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Female pediatric cancer survivors often develop Premature Ovarian Insufficiency (POI)
owing to gonadotoxic effects of anticancer treatments. Here we investigate the use of a
cell-based therapy consisting of human ovarian cortex encapsulated in a poly-ethylene
glycol (PEG)-based hydrogel that replicates the physiological cyclic and pulsatile hormonal
patterns of healthy reproductive-aged women. Human ovarian tissue from four donors
was analyzed for follicle density, with averages ranging between 360 and 4414 follicles/
mm3. Follicles in the encapsulated and implanted cryopreserved human ovarian tissues
survived up to three months, with average follicle densities ranging between 2 and 89
follicles/mm3 at retrieval. We conclude that encapsulation of human ovarian cortex in PEG-
based hydrogels did not decrease follicle survival after implantation in mice and was similar
to non-encapsulated grafts. Furthermore, this approach offers the means to replace the
endocrine function of the ovary tissue in patients with POI.

Keywords: human ovaries, immunoisolation, poly (ethylene glycol), xenografts, hydrogels
1 INTRODUCTION

Over 500,000 survivors of pediatric cancers live in the United States today (1). Due to advances in
anticancer therapy, the 5-year survival rate for pediatric cancer patients reached nearly 85% in 2016,
which is a significant increase from 50% in the 1970s (1, 2). This population will continue to grow as
the incidence rate of pediatric cancers continues to increase, with an estimated 10,500 new
diagnoses in 2021 for children aged 0-14 (1). Unfortunately, chemotherapy and radiation can
have detrimental effects on male and female gonads, which may result in delayed or completely
absent pubertal development (3). The delay or absence of pubertal development negatively impacts
patient quality of life and carries long-term health risks associated with decreased bone strength and
endocrinopathies (4). The standard of care for puberty induction in adolescent girls with premature
ovarian insufficiency (POI) is hormone replacement therapy (HRT), which was developed to treat
postmenopausal symptoms in mature women and does not recapitulate physiologic cyclic and
pulsatile hormonal patterns found in healthy, reproductive aged women (5, 6). HRT delivers
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constant doses of estrogen and progesterone, reconstituting
ovarian function only partially (7), and precluding ovarian-
body homeostasis. Furthermore, the long-term safety and
efficacy of HRT to induce puberty has yet to be established (8).

To address the lack of available treatments to induce
physiological puberty in adolescent girls with POI, we have
developed an immunoisolating hydrogel-based capsule for
implantation of donor ovarian tissue without the need for
immunosuppression (9–11). Multiple biomaterials have been
investigated for supporting follicle growth in vitro and in vivo,
including alginate (12–14), alginate-matrigel (15), fibrin (12, 16),
fibrin-alginate (12, 17, 18), and poly(ethylene glycol) (PEG) (19,
20). Here we utilize a system comprised of ovarian tissue
surrounded by a degradable PEG hydrogel that promotes
follicle growth and expansion. The degradable PEG hydrogel
core is surrounded by a non-degradable PEG shell that prevents
infiltration of immune cells while allowing diffusion of oxygen,
nutrients, and hormones. Our previous studies with these PEG
capsules and murine ovarian tissue grafts demonstrated that (1)
follicles survive and undergo folliculogenesis for at least 60 days,
(2) the capsule prevents immune cell infiltration, and (3) the
estrus cycle is restored after encapsulated allogenic tissue is
implanted in ovariectomized mice (10).

It remains unknown whether the immunoisolating capsule
can support the survival of human ovarian tissue in vivo, a key
step towards translating this technology to clinical use. Despite
many similarities with murine physiology, human ovarian tissue
carries some significant morphological differences. Human
ovarian tissue is heterogenous with respect to stromal tissue
structure, stromal cell and follicle distribution. The majority of
primordial follicles are found in the cortex surrounded by a
dense stromal tissue, while more mature follicles are found closer
to the medulla. In contrast, murine ovarian tissue is more
homogeneous, with densely packed follicles present throughout
the entire ovary and surrounded by significantly looser stroma
(21). Furthermore, follicle density varies between different
donors, the right and left ovary from the same donor, and
different locations in the cortex from the same ovary (22).
Last ly , murine and human primordial fol l ic les are
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approximately the same size (~30mm), but the terminal
diameter of pre-ovulatory follicles in mice is only ~400mm,
while human follicles reach a much larger terminal diameter
ranging from 2,000 to 20,000mm (23). Keeping these differences
in mind, the main objective of this study was to investigate
whether follicles in human ovarian tissues survive the
encapsulat ion process and maintain viabi l i ty after
implantation. We encapsulated human ovarian tissue from
donors in a dual-layered PEG capsule and implanted these
capsules subcutaneously into non-obese diabetic/severe
combined immunodeficient gamma (NSG) mice and evaluated
follicle survival in fresh and cryopreserved human ovarian tissue
that was either encapsulated or non-encapsulated.
2 MATERIALS AND METHODS

2.1 Collection of Human Ovarian Tissue
Organ procurement for research purposes followed standardized
protocols in place at the International Institute for the
Advancement of Medicine (IIAM) and the associated Organ
Procurement Organization (OPO) involved in the harvest. For
this study ovaries were procured from four deceased donors (age
range: 18-26 years) by the IIAM, see Table 1 for additional donor
information. Before cross-clamp, the organs were perfused with
either Belzer University of Wisconsin® Cold Storage Solution
(Bridge of Life, SC, USA), Custodiol® HTK (Histidine-
Tryptophan-Ketoglutarate) Solution (Essential Pharmaceuticals,
NC, USA), or SPS-1 Static Preservation Solution (Organ Recovery
Systems, IL, USA). Organs were placed in perfusion solution and
shipped on ice. De-identified donor information is summarized in
Table 1, including age, weight, height, BMI, and cross-clamp time
(time at which the organ is cut from blood/oxygen supply). Cold
ischemic time (CIT) was calculated as the time interval between
cross-clamp time of the donor (and subsequent cessation of
arterial blood flow to the ovaries) in the operation room and
start time of the tissue harvest subsequent to arrival at
the laboratory.
TABLE 1 | Donor information.

Donor No. 1 2 3 4

Age (years) 26 18 18 23
Height (cm) 157 160 163 165
Weight (kg) 60.2 70.3 52.8 67.9
BMI 24.4 27.5 20.0 25.0
Ethnicity Black or African American Black or African American White White
Cause of Death Anoxia Anoxia Head trauma Head trauma
Storage Solution UW UW HTK UW
Right Ovary Size (cm) 4x2x1 3x1x0.5 4x3x1.2 4x2.5x1.7
Left Ovary Size (cm) 4x2x1 3x1.5x0.5 NA 3.5x2x1.2
Cardiac arrest/downtime YES

30 minutes
NO NO YES

10 minutes
Cross-clamp Date and Time* 7/24/2019 16:27 10/14/2019 6:03 1/9/2019 17:22 12/19/2019 15:46
Cold Ischemic Time** (hours) 9.8 18.8 7.9 5.1
June 2022 | Volume 1
UW, University of Wisconsin Solution; HTK, Histidine-Tryptophan-Ketoglutarate Solution.
*Time at which the organ is cut from blood/oxygen supply.
**Time between cross-clamp and the beginning of tissue processing.
3 | Article 886678

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Brunette et al. Immunoisolated Human Follicles Implanted in Mice
2.2 Ethical Approval Process
The IIAM procures tissue and organs for non-clinical research
from Organ Procurement Organizations (OPOs), which comply
with state Uniform Anatomical Gift Acts (UAGA) and are
certified and regulated by the Centers for Medicare and
Medicaid Services (CMS). These OPOs are members of the
Organ Procurement and Transplantation Network (OPTN)
and the United Network for Organ Sharing (UNOS) and
operate under a set of standards established by the Association
of Organ Procurement Organizations (AOPO) and UNOS.
Informed, written consent from the deceased donor’s family
was obtained for the tissue used in this publication. A biomaterial
transfer agreement is in place between IIAM and the authors that
restricts the use of the tissue for pre-clinical research that does
not involve the fertilization of gametes. The use of deceased
donor ovarian tissue in this research is categorized as ‘not
regulated’, per 45 CFR 46.102 and the ‘Common Rule’, as it
does not involve human subjects and complies with the
University of Michigan’s IRB requirements as such.

2.3 Tissue processing
All tissue processing was done aseptically in a biosafety cabinet.
After receiving donor tissue the ovaries were separated from other
Frontiers in Endocrinology | www.frontiersin.org 3
reproductive tissues (i.e. the uterus, fallopian tubes) (Figures 1A,
B). The ovaries were decortified using a custom cutting guide
(Reprolife Japan, Tokyo) to remove 1 mm thick cortex pieces that
were approximately 10mmx10mm squares (Figures 1C, 2A). The
squares were then cut into approximately 1mm wide strips, 10mm
in length and 1mm thick (Figures 1D, 2A) using a McIlwain
Tissue Chopper (The Mickle Laboratory Engineering Co. Ltd.,
Surrey, UK) and aseptically transferred into holding media
(Quinn’s Advantage Medium with HEPES (QAMH), 10%
Quinn ’s Advantage Serum Protein Substitute (SPS),
CooperSurgical, Måløv, Denmark). The tissue was divided into
three groups: 1) Encapsulation of fresh tissue pieces followed by
immediate implantation in mice; 2) Fixation using Bouin’s fixative
(Ricca Chemical, USA) or 4% paraformaldehyde (PFA) (AlfaAesar,
USA), and stored overnight at 4°C; 3) Cryopreservation using
either slow freezing or vitrification methods.

2.4 Cryopreservation
2.4.1 Slow Freezing:
The methods as described by Xu et al. were used for slow freezing
(24). Briefly, strips of cortical tissue approximately 1mm x 10mm x
1mm were placed into cryovials (Nunc, Roskilde, Denmark) filled
with pre-cooled cryoprotectant media (QAMH, 10% SPS, 0.75M
FIGURE 1 | Overview of human tissue processing and implantation. Tissue received from UNOS donors (A) was processed to isolate the ovaries (B). Ovarian cortex
tissue approximately 10mm x 10mm x 1mm is removed (C), then cut to approximately 1mm x 10mm x 1mm (D), and finally cut to approximately 1mm x 1mm x
1mm (E). The small tissues are encapsulated in the hydrogel capsule (F) and implanted subcutaneously (G). Removal of the capsules from the subcutaneous space
(H) was conducted at various time points. The capsules were removed from the mice (I, J) and then fixed for histological processing and staining.
June 2022 | Volume 13 | Article 886678
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dimethyl sulfoxide (DMSO) (Sigma Aldrich, St. Louis, USA),
0.75M ethylene glycol (Sigma Aldrich, St. Louis, USA), 0.1M
sucrose (Sigma Aldrich, St. Louis, USA), and equilibrated at 4°C
for at least 30 minutes. After equilibration, cryovials were loaded
into the Cryologic Freeze Control System (Cryologic, Victoria,
Australia). Vials were then frozen via the following protocol:
samples were (1) cooled from 4°C to -9°C at a rate of -2°C/min
(2) equilibrated for 6 min at -9°C (3) seeded manually using large
swabs cooled by submersion in liquid nitrogen (4) held for 4 min
at -9°C (5) cooled to -40°C at a rate of -0.3°C/min and (6) plunged
into liquid nitrogen and stored in a cryogenic storage dewar until
thawed for use.

2.4.2 Vitrification
The methods as described by Kagawa et al. were used for
vitrification, with minor changes to the timing (25). Briefly,
strips of tissue approximately 1mm x 10mm x 1mm were first
transferred to an equilibration solution (7.5% ethylene glycol,
7.5% DMSO, and 20% SPS) for 25 minutes and then transferred
Frontiers in Endocrinology | www.frontiersin.org 4
to a vitrification solution (20% ethylene glycol, 20% DMSO,
0.5M sucrose, and 20% SPS) until the tissue sank to the bottom of
the vial, indicating saturation with the solution. Each strip was
placed on a 25 µm thick copper cryostrip (Lyon Industries, South
Carolina, USA), which was then submerged in liquid nitrogen for
approximately 30 seconds. Strips were transferred into a cryovial
(Nunc, Roskilde, Denmark) filled with and submerged in liquid
nitrogen. Samples were stored in liquid nitrogen until thawed
for use.

2.5 Thawing Tissue
2.5.1 Slow Frozen Tissues:
The process described by Xu et al. was followed with minimal
changes (24). Briefly, vials with ovarian tissue were removed
from liquid nitrogen and placed in a 37°C bath. Once the
cryoprotectant media in the vial had thawed, the tissue was
removed from the vial and put into Thaw Solution One (1M
DMSO, 0.1M Sucrose, 10% SPS in QAMH) for ten minutes.
Tissue was then incubated sequentially in Thaw Solution Two
A

B

FIGURE 2 | Description of implanted tissue groups. Tissue processing was conducted as shown in part (A). Cortical tissue strips were cut into squares either as
fresh tissue (Donors 1 and 2) or post-cryopreservation (Donors 3 and 4). Capsules and control tissue were implanted in mice. The total number of capsules/strips at
each time point are shown in part (B).
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Brunette et al. Immunoisolated Human Follicles Implanted in Mice
(0.5M DMSO, 0.1M Sucrose, 10% SPS in QAMH), Three (0.1M
Sucrose, 10% SPS in QAMH), and Four (10% SPS in QAMH) for
ten minutes each. All thaw solutions were maintained at room
temperature during this process. Tissue strips were cut into cubes
measuring approximately 1mm3 while still in Thaw
Solution Four.

2.5.2 Vitrified Tissues
The process described by Lee et al. was followed, with minor
modifications (26). The cryovials with ovarian cortex strips were
removed from liquid nitrogen. The copper supports with tissue
were immediately transferred into Thaw Solution One (1mg/mL
Human Serum Albumin (HSA) (MilliporeSigma, MA, USA) and
1M sucrose in QAMH). Copper supports were removed, and the
tissue was incubated at 37°C for three minutes. Tissue was
transferred to Thaw Solution Two (1mg/mL HSA and 0.5M
sucrose in QAMH) for 5 minutes at room temperature. Tissue
was then transferred to Thaw Solution Three (1mg/mL HSA in
QAMH), brought up to 37°C, and cut into cubes measuring
approximately 1mm3.

2.6 Encapsulation
The pieces of ovarian cortical tissue (1mm3) (Figure 2A) were
maintained in the final thaw solution media (Solution 4 for slow
freezing, Solution 3 for vitrification) at 37°C until encapsulation
(Figure 1E). The PEG core was prepared by cross-linking 8-arm
PEG-VS (40 kDa, Jenkem Technology, Beijing, China) (5% w/v)
with plasmin sensitive peptide (Ac-GCYK↓NSGCYK↓NSCG,
MW 1525.69 g/mol, > 90% Purity, Genscript, ↓ indicates the
cleavage site of the peptide). The PEG shell was prepared with 4-
arm PEG-VS (20 kDa, Jenkem Technology) (5% w/v), Irgacure
2959 (Ciba, Switzerland, MW = 224.3) (0.4% w/v), and N-vinyl-
2-pyrrolidone (Sigma-Aldrich, St. Louis, USA) (0.1% v/v).

The tissue was then placed in a 4µL droplet of degradable
PEG core pre-cursor solution. After five minutes of crosslinking
the core was transferred into 10µL of non-degradable PEG shell
pre-cursor solution. The shell was cross-linked via UV light at
constant intensity (4.4mW/cm2, 6 minutes). Encapsulated tissue
(Figures 1F, 2A) was maintained in Leibovitz L-15 media
(Gibco, USA) at 37°C until implantation.

2.7 Subcutaneous Implantation
Animal experiments for this work were performed in accordance
with the protocol approved by the Institutional Animal Care and
Use Committee (IACUC) at the University of Michigan
(PRO00007716 & PRO00009635). The IACUC guidelines for
survival surgery in rodents and the IACUC Policy on Analgesic
Use in Animals Undergoing Surgery were followed for
all procedures.

Female NSG mice (strain 005557, The Jackson Laboratory,
Bar Harbor, ME, USA) 6-8 weeks old were anesthetized using
isoflurane (2-3%) via inhalation. Mice were given preemptive
analgesics (Carprofen, RIMADYL, Zoetis, USA, 5mg/kg body)
via subcutaneous injection. An incision was made in the medial/
dorsal skin. Nine to ten PEG capsules, along with an equivalent
amount of non-encapsulated tissue (as a control), were inserted
into the dorsal subcutaneous space in the mouse (Figures 1G,
Frontiers in Endocrinology | www.frontiersin.org 5
2B). The control graft was inserted subcutaneously and sutured
using 5/0 absorbable sutures (AD surgical) to the subcutaneous
tissue to ensure graft recovery. Using 5/0 absorbable sutures the
incision was closed, with special attention paid to avoid suturing
capsules/control tissue. Mice recovered in a clean cage and were
monitored post-operatively for 7-10 days.

2.8 Implant Removal
Mice were anesthetized using isoflurane as described above. An
incision was made in the medial/dorsal skin, avoiding implanted
grafts. The encapsulated and control grafts were removed
(Figures 1H–J), placed in either Bouin’s fixative or 4% PFA
overnight at 4°C, washed, and stored in 70% ethanol or PBS,
depending on respective fixative.

2.9 Histology
All samples were processed at the Histology Core in the Dental
School at the University of Michigan. The paraffin embedded
tissue blocks were serially sectioned at a thickness of 5µm and
stained with hematoxylin and eosin.

2.10 Follicle Counting
Slides were viewed using a brightfield microscope (Leica DM
1000, Germany) at 20 or 40x magnification. Encapsulated tissue
and control non-encapsulated grafts were analyzed for follicle
density. Every 16th section was analyzed for follicles for all
groups. For slow frozen encapsulated tissue groups between 6
and 17 sections were analyzed per mouse (n=3 mice per time
point). For slow frozen non-encapsulated control tissue between
5 and 14 sections were analyzed per mouse (n=3 mice per time
point). In the slow frozen groups, each data point represents the
follicle density calculated from all capsules retrieved from each
mouse. For vitrified encapsulated tissue groups between 4 and 10
sections were analyzed per mouse (n=2 mice per time point). For
vitrified non-encapsulated control tissue between 5 and 8
sections were analyzed per mouse (n=2 mice per time point).
In the vitrified groups, each data point represents the follicle
density calculated from all capsules retrieved from each mouse.
For fresh fixed tissue, between 8 and 12 sections were analyzed
per donor where each data point represents the follicle density
calculated from a single analyzed section. Follicles were counted
manually and follicle stage was identified using standard
morphological guidelines (27). All primordial and primary
follicles were counted for each analyzed section. Preantral and
antral were counted only after comparing the location of the
follicle in the tissue and follicle size in preceding and subsequent
sections to avoid “double-counting”. Density measurements
were calculated using an estimated area (1mm2 per section)
based on the approximate geometry of the sample, and the
estimated tissue section thickness. The follicle density values
reported in this study are all normalized to the same volume.

2.11 Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software. A 1-way ANOVA was used for fresh tissue analysis
comparing follicle density between donors. Tukey’s comparison
test was used for implanted tissue analysis to a evaluate
June 2022 | Volume 13 | Article 886678

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Brunette et al. Immunoisolated Human Follicles Implanted in Mice
differences in follicle density across two variables (time and
encapsulation). The results were considered statistically
significant when p < 0.05.
3 RESULTS

3.1 Fresh Donor Tissue Prior to
Processing Reveals Donor Heterogeneity
First, we analyzed the follicle density in ovarian cortex from
each donor to benchmark a starting point for the grafts. In this
study we used ovarian tissue from 4 young healthy deceased
donors, ranging from 18 to 26 years old. Inherently, human
ovarian cortex varies greatly between donors and location in the
ovary. As expected, all donor tissues displayed a high degree of
heterogeneity between different strips and various locations in
the same cortical strip from the same donor as well as across
different donors. The average follicle density in ovarian tissue
from Donor 1, 26 years old and BMI of 24.4, was 361 ± 304
follicles/mm3 (average ± standard deviation). The average
follicle density in the ovarian cortex of Donor 2, 18 years old
and BMI 27.5, was 1528 ± 528 follicles/mm3. Donor 3, 18 years
old and BMI of 20, had an average follicle density of 4414 ± 521
follicles/mm3. Donor 4, 25 years old and BMI of 24.9, had an
average follicle density of 464 ± 152 follicles/mm3 (Figures 3A,
B). Donor 3 had the greatest follicle density, 4414 ± 521
follicles/mm3 (p<0.0001) compared to the other three donors.
The follicle density of Donor 2 was greater compared to the
lower follicle densities of Donors 1 and 4 (p <0.0001). The
follicle densities of Donors 1 and 4 were relatively similar and
not significantly different. Histological images from each donor
showed multiple primordial and primary follicles (Figures 3C–
N). The cortical stroma had regions of densely packed
primordial follicles with oocytes surrounded by a single layer
of flat squamous granulosa cells (Figure 3E iii., Figure 3K i.,
Figure 3N i.). In addition to primordial follicles, primary and
small preantral follicles were also identified in the ovarian tissue
from all donors. Primary follicles showed the characteristic
oocyte surrounded by a single layer of cuboidal granulosa cells
(Figure 3E i., Figure 3H iv. Figure 3K ii.), while preantral
follicles had a few layers of granulosa cells surrounding the
oocyte (Figure 3H ii.).

3.2 Follicles in Encapsulated Fresh Ovarian
Cortical Tissues Survive for At Least One
Month After Implantation in NSG Mice
Grafting of non-encapsulated human ovarian tissue is a gold
standard for restoration of fertility in human patients and animal
models ( (28)). However, whether encapsulated human ovarian
allograft survives encapsulation and implantation has yet to be
demonstrated. Here, we investigated whether the encapsulation
of fresh ovarian cortical tissue in a hydrogel decreases follicle
survival and longevity after implantation in mice, and compared
to non-encapsulated fresh tissue. Immediately after receiving and
processing ovaries from Donors 1 and 2, we encapsulated and
implanted ovarian cortical tissues in mice with nine to ten
Frontiers in Endocrinology | www.frontiersin.org 6
capsules per animal for time periods of 3 days (n=2 mice), 1
week (n=2), and 1 month (n=3) (Figures 4D–F respectively). A
non-encapsulated cortical strip measuring 1mm x 10mm x 1mm
was implanted in each mouse and served as a control
(Figures 4A–C). Recovery of the capsules from the
subcutaneous space was reasonably straightforward as the
capsules typically clumped together (Figure 1J). Eight to ten
capsules were recovered in six out of seven mice (no capsules
were recovered from one animal, possibly due to degradation).
Non-encapsulated control tissue was recovered in all seven mice.
Eight to twenty-six sections for each implant type (encapsulated
or non-encapsulated) were analyzed using bright field
microscopy to assess follicle survival. Multiple follicles at
different stages ranging from primordial to antral were present
in retrieved encapsulated tissue from all time points up to a
month post implantation within the same capsule (Figure 4F).
Nuclear staining of the encapsulated tissue retrieved after 3 days
and 1 week identified the presence of multiple stromal cells
around the follicles. The encapsulated tissue had multiple
surviving follicles after 1 month, however qualitative analysis
showed a decrease in number of stromal cells. Overall, we
concluded that follicle survival in human ovarian cortex was
not decreased by the encapsulation process and was similar to
the non-encapsulated controls.

3.3 Slow Frozen, Short-Term Implanted
Tissues Tolerate Encapsulation and
Survive to the Same Extent as Non-
Encapsulated Tissue Following
Implantation
The next objective was to determine whether encapsulation of
cryopreserved ovarian tissue using the slow freezing approach,
similar to the current clinical practice recommended for fertility
preservation in pediatric patients, negatively affected follicle
survival. Ovarian cortical strips from Donor 4 that had
previously been slow frozen, were thawed and encapsulated.
Multiple capsules and all non-encapsulated tissues were
recovered in all 20 mice. There was no statistically significant
difference in follicle density between encapsulated and non-
encapsulated grafts at any time point (Figure 5A). For the 1-
day time point, the follicle density was 24 ± 21 follicles/mm3

(average ± standard deviation) in the non-encapsulated graft and
90 ± 60 in the encapsulated tissue. For the 3-days’ time point, the
average follicle density was 30 ± 21 and 73 ± 35, for the 1-week
time point, the average follicle density was 28 ± 23 and 80 ± 43,
for the 2-weeks’ time point, the average follicle density was 25 ±
18 and 89 ± 51 for the 1-month time point, the average follicle
density was 39 ± 22 and 81 ± 109, respectively. The difference in
follicle density was not statistically significant between different
time points, nor was it different when comparing between
encapsulated and non-encapsulated groups at each time point.
These findings suggest that after slow freezing (1) human ovarian
follicles tolerate encapsulation in the dual-layered PEG hydrogel
capsule and (2) encapsulated human ovarian tissue survives to
the same extent as non-encapsulated tissues when implanted
in mice.
June 2022 | Volume 13 | Article 886678
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FIGURE 3 | Donor metrics and initial histology. The donor tissues used in this study were selected from a bank from donors with various ages and BMI values (A).
Follicle density values were calculated for each donor from fresh/fixed tissues (B). The large differences in average follicle density between donors is supported by
histological images (C–N). Representative images from Donor 1 (C–E), Donor 2 (F–H), Donor 3 (I–K), and Donor 4 (L–N) show stark differences in follicle distribution
at low magnification (C, F, I, L). Increased magnification shows the presence of primordial (E iii., K i., N i), primary (E i., H iv., K ii.), and secondary (H ii.) follicles.
Scale bars represent 200mm for C, F, I, and L. Scale bars represent 100 mm for D, G, J, and M. Scale bars represent 50mm for all others.
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Although follicle numbers were not significantly different
between groups, we also wanted to probe whether there were
any differences between groups in terms of the quality of the
stromal compartment. Qualitative histological analysis of tissue
fixed immediately post-thawing (Figure 5B) and tissue fixed
after implantation showed similar distribution of stromal cells
(marked with hematoxylin). Furthermore, similar stromal cell
densities were evident across time points, as well as between
encapsulated (Figures 5H–L) and non-encapsulated groups
(Figures 5C–G) at the same time points, except for the 1-
month encapsulated tissue (Figure 5L). The 1-month
encapsulated tissue had less cellular staining around the
follicles and more fibrous portions of the extracellular matrix
(stained pink with eosin). Furthermore, the types of follicles seen
in encapsulated and non-encapsulate groups at various time
points were comparable, with primordial and primary follicles
Frontiers in Endocrinology | www.frontiersin.org 8
being the most prevalent. Taken together, these observations
support the hypothesis that follicles can survive slow freezing
before encapsulation and survive up to one month in vivo.

3.4 Vitrified, Long-Term Implanted Tissues
Tolerate Encapsulation and Survive Up to
Three Months In Vivo
The final objective of this study was to investigate whether the
two clinically available cryopreservation methods, slow freezing
and vitrification specifically, have different outcomes of follicle
survival in grafted tissue following encapsulation and
implantation. Vitrified tissue from Donor 3 was encapsulated
and implanted in mice for 2 and 3 months. Non-encapsulated,
1mm3 grafts served as controls. Two months after implantation
the average follicle density was 17 follicles/mm3 in the non-
encapsulated grafts and 2 follicles/mm3 in the encapsulated
FIGURE 4 | Follicles in fresh tissue survive up to one month. Representative images from non-encapsulated fresh tissue samples (A–C) and encapsulated fresh
tissue samples (D–F) are shown here. These samples were removed from mice at various time points of 3 days (A, D), 1 week (B, E), and 1 month (C, F). Scale
bars represent 100mm for inserts and 50mm for all others. Black arrow heads (➤) indicate follicles, asterisks (*) indicate the PEG capsule, and dashed black lines (—)
indicate the human ovarian tissue border with surrounding murine tissue after implantation.
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tissue. For the 3-month time point, the average follicle density
was 57 follicles/mm3 in the non-encapsulated graft and 22
follicles/mm3 in the encapsulated tissue (Figure 6A). Vitrified
tissue had greater cell density in the stroma (Figure 6B) than
frozen tissue before implantation (Figure 5B). Encouragingly,
follicles in implanted tissues survived up to three months post-
implantation, but the surrounding stroma had lower cell density
compared to tissue prior to implantation (Figures 6C–F); the
decrease in stroma cell density was observed in all implanted
groups, similarly to the one-month time point for encapsulated
slow frozen tissue (Figure 5L) In comparison to other slow
frozen tissue, vitrified groups similarly have a follicle pool
Frontiers in Endocrinology | www.frontiersin.org 9
comprised predominantly of primordial and primary follicles.
Based on our findings, we concluded that follicles and ovarian
stromal cells tolerate vitrification before encapsulation, and
survive up to three months in vivo.
4 DISCUSSION

Previously, using PEG-based immunoisolating capsules we have
demonstrated that the capsule protected murine ovarian
allografts in immune competent and sensitized murine hosts
and promoted folliculogenesis up to antral stages after single and
FIGURE 5 | Follicles in slow frozen tissue survive up to one month. Follicle density values (A) are determined from histological images (C–L). Non-implanted thawed/
fixed tissue (B) is a control for non-encapsulated groups (C–G) and encapsulated groups (F–L). These samples were removed from mice at various time points of 1
day (C, H), 3 days (D, I), 1 week (E, J), 2 weeks (F, K), and 1 month (G, L). Scale bars represent 100mm for inserts and 50mm for all others. Black arrow heads (➤)
indicate follicles, asterisks (*) indicate the PEG capsule, and dashed black lines (—) indicate the human ovarian tissue border with surrounding murine tissue after
implantation.
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repeated implantations (10). Despite mice and humans having
similar hypothalamus-pituitary-gonad axis regulation,
circulating cytokines and hormones, and developmental stages
of follicular differentiation, existence of other physiological and
anatomical differences between human and murine ovarian
tissues necessitates further investigation to determine
translatability of the use of immunoisolating capsules from
mouse to human tissues. One example of the challenges
working with human tissue is that human primordial follicles
are spread heterogeneously in the stroma of ovarian cortex and
require normalization of the follicle counts in each graft. The
heterogeneity of human tissue introduced significant variance
into our quantification of follicle density. To control for this,
encapsulated tissues and corresponding non-encapsulated tissue
originating from the same donor were included within same
groups to minimize the impact of inherent heterogeneity
between donors. Tissue pieces placed in the encapsulated
groups and non-encapsulated groups were randomized to
minimize skewing of results due to heterogeneity present in a
single ovary. Even with these adaptations it is uncertain if
differences seen are an artifact of tissue heterogeneity or are a
result of tissue treatment; persistence of a large variability
resulting in largely qualitative methods of analysis. One option
to minimize the effect of heterogeneity on follicle density analysis
is to significantly increase the number of human donors and
recipient mice. Another option is to use cryopreserved tissues
that would have undergone a thorough characterization prior to
xenografting, allowing for donors with similar follicle densities to
be used in the same study.

Ovarian tissue cryopreservation (OTC) enables preservation
of many thousands of primordial follicles all at once without the
need of ovarian stimulation and can be performed at any age
from early prepubertal years to late thirties. Slow freezing and
Frontiers in Endocrinology | www.frontiersin.org 10
vitrification of ovarian tissues are the two most studied methods
of cryopreservation. The majority of clinical data, such as the
rates of live births (29–31), the efficiency and safety of OTC in
terms of follicle survival and patients’ outcomes after
transplantation, is available for slow freezing methods, which
was considered experimental for a few decades and was recently
clinically approved (32). Slow freezing in general uses a low
amount of cryoprotective agents to reduce cell toxicity. This
method utilizes standardized equipment and detailed cooling
protocols such that there is decreased variability between
operators, as well as between batches. On the downside, slow
freezing poses the risk of intracellular ice crystal formation,
which can be minimized by manual seeding at the media/air
interface (33, 34). Vitrification, another cryopreservation
method, is currently only approved for embryo and egg
cryopreservation (35). It utilizes greater concentrations of
cryoprotectants that prevent ice crystal formation. Vitrification
does not require standardized equipment, which results in some
variability between operators and batches. So far, this method
has been clinically approved for oocyte and embryo
cryopreservation but is still considered experimental for OTC.
Possibly, in the future, it may become clinically approved for
OTC as well.

Both cryopreservation methods have been shown to have
negligible impact on follicle count as compared to fresh tissue
(36) and ensure the survival of primordial follicles, which are
critical for the application described in this study; dormant
primordial follicles in the implanted encapsulated tissue
functions as the ovarian reserve, determining the quality and
the lifespan of the encapsulated tissue. Additionally, OTC allows
important screening for disease or infection and analysis of the
follicle density in the donor tissue that would not be possible with
fresh tissue. While some reports show that vitrification results in
FIGURE 6 | Follicles in vitrified tissue survive up to three months. Follicle density values (A) are determined from histological images (C–F). Non-implanted thawed/
fixed tissue (B) is a control for non-encapsulated groups (C, D) and encapsulated groups (E, F). These samples were removed from mice at various time points of 2
months (C, E) and 3 months (D, F). Scale bars represent 100mm for inserts and 50mm for all others. Black arrow heads (➤) indicate follicles, asterisks (*) indicate the
PEG capsule, and dashed black lines (—) indicate the human ovarian tissue border with surrounding murine tissue after implantation.
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(1) decreased primordial follicle DNA damage and (2) better
outcomes for stromal tissue (37), others indicate that slow
freezing is superior for (1) preserving primordial follicles, (2)
preventing DNA damage, and (3) promoting follicular cell
proliferation (26). Comparison of the survival of slow frozen
and vitrified tissues with fresh tissues used as controls showed
fresh tissues to have more mature (i.e. secondary/antral) follicles,
as expected. More mature follicles contain oocytes that are more
metabolically active and antral follicles contain the cumulus-
oocyte complex, resulting in decreased cryoprotectant agent
penetration and therefore increased probability of ice crystal
formation (38). Our observation that the stroma in slow frozen
tissues (Figure 5) is less fibrous as compared to vitrified tissues
(Figure 6) is somewhat unexpected since the literature indicates
that vitrification typically has better stromal cell survival (37).
The most likely explanation for these differing results is that
there was more variability between operators during the
vitrification process. Notably, an important finding from the
present study is that follicles can survive the process of
cryopreservation and survive for at least 30 days in vivo,
regardless of cryopreservation method.

Encapsulation may slow down the diffusion of nutrients, yet it
is necessary to prevent rejection of the grafts. Our comparison of
tissues that underwent the encapsulation process to tissues that
did not, found that the follicle densities of non-encapsulated
tissues were not higher than the follicle densities in encapsulated
tissues. Qualitative examination of the implants also indicates
minimal differences between encapsulated and non-encapsulated
tissues at early time points, but larger differences begin to appear
starting around one month. The main change observed is a
decrease in stromal cell density in encapsulated tissues. This
trend is emphasized by greater areas of fibrous stromal
extracellular matrix, the mostly eosin-stained matrix without
visible nuclei. The relative similarities between short term
implants and subsequent differences in long term implants
indicate that the process of encapsulation is not harmful to
human tissues. It is hypothesized that as time goes on the rate of
diffusion of nutrients is inadequate to support these tissues.

In conclusion, we have shown that an immunoisolating dual
PEG capsule supported follicle survival in human ovarian
xenografts up to 90 days in vivo . The process of
encapsulation did not decrease follicle density compared with
non-encapsulated grafts. Cryopreservation of ovarian cortical
strips allowed for thorough analysis of follicular density to
ensure graft longevity. Moving forward towards clinical
Frontiers in Endocrinology | www.frontiersin.org 11
t rans la t ion of th is technology , a greater sca le of
characterization of the donor tissue and optimization of the
PEG shell to increase diffusion and increase stromal cell
survival at later time points, should be done.
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