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The rules governing the inclusion of alternative exons in different cell types to generate 

protein diversity are complex and apparently manifold. In a recent paper in Nature, Barash 

et al.1 have applied machine learning to high throughput splicing data to identify 

combinations of sequence features that can be used to predict tissue-specific alternative 

splicing patterns.

In most eukaryotes the central dogma for the flow of information from gene to protein is: 

DNA makes pre-mRNA makes mRNA makes protein. In the first step, transcription, genetic 

information is mapped from DNA to RNA via a one-to-one correspondence between like 

nucleotides. In the biochemically complex third step, translation, a simple code is used to 

place amino acids into polypeptides according to sequentially read base triplets in mature 

messenger RNA. In the middle step, RNA processing, the retrieval of genetic information is 

less straightforward. The parts of the gene sequence in the primary transcript that are 

destined to code for protein (the exons) are extracted from a much longer sequence and 

spliced together, creating a messenger RNA and discarding the intervening sequences (the 

introns) in the process. This extraction requires, first and foremost, the identification of the 

exons and the introns. Intron recognition is always taking place during the splicing event 

itself, a chemical reaction catalyzed by the spliceosome, which is a large molecular machine 

comprised of 5 RNA molecules and over 100 proteins. On the other hand, an early step in 

splicing is thought to be the definition of an exon as an entity unto itself, the main evidence 

for the latter being that disruption of an individual splice site most often leads to the entire 

exon being discarded, i.e., skipped.

How this early exon recognition takes place is not well-understood. There is not enough 

information in the splice site sequences themselves to demarcate their borders, and several 

types of experiments have shown that additional information exists in short degenerate 

sequence motifs that lie both within and outside the exons. It is thought and has often been 

demonstrated that these genetic elements interact with specific RNA-binding proteins to 

either enhance or silence splicing, but the mechanism(s) by which this enhancement or 

silencing is realized has remained elusive. The nature and location of these sequence 

elements has been termed the “splicing code”2–5. Reading this code is probably more 
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complicated than looking at the linear arrangement of these sequence elements, for at least 

two reasons. First, RNA can fold into intricate 3-dimensional structures, driven mostly by 

base pairing between different regions of the molecule. Thus the availability of an RNA 

sequence to bind an RNA binding protein is modulated by RNA structure, itself driven by an 

RNA structure code. Pre-mRNA structure per se could also play a direct role in splicing. 

Second, since splicing can take place while RNA is being transcribed, it can be influenced 

by the transcription complex, which may act as a conduit for the delivery of gene-specific 

splicing factors and/or by pausing transcription to allow a splice site to be recognized6. In an 

analogous way, chromatin structure is emerging as a possible modulating factor in code 

reading (e.g.,7, 8). Thus the splicing code can be comprised of sequences that act at the level 

of DNA as well as RNA.

It gets more complicated, because: 1) the splicing code does not always produce an all-or-

nothing result; and 2) the code can be interpreted differently in different cellular 

environments. The result is alternative splicing, with the same gene giving rise to multiple 

mRNA isoforms with different exon constituents and their attendant protein isoforms. 

Although most exons are spliced constitutively, i.e., included with near 100% efficiency in 

all mature mRNA molecules produced in all tissues, a large minority are alternatively 

spliced, such that almost all mammalian genes undergo some alternative splicing. It is hard 

to overestimate the importance of alternative splicing, as it can generate a proteome that is 

much greater than the transcriptome, explaining the relative complexity of higher organisms 

without much of a difference in genome size. Indeed, most research on splicing has focused 

on this phenomenon. Tissue-specific alternative splicing adds another layer to the splicing 

code, sequences that allow an exon to be included (or included more often) in one tissue 

compared to another, with the different behaviors presumably being mediated by different 

repertoires or levels of splicing factors and/or chromatin structures. This tissue-specific 

alternative splicing code may be part and parcel of the general code, or distinct from it, or 

the two may overlap.

How can we go about revealing such a specialized complex code that may depend on 

multiple variables, some of which are likely unknown as yet. A recent paper by Barash et al.

1 provides one impressive answer. This work was the fruit of an ongoing collaboration 

between the computational biology lab of Brendan Frey and the splicing lab of Ben 

Blencowe, both at the University of Toronto. The strategy (Fig. 1) was to reveal the 

elements of the tissue-specific splicing code by associating the presence of sequence 

“features” (more later) with the differential inclusion of alternatively spliced exons. The 

latter was determined using high-throughput microarray measurements of mRNA levels 

comprising 3665 alternatively spliced exons in 27 mouse cells and tissues. The complexity 

of the problem was then reduced in two ways. 1) The 27 samples were grouped into four 

tissue categories for comparison (those related to the CNS, muscle, digestion, and the 

embryo). 2) Relative %inclusion levels were discretized as three probabilities: increased, 

decreased or unchanged inclusion in a particular tissue compared to a baseline. Next, a 

machine learning algorithm was developed to discover which features were associated with 

increased or decreased exon inclusion in each tissue category. The algorithm was tested 

against exons not used for training for its ability to predict increased or decreased relative 
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inclusion levels in pairwise comparisons of different tissue categories. An accuracy of about 

90% was achieved, attesting to the validity of the method.

Now to the features, perhaps the heart of this work. Barash et al. compiled a list of 1014 

diverse features based on previous studies and on their own intuition. Most were based on 

oligomeric sequences from different types of experiments: e.g., sets of predicted and 

validated hexamer sequences based on statistical analysis of the transcriptome, others based 

on evolutionary conservation, ligand sequences for splicing factors, and positional weight 

matrices for sequences derived by functional selection. But then the sequence list went on to 

include the density of all possible base trimers, dimers, and even single bases. RNA 

structure was considered as predicted singlestrandedness around regions such as the splice 

sites. Splice site scores, the creation of premature stop codon, frame shifts, and exon length 

were also considered. Evolutionary conservation of many of these sequences was also 

included: although this feature is not one that mouse cells can perceive, it could aid a 

researcher in interpreting the code. On top of all this these features were considered 

separately for seven different regions: the alternatively spliced exon and 300 nt of its 

intronic flanks plus the upstream and downstream exons and their proximal intronic flanks. 

Note that these last four regions can be located thousands of nucleotides away from the exon 

in question. The separate consideration of these seven regions multiplies the number of 

features tracked. While tissue specific splicing motifs have been discovered by genomic 

analysis in the past (e.g.,9), this study stands out its comprehensiveness and in its 

consideration of distant locations.

About 200 of the original 1014 features proved to be useful. This filtered list includes 

confirmatory assignments for PTB and Nova binding sites, for example, but it also suggests 

unexpected roles for the density of many short sequences and, intriguingly, for sequences 

residing in the far-flung adjacent exon regions. Importantly, in a post-processing step, the 

authors could identify many pairs of features that significantly co-occurred, suggestive of 

specific molecular interactions. Overall, the results provide a list of players whose roles can 

now be followed up with mechanistic studies. The list also allows an exploration of the 

effect on splicing of SNPs that disrupt important features, a direction that could prove 

relevant to human disease. Even at this early stage, the authors were able to come up with 

evidence for increased gene expression in embryonic stem cells via the exclusion of 

alternatively spliced “killer” exons that reduce mRNA levels in adult tissue. Furthermore, 

the methodology itself can be applied to learn other codes and can be adopted and honed by 

others. While this comprehensive work has produced an important advance, there is more to 

be done. An improved code would provide quantitative predictions of exon inclusion rather 

than just directionality. And additional wet validation experiments to test the importance of 

features will be needed before the conclusions based on statistics can be accepted with 

confidence.

The strategy used by Barash et al. was not aimed at a general code for exon definition but 

rather at a code for alternative splicing, the difference in splicing behavior of a given exon in 

two different environments. Although there may be differences in how alternative exons are 

defined10, it would be surprising if many of the features identified here do not turn out to 

reflect basic mechanisms in splice site recognition. Indeed, the comparison of two different 
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states (tissues) can help pinpoint such factors. Perhaps the most important message from this 

work is that each exon does not march to the beat of a different drummer, but gets spliced 

through a complex but knowable orchestration based on a large but limited set of 

instruments.
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Fig. 1. 
Scheme for associating RNA sequence features with splicing outcomes. Top left: More than 

1000 diverse features were used; the examples shown here were chosen to illustrate their 

diversity. Each feature was also defined by the region in which it occurs, as indicated on the 

map on the lower left, where the alternatively spliced exon is red. Upper right: Exon 

inclusion data were originally measured in 27 mouse tissues or cell lines using microarrays 

and then consolidated into four tissue types: C, central nervous system; M, striated and 

cardiac muscle; D, digestion related tissues; E, embryonic tissue and stem cells. A machine 

learning algorithm was devised to associate particular features with particular splicing 

outcomes; the latter being categorized as increased exon inclusion, increased exon 

exclusion, or no difference in comparing two tissue types. After training on a set of ~3000 

exons, the algorithm was able to reliably predict these splicing outcomes in a set of test 

exons.
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