luminescence, with light levels pro-
viding a sensitive measure of the ATP levels. Thus, lumi-
nescence proved an efficient means for detection of
sublethal energy related RNAi phenotypes.

Deciphering gene function is an important challenge in
the post-genomic era. Often genes conferring morpholog-
ical traits are the easiest to study, whereas those involved
in sublethal behaviour and physiology prove hardest. The
ATP levels of an organism often provide an early manifes-
tation of changes induced by stress and mitochondrial
diseases. Our strains will enable rapid real-time assess-
ment of relative ATP levels of a living model organism and
will further the research of its biology.

Methods
Construction of plasmid pSLGCV
The backbone for pSLGCV was plasmid pPD95.79 (Fire-
lab, Carnegie Institution for Science), which contains gfp.
To this backbone we added sequentially the sur-5 pro-
moter [36], PCR-amplified from plasmid pTG96 and then
the luciferase gene PCR-amplified from vector pSP-luc+
(Promega). A 3.7 kb fragment upstream of the sur-5 gene
containing the promoter, was amplified using primers 5'-
ATAAGCTTGCATGCCTGCATTGC-3' and 5'-AGACAC-
CCCGGGCTTTCTGAAAAC-3' (this introduces a Sma I site
and removes the start codon for the sur-5 gene). The sur-5
promoter was inserted in the pPD95.79 backbone using
appropriate restriction sites (Sph I and Sma I).

The luc+ gene was amplified using primers 5'-TCCCG-
GGAAGCTTTCCATGGAAGAC-3' and 5'-CTAGGGTAC-
CACGGCGATCTTTCC-3'. Sma I and Kpn I were used to
insert luc+ downstream of the sur-5 promoter and
upstream of and in frame with gfp. The peroxisome tag-
ging sequence is absent from luc+ and the NLS for sur-5
was excluded from pSLGCV, so that LUC+::GFP was
expressed in the cytoplasm.

Strain construction
Microinjection of the gonad syncytium was carried out as
standard [37]. The plasmid pSLGCV was co-injected with
the marker pRF4 at 250 ng/ml each. A transgenic line,
feEx44 [sur-5::luc+::gfp; rol-6(su1006)], was isolated and
the array was integrated by EMS mutagenesis [38], fol-
lowed by selection of F2 animals that gave rise to 100%
roller progeny. We obtained two independently inte-
grated lines, the first into the X chromosome and the sec-
ond where the transgene appears to be in chromosome V.
The first line was out-crossed 8 times with the wild-type
N2 strain to generate PE255 (feIs5), and the second was
out-crossed 10 times to generate PE254 (feIs4). The data
shown were obtained with feIs5, except where otherwise
stated.

Measurement of luminescence
Luminescence was measured in a Clarity microplate lumi-
nometer (Biotek) in the visible spectral range between
300 and 600 nm, (firefly luciferase typically emits at
550–570 nm). White microplates were used (Greiner)
with approximately 100 worms per well (in 100 μl). An
automated dispenser delivered 50 μl of luminescence
buffer to each well, consisting of citrate phosphate buffer
pH 6.5, 0.1 mM D-luciferin, 1% DMSO and 0.05 % triton-
X (all final concentrations). Luminescence of the PE255
strain increases steeply in the first minute after adding
luciferin, followed by a slower increase to its maximum
levels observed within the second minute. The light levels
remain fairly stable during the first 5 minutes, followed by
a gradual decrease to 60–80% of the maximum lumines-
cence values in the first half hour (Additional file 1).
Luminescence was read for 1 sec, 5 min after adding luci-
ferin, except for the azide recovery experiments, where
incubation with luciferin was only 3 min. These incuba-
tion periods allowed for maximum luminescence to be
reached. During incubation with luciferin plates were
shaken at 160 rpm. Except where otherwise mentioned,
all luminescence measurements were carried out in vivo.

Measurement of fluorescence
Fluorescence was quantified in a FLUOstar OPTIMA
microplate reader (BMG labtech) using 485 nm excitation
filter and a 520 nm emission filter. Background measure-
ments were subtracted from readings.

Sodium azide (NaN3) exposure bioassays
Worm cultures were synchronised by bleaching and over-
night hatching in M9 [39]. L1 stage nematodes were
washed and incubated (20°C, 160 rpm) for 45 h in S
medium supplemented with 15 g/L E. coli OP50, at a den-
sity of 20 to 30 worms per 10 μl. 50 μl of the worm culture
was aliquoted to each well of 96-well plates, white for
luminescence or black for fluorescence. 50 μl of sodium
azide (SIGMA) was added per well to final concentrations
Page 6 of 9
(page number not for citation purposes)



BMC Physiology 2008, 8:7 http://www.biomedcentral.com/1472-6793/8/7
of 0, 1, 2.5, 5, 10 and 15 mM. Each concentration was
tested on 8 replicate wells. The plates were covered with
air permeable seals (ABgene), and incubated at 20°C, 160
rpm, for 30 min prior to measurement of light output or
fluorescence. To assess survival worms exposed to each
NaN3 concentration were pooled and washed 3 times with
S basal [39], supplemented with 0.01% Tween-20 to pre-
vent worms from sticking to plasticware. Triplicate 10 μl
samples were plated on to NGM plates [39] and viability
assessed by motility within 4 h.

Pharyngeal pumping assay
Worms were treated as described in NaN3 exposure bio-
assays. An adaptation of the method of Mörck et al. [40]
was used for assessing pharyngeal pumping. Briefly, after
exposure to the various azide concentrations, Flu-
oresbrite™ Polychromatic red microspheres, 0.5 μm diam-
eter (Polyscience, Inc), suspended in luminescence buffer,
were added to each well, to a final dilution of 50 times.
After 10 min contact time, worms were washed with M9
plus 1 mM levamisole (600 × g, 2 min), transferred to 2%
agarose (w/v in M9) pads and mounted for observation
under fluorescent microscopy (Texas red filters). A mini-
mum of 30 worms were scored for the presence of micro-
spheres in their pharynx and gut, for each of the azide
concentrations tested.

Recovery from azide
Synchronised worms were exposed to 10 mM NaN3 for 30
min, in S complete supplemented with E. coli OP50.
Luminescence was read just prior to washing worms from
NaN3, and this reading was adopted as the zero time point
for recovery (t = 0). Recovery was timed from removal of
azide solution. Worms were then washed once, centri-
fuged (1 min, 600 × g) resuspended in S complete with
7.5 g/L E. coli OP50, and aliquoted to 96-well plates.
Luminescence was measured at different time points, as
quickly as possible, during the first half hour of recovery.
At each time point, a different set of samples was read, so
that the incubation time with luciferin was the same (3
min) each time. Each luminescence time point is the aver-
age of 24 replicate wells. Luminescence of worms not
exposed to azide was taken as the guideline for full recov-
ery.

In vitro luciferase assay
Exposure to 10 mM azide was carried out as described
above. Worms were then washed 3 times (1 min, 600 × g)
in S basal, and approximately 1000 worms in 100 μl of S
basal were frozen in liquid nitrogen and stored at -80°C
until analysis. Four replicate samples for each azide con-
centration were thawed on ice and 200 mg glass beads
(212–300 μm) and CCLR reagent were added (Promega).
To obtain worm lysates samples were put through a Fast-
prep homogeniser 8 times (5000 rev/min, 30 s) with incu-

bation on ice in between runs. Lysates were analysed using
Luciferase Assay system (Promega), according to manu-
facturer's instructions. The in vitro luminescence data were
normalised to protein content of samples.

In vitro ATP determination
A luminometric method adapted from Braeckman et al.
[23] (Braeckman pers. comm.) was used. Briefly, four rep-
licate samples of washed worms were collected in 100 μl
of S basal, quickly frozen in liquid nitrogen and stored at
-80°C. Worms were broken up by disruption with glass
beads (212–300 μm) in a Fastprep homogeniser after
addition of 8 % (v/v) HClO4. Extracts were neutralised
with 1.3 M KHCO3, and buffered with 1 M K phosphate
buffer (pH 7.6) prior to measurement of ATP concentra-
tions with the ATP bioluminescence CLS II kit (Roche), in
a Clarity luminometer (Biotek). ATP concentrations were
normalised to protein content of samples.

Protein determination
BCA kit (Pierce) was used in all protein determinations
according to manufacturer's instructions, with incubation
at 60°C.

RNAi Knockdown of respiratory chain genes
The Rivers et al. protocol for RNAi feeding in liquid cul-
ture was used [41]. Approximately 15 synchronised L1
nematodes were placed in each well of 96 -well micro-
plates and cultivated with bacteria expressing dsRNA for
respiratory chain genes (MRC GeneService clones), or
control clones (GFP clone: pPD128.110; empty vector
control: pPD129.36; both Firelab vectors), for 4 days at
25°C without shaking, prior to measurement of in vivo
luminescence (as above) and length. To control for
reduced body size, luminescence readings were normal-
ised to average worm length. A microscope equipped with
an ocular micrometer was used to measure worms after
immobilisation with levamisole (200 μM). At least 30
measurements were taken for each experimental condi-
tion.

Imaging of worms
A Photometrics CASCADE II 512 Air cooled (-70°C) CCD
sensor and a Deltavision microscope were used to capture
images of the glp-4(bn2); feIs5 strain. Worms were picked
into 5 μl of luminescence buffer plus 200 μM levamisole
(to immobilise worms) and mounted in 2% agarose pads.
Luminescence was captured with no incident light, in a
dark chamber, with 10 sec integration, 18 min (± 2 min)
after treatment with the luminescence buffer plus 200 μM
levamisole. As a control, conditions for imaging lumines-
cence were tested on worms that carry the plasmid PTG96
[36] and display expression of GFP on its own. No lumi-
nescence was captured for the control. For imaging fluo-
rescence illumination through FITC filters was used with
Page 7 of 9
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an exposure time of 0.2 seconds. A Zeiss Axioplan2 micro-
scope with a HAMAMATSU ORCA-ER CA742–80 digital
camera was used for additional photographs of worms,
including those of the feIs5 strain and the pharyngeal
pumping assay.

Statistical analysis
Statistical analysis was performed with SPSS 15.0 and
Microsoft Office Excel 2003. Least significant differences
(LSD) [42] were calculated for statistically significant
ANOVA results.

List of abbreviations used
ATP, adenosine 5'-triphosphate; RNAi, RNA interference;
AMP, adenosine 5'-monophosphate; ETC, electron trans-
port chain; PD, Parkinson's disease; GFP, Green fluores-
cent protein; DMSO, dimethyl sulfoxide; NLS, nuclear
localisation signal.
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Additional file 1
Time course of strain PE255 luminescence following addition of luci-
ferin (at t = 0). Luminescence buffer, consisting of citrate phosphate 
buffer pH 6.5, 0.1 mM D-luciferin, 1% DMSO and 0.05 % triton-X (all 
final concentrations) or 0.1 mM D-luciferin (final concentration) in cit-
rate phosphate buffer pH 6.5 (without DMSO or triton-X) was added to 
wells containing 15 unsynchronised gravid worms. Luminescence was 
measured in a Clarity luminometer using the KC4 programme. Lumines-
cence increased rapidly after adding luciferin, reaching its maximum lev-
els within the second min, but remaining relatively stable for the first 5 
min, followed by a gradual decrease in luminescence. The presence of 1% 
DMSO and 0.05 % triton-X increases luminescence by 2 to 2.5 times.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6793-8-7-S1.pdf]
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