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Abstract

Tyrosine is mainly degraded in the liver by a series of enzymatic reactions. Abnormal

expression of the tyrosine catabolic enzyme tyrosine aminotransferase (TAT) has been

reported in patients with hepatocellular carcinoma (HCC). Despite this, aberration in tyro-

sine metabolism has not been investigated in cancer development. In this work, we conduct

comprehensive cross-platform study to obtain foundation for discoveries of potential thera-

peutics and preventative biomarkers of HCC. We explore data from The Cancer Genome

Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive

Analysis (GEPIA), Oncomine and Kaplan Meier plotter (KM plotter) and performed inte-

grated analyses to evaluate the clinical significance and prognostic values of the tyrosine

catabolic genes in HCC. We find that five tyrosine catabolic enzymes are downregulated in

HCC compared to normal liver at mRNA and protein level. Moreover, low expression of

these enzymes correlates with poorer survival in patients with HCC. Notably, we identify

pathways and upstream regulators that might involve in tyrosine catabolic reprogramming

and further drive HCC development. In total, our results underscore tyrosine metabolism

alteration in HCC and lay foundation for incorporating these pathway components in thera-

peutics and preventative strategies.

Introduction

Hepatocellular carcinoma (HCC) remains the most common cancer in the word, especially in

Asia and Africa, and the third leading cause of cancer-related death worldwide [1]. It is

believed that the pathogenesis of HCC is a long-term process that involves constant metabolic

reprogramming. Previous efforts to investigate metabolic programming of HCC have largely

focused on aerobic glycolysis, commonly referred to as the Warburg effect, which supports

tumor growth in part by accumulating glycolytic intermediates for anabolic biosynthesis [2, 3].

For instance, HCC tumors express high levels of the hexokinase isoform 2 (HK2), which con-

verts glucose to glucose-6-phosphate, and its expression is associated with the pathological

stage of the tumor [4, 5]. HK2 silencing acted synergistically with sorafenib to inhibit HCC
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tumor growth in mice [5]. Besides glucose, HCC has been reported to alter its lipid and lipo-

protein catabolic and anabolic pathways and increased HCC risks have been observed in

patients with obesity [6], diabetes [7], and hepatic steatosis [8]. Recent studies defined a func-

tional association among lipogenesis, multifunctional enzyme fatty acid synthase (FASN), ste-

rol regulatory element-binding protein-1 (SREBP-1), a transcription factor regulating FASN

expression, and HCC [9, 10].

Recently there are increasing evidences suggesting that cancer cells have increased levels of

oxidative stress and ROS production compared to normal cells [11]. Thus, redox homeostasis

which controls cell signaling and metabolism, is finely tuned in cancer cells [12, 13]. It is estab-

lished that through the inhibition of PKM2 and subsequent metabolic switch, ROS allows can-

cer cells to tolerate responses to oxidative stress [12, 13]. Oxidative damage is considered as a

key pathway in HCC progression and increases patient vulnerability for HCC recurrence [14].

As previously reported, accumulation of a m-tyrosine may disrupt cellular homeostasis and

contribute to disease pathogenesis and the elimination of this isomer can be an effective

defense against oxidative stress [15].

Tyrosine, like other amino acids, is the building block for proteins as well as an alternative

energy source for cellular functions. Liver is the major organ where tyrosine degradation takes

place to produce intermediates or precursors for gluconeogenesis and ketogenesis. The degra-

dation of tyrosine is catalyzed through a series of five enzymatic reactions. Disturbed tyrosine

metabolism has been implicated in several types of disease such as Huntington’s disease [16]

and esophageal cancer [17, 18]. Previously reported. patients with hereditary tyrosinemia are

more likely to develop HCC [19, 20]. In patients with HCC, an upregulation of serum tyrosine

has been recorded [21, 22], suggesting a deregulated tyrosine metabolism in HCC. However,

to date, there is a lack of systematic study to profile the state of tyrosine catabolic enzymes and

molecular impacts of alteration in tyrosine catabolism in HCC development.

As previously reported, the frequent deletion of 16q22 and aberrant methylation led to the

downregulation of the first tyrosine catabolic enzyme TAT (tyrosine aminotransferase) [23].

Functional analyses showed that TAT harbored proapoptotic effect and that TAT suppression

could promote liver tumorigenesis [23]. Glutathione S-transferases (GSTs) are a family of

phase II isoenzymes that detoxify toxicant to lower toxic [24] and its dysfunction has been

found to be closely related with response to chemotherapy [25–27]. GSTZ1 belongs to the zeta

class of GSTs and is the fourth enzyme in tyrosine metabolism. Patients carrying GSTZ1 vari-

ants had an increased risk of bladder cancer when exposed to trihalomethanes [28]. Further-

more, a computational-based investigation suggested GSTZ1 might act as a protective factor in

ovarian cancer [29].

In this study, we aim to systematically investigate the expression and prognostic value of

tyrosine catabolism enzymes (TAT, HPD, HGD, GSTZ1 and FAH) in HCC by integrating

large-scale datasets. We further detect enriched pathways associated with overexpression of a

tyrosine catabolic enzyme in HCC cells. Our comprehensive, gene-centric analysis shed light

on the genomic changes, clinical relevance, upstream regulators and possible impact of tyro-

sine catabolic genes on HCC development.

Results

A cross-platform, pan-cancer analysis of tyrosine catabolic enzyme

expression

We first set out to investigate the expression profiles of tyrosine catabolic genes in cancer tran-

scriptomes (Fig 1A). Here, we used the Oncomine online database [30] to perform pan-cancer

transcriptome analysis on its available data sets. The top mRNA differences between cancer
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samples and normal samples were analyzed by default selective criteria. Fig 1B showed that

there was a total of 390, 428, 431, 457 and 448 Oncomine data sets involving the genes, TAT,

HPD, HGD, GSTZ1 and FAH, respectively (p� 1e-04, fold-change threshold = 2). Remark-

ably, in most data sets, a large proportion of patients demonstrated downregulation of these

genes in the tumorous parts compared to those of normal samples (red represents upregula-

tion, blue represents downregulation). Specifically, in HCC, all of the gene sets show downre-

gulation of the investigated tyrosine catabolic enzyme-encoding genes (Fig 1B, LIHC,

Fig 1. Downregulation of the tyrosine catabolic genes in several types of cancer, including HCC. (A) Graphics of tyrosine catabolism

process. (B) The mRNA expression levels of the tyrosine catabolic genes according to Oncomine database. The mRNA expression of the

genes (cancer versus normal tissue) in pan-cancers analyzed with the Oncomine database. The graphic demonstrates the numbers of datasets

that meet our threshold in each cancer type. Cell color was defined as the gene rank percentile in the study. (C) The heat map indicates the

expression after normalization by TPM+1 for comparison between tumor (T) and normal (N) across cancer types. Normal tissues are

matched TCGA adjacent tissue and GTEx data. The cancer abbreviation names are shown according to TCGA study abbreviations (S1

Table). TPM, transcript per million.

https://doi.org/10.1371/journal.pone.0229276.g001
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highlighted in red box). Furthermore, the Gene expression heat map from GEPIA pan-cancer

transcriptome analysis [31] showed markedly downregulation of TAT, HPD and GSTZ1 in

HCC (Fig 1C). Additionally, in cervical squamous cell carcinoma (CESC), all of the tyrosine

catabolic genes were visibly downregulated in tumors compared to normal tissue adjacent to

the tumor (Fig 1C). Through this initial observation, we found evidences to support that tyro-

sine catabolic genes expression were downregulated in many cancers, including HCC.

Tyrosine catabolic genes are downregulated in HCC

Next, to further investigate the role of tyrosine catabolic enzymes, we performed analysis of a

publicly available dataset (The Cancer Genome Atlas [32] [TCGA], Liver Cancer [LIHC])

including gene expression in 369 HCC tissues and 160 normal liver tissues (including adjacent

tissues and GTEx normal tissues). Here, the data demonstrated that TAT, HPD and GTSZ1
were decreased in HCC tissues compared to normal liver (Fig 2A, cutoff |Log2FC| = 1, cutoff p

value = 0.01). However, the gene expression of HGD and FAH were virtually unchanged in

HCC samples compare to normal liver samples.

To gain supporting evidence on the downregulation of tyrosine catabolic genes in HCC,

the GSE89377 (Data Citation 1) dataset was employed to assess the expression of these genes

in normal liver samples, early HCC and HCC from stage 1 to 3. Interestingly, we found that in

early HCC, the expression of tyrosine catabolic genes was insignificantly changed compared to

normal liver. However, the transcripts of TAT, HPD, HGD, GSTZ1 and FAH significantly

reduced in the HCC stage 2 and stage 3 compared to normal liver (Fig 2B, p< 0.05).

Overall, our combined analysis on TCGA data and an independent GSE dataset showed

that tyrosine catabolic genes were downregulated in late stage HCC compared to normal liver.

Fig 2. Gene expression profile of the tyrosine catabolic genes in HCC. (A) Gene expression analysis of tyrosine catabolic genes using GEPIA

based on the TCGA and GTEx database. Box plots represent the gene expression level in terms of log2(TPM+1) in the tumor (red, n = 369) and

normal (grey, n = 160) samples, respectively. Normal tissues are matched TCGA adjacent tissue and GTEx data. The method for differential

analysis is one-way ANOVA. (B) Gene expression analysis across stages of the tyrosine catabolic genes in GSE89377 dataset. Violin plots

represent log2(TPM+1) of genes in normal (grey, n = 13), early HCC (red, n = 5), stage 1 HCC (red, n = 9), stage 2 HCC (red, n = 12) and stage 3

HCC (red, n = 14). A t-test was used to compare the expression difference between tumor and normal tissue; p< 0.05 was considered statistically

significant. �p< 0.05, ��p< 0.01, ���p< 0.001 based on the Student’s t test. Values are mean ± SEM. TPM, transcript per million.

https://doi.org/10.1371/journal.pone.0229276.g002
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Prognostic value of tyrosine catabolic genes in patients with HCC

Subsequently, we sought to determine the clinical relevance of TAT, HPD, HGD, GSTZ1 and

FAH expression in term of prognosis in HCC patients since these genes were highly enriched

in liver tissues (S1 Fig). Kaplan–Meier analysis was employed to compare between the sub-

groups with high and low gene expression (using the median, 25% or 75% quartile values of

gene expression as cut-off points) in TCGA-LIHC cohort of 364 liver cancer patients. The

overall survival was significantly associated with TAT, HGD and GSTZ1 expression in HCC

samples (p = 0.0067, p = 0.0039 and p = 0.036, respectively) (Fig 3). Similarly, lower expres-

sion of TAT, HGD and GSTZ1 could also translate to a worse disease-free survival in HCC

patients (p = 0.011, p = 0.0038 and p = 0.036, respectively) (S2 Fig).

To further validate the potential application of tyrosine catabolic genes in the clinic, we

extracted the characterized IHC images from the Human Protein Atlas. HCC tumor tissue

staining of tyrosine catabolic enzymes showed significant decrease in positive staining com-

pared with normal liver tissue. Specifically, HPD staining decreased by 2.26-fold ± 2.10

(p = 0.0388), HGD decreased by 1.67-fold ±0.87 (p = 0.0423) and GSTZ1 decreased by

2.27-fold ±1.09 (p = 0.0007) in HCC tumor compared to normal liver tissue (Fig 4).

These findings highlighted that the expression of tyrosine catabolic enzyme-encoding genes

correlated with worse overall survival and disease-free survival in HCC and that TAT, HGD

and GSTZ1 had potential prognostic value in patients with HCC.

Fig 3. Overall survival outcomes of HCC patients. Data on from 364 patients were analyzed using log-rank tests based on gene expression in HCC

tissues from the TCGA cohort. Kaplan-Meier curves are plotted using GEPIA for TAT, HPD, HGD, GSTZ1 and FAH, and HRs and 95% confidence

intervals are shown. Abbreviation: HCC, hepatocellular carcinoma, HRs, hazard ratios; TCGA, the Cancer Genome Atlas.

https://doi.org/10.1371/journal.pone.0229276.g003
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Gene expression profiling of GSTZ1 expressing HCC cell line

Following the previous analyses, we noted that the fourth rate-limiting enzyme, GSTZ1 (Gluta-

thione S-transferase Zeta 1) had significant downregulation and prognosis. We therefore

sought to study the molecular pathway alterations associated with this gene. Here, we explored

the publicly available data set GSE117822 (Data Citation 2) where GSTZ1 is overexpressed in

Huh7 HCC cell line by adenoviral transfection. R software [33] with the DESeq2 [34] package

was applied to screen DEGs from the gene expression dataset GSE between control vectors

and overexpressed GSTZ1. A total of 3163 DEGs (p<0.01) were identified from this dataset,

1742 upregulated genes and 1421 downregulated genes.

To investigate changes in molecular pathways associated with GSTZ1 overexpression, we

use GSEA to rank the DEGs against the C2 canonical pathway gene set [35]. We were able to

profile positively and negatively enriched pathways in GSTZ1 overexpressed Huh7 (S3 Fig).

For better visualization of related gene sets and identification of important pathway families,

we presented the pathways using Enrichment Map [36] in Cytoscape [37] (Fig 5). As expected,

we observed a positive enrichment for multiple metabolism related pathways including Metab-

olism of Lipids, Metabolism of Proteins and Metabolism of Amino Acids. Noticeably,

increased GSTZ1 expression led to heightened Oxidative Phosphorylation and Respiratory

Electron Transport. Previously published in hepatocytes, limited oxidative phosphorylation

activity associated with decreased apoptotic cell-death and increased cancer development [38].

On the other hand, genes involved in glycolysis, such as HK2, PDK2 were downregulated

(1.88-fold and 2.05-fold, respectively) in cell expressing GSTZ1 compared with vector control.

It is known that the glycolytic gene HK2 is highly expressed in HCC [39]. In cirrhosis,

increased expression of glycolytic genes associated with higher HCC risk [40]. Most impor-

tantly, overexpression of GSTZ1 in HCC cell led to the downregulation in several pathways in

cancer gene sets (Kegg Small Cell Lung Cancer and Kegg Chronic Myeloid Leukemia).

Together, these data highlighted the changes in molecular pathways that correspond to GSTZ1

expression and critically, provided insights on how overexpression of GSTZ1 might negate

HCC development.

Fig 4. The protein expression profile of the tyrosine catabolic genes in the pan-cancer analysis. (A) Quantification of HPD, HGD, GSTZ1 and

FAH expression in IHC images obtained from HPA. A t-test was used to compare the expression difference between tumor and normal tissue

adjacent to the tumor; p< 0.05 was considered statistically significant. �p< 0.05, ���p< 0.001 based on the Student’s t test. Values are mean ± SEM.

(B) Representative images of normal liver tissue and HCC tissue stained with antibody against the enzymes.

https://doi.org/10.1371/journal.pone.0229276.g004
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Mutation profiles of tyrosine catabolic genes in HCC

We extended our studies to investigate on underlying mechanism of how tyrosine catabolic

genes were downregulated in HCC. First, we explored mutation profiles of tyrosine catabolic

genes in 353 HCC patients by exploring TCGA data using cBioPortal [41]. We found that each

individual gene was mutated in less than 1.1% of patients with HCC (S4 Fig). In all genes, there

were 8/21 missense mutations that harbor deleterious effect (Table 1). However, when incorpo-

rating mutation type with mRNA expression profile, we did not observe a correlation where

amplification led to increased expression or vice versa (S5 Fig). Second, we explored copy num-

ber status of tyrosine catabolic genes using data from GISTIC analysis [42] and cBioPortal

(http://cbioportal.org). We found that even though the genes were located near the peak region

of deletion, none of them were in focal (Table 2). Except for HPD (Q value = 0.019), the rest of

the genes were less likely to suffer copy number alterations (Table 2). Taken together, we found

that several base substitution mutation scenarios can lead to the deletion of tyrosine catabolic

genes but these is not a strong association between mutation status and mRNA expression.

MicroRNAs regulate the expression of tyrosine catabolic genes

Next, we sought out to explore microRNAs as possible negative regulators of TAT, HPD,

HGD, GSTZ1 and FAH. Using Target Scan database [43], we found there were two

Fig 5. Enrichment Map of GSTZ1 overexpressed huh7 and non-targeted control. GSEA was used to obtain canonical pathway gene sets that

were visualized using the Enrichment Map plug-in for Cytoscape. Each node represents a gene set with similar nodes clustered together and

connected by edges with the number of known interactors between the nodes being represented by the thickness of edges. The size of each node

denotes the gene set size for each specific.

https://doi.org/10.1371/journal.pone.0229276.g005
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microRNAs that targeted TAT, HPD, GSTZ1 and FAH (Fig 6A), which were miR-539 and

miR-661. There were no common microRNAs that target all tyrosine catabolic genes. First,

investigation of 370 HCC samples and 50 normal samples (TCGA-LIHC) showed that miR-

539 increased by 2.84-fold in HCC samples compared to normal liver (p = 0.05). Second,

pan-cancer co-expression analysis for miRNA-target interaction in HCC using starBase [44]

showed that miR-539 level negatively correlated with TAT, HPD, GSTZ1 and FAH expression

(r = -0.221, r = -0.193, r = -0.123, r = -0.166) (S6 Fig). More importantly, our Kaplan-Meier

analysis by KM-plotter [45] of TCGA-LIHC data set showed that high miR-539 expression led

to worse overall survival in in HCC patients (Fig 6B).

Additionally, Kaplan-Meier analysis on CapitalBio miRNA Array liver dataset [47] also

showed that miR-661 expression positively correlated with worse overall survival (Fig 6C).

Overall, these findings suggested that in HCC, the downregulation of tyrosine catabolic genes

can be due to microRNA regulation. We found that miR-539 and miR-661 can potentially sup-

press TAT, HPD, GSTZ1 and FAH expression and that expression of miR-539 and miR-661

can provide prognostic insights for patients with HCC.

Table 1. Summary of mutations of tyrosine catabolic genes in patients with HCC.

Gene DNA change Type Consequences SIFT Impact

TAT chr16:g.71568080 G>C Substitution 3 Prime UTR N/A

chr16:g.71570753_71570754insG Insertion Frameshift N/A

chr16:g.71576063G>T Substitution Intron N/A

chr16:g.71568109A>T Substitution 3 Prime UTR N/A

chr16:g.71570812T>C Substitution Missense Deleterious

chr16:g.71572596A>G Substitution Synonymous N/A

chr16:g.71568283C>A Substitution Missense Deleterious

HPD chr12:g.121847089T>C Substitution Missense Deleterious

chr12:g.121849748T>C Substitution Missense Deleterious

chr12:g.121858824G>A Substitution 5 Prime UTR N/A

HGD chr3:g.120646351T>A Substitution Missense Deleterious

chr3:g.120650834A>T Substitution Missense Deleterious

chr3:g.120670454C>A Substitution Missense Deleterious

chr3:g.120682178delTTCT Deletion 5 Prime UTR N/A

GSTZ1 chr14:g.77330329G>T Substitution Missense N/A

FAH chr15:g.80172237A>G Substitution Missense Deleterious

chr15:g.80160464G>T Substitution Splice Region N/A

chr15:g.80173063G>A Substitution Synonymous N/A

chr15:g.80186294G>T Substitution 3 Prime UTR N/A

chr15:g.80186299G>A Substitution 3 Prime UTR N/A

chr15:g.80162464C>T Substitution Intron N/A

https://doi.org/10.1371/journal.pone.0229276.t001

Table 2. Summary of CNAs of tyrosine catabolic genes in patients with HCC.

Gene name Location Nearest peak In peak? Q-value Frequency of detection

Overall Focal High value

TAT chr16:71600753–71610998 chr16:78129906–79627535 No 1 0.4108 0.0135 0

HPD chr12:122277432–122326517 chr12:123453469–133155338 No 0.0191 0.1432 0.0486 0

HGD chr3:120347014–120401418 chr3:114042610–115341566 No 1 0.1135 0.0081 0

GSTZ1 chr14:77787229–77797940 chr14:66969095–67653632 No 0.856 0.3405 0.0324 0.0054

FAH chr15:80445232–80478924 chr15:88785838–101883952 No 1 0.1892 0.0189 0

https://doi.org/10.1371/journal.pone.0229276.t002
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Discussion

We explored publicly available gene expression data sets and database to investigate the roles

of genes in the tyrosine degradation pathway in the development of HCC. Our exploration

indicated that all tyrosine catabolic genes decreased in HCC compared to normal liver tissues.

We learned that the fourth rate-limiting enzyme, GSTZ1 expression significantly reduced,

either in protein or mRNA level, in HCC (Figs 2A and 4). Even though the tyrosine catabolic

gene expression remained unchanged at early stage HCC, they were significantly down-regu-

lated in late stage HCC (Fig 2B). We also found that TAT, HGD and GSTZ1 expression levels

Fig 6. Prognostic value of microRNAs that target the tyrosine catabolic genes. (A) The Venn diagram demonstrated the number of predicted

miRNAs that target TAT, HPD, FAH and GSTZ1 from TargetScan database. (B) Survival analysis with miR-539 and miR-661 (KM Plotter dataset).

The TCGA-LIHC dataset [46] from Kaplan-Meier Plotter [60] was used to test for survival prediction capacity of miR-539 in liver cancer. The

CapitalBio miRNA Array liver dataset [47] was used to test for survival prediction capacity of miR-661 in liver cancer. Cox regression model was used

for each gene to predict relapse-free survival. Samples are divided into Low (black) and High (red) expression groups for each gene. Hazard ratio (HR)

and p value for each association are shown within each plot.

https://doi.org/10.1371/journal.pone.0229276.g006
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positively correlated with overall survival and disease-free survival of HCC (Figs 3 and S2).

Previously shown, TAT, the first rate-limiting enzymes in the pathways, was downregulated in

HCC [23, 48]. Functional in vitro validations showed that TAT induced apoptosis and that

TAT possessed tumor-suppressive functions [23].

GSTZ1, which is expressed in both hepatic cytosol and mitochondria, has shown to be oxi-

dative stress-related [29]. High levels of GSTZ1 expression conferred resistance to the effect of

anti-cancer therapy of dichloroacetate in hepatocellular carcinoma cell lines by an indepen-

dent mechanism to tyrosine metabolism [49, 50]. We explored a public dataset where GSTZ1

were overexpressed in HCC cell line Huh7 and found that with the expression of GSTZ1, there

was positive enrichment of oxidative phosphorylation (Figs 5 and S2). It was published that

restrained oxidative phosphorylation activity has been shown to favor hepatocarcinogenesis in
vivo [38]. Additionally, we detected an overall enrichment in metabolism of proteins and lipids

pathways and decrease in glycolysis genes following GSTZ1 expression (Fig 5). Liver is a

dynamic organ which constantly undergoes metabolic shift. Cancer cells, including HCC, usu-

ally switch to aerobic glycolysis to maximize energy usage and further fuel growth [2]. Since

overexpression of GSTZ1 associated with downregulation of several glycolytic genes, we con-

sider it possible that the suppression of tyrosine catabolism can be a mechanism by which

HCC switch to aerobic glycolysis during cancer progression.

The downregulation of other genes in the tyrosine catabolic pathways have not been linked

to changes in DNA. Thus, we reason that the downregulation of HPD, HGD, GSTZ1 and FAH
might be dependent or independent of the downregulation of TAT. We found that four out of

five genes were predicted to be regulated by miR-539, miR-661. Noticeably, miR-539 signifi-

cantly increased in HCC compared to normal skin and that the miR-539 level inversely corre-

lated with expression of TAT, GSTZ1, HPD, FAH (S4 Fig). In HCC patients, expression of two

of these microRNAs positively correlated with overall survival (Fig 6B). Previously reported,

miR-539 was usually downregulated and acted as tumor suppressors in various tumor types

[51, 52]. In HCC, miR-539 was also demonstrated to suppress HCC development in vitro by

targeting FSCN1 and suppressing apoptosis [53, 54]. Here, our findings suggested that on

miR-539 might be a tumor promoter in contrast to previous experimental studies. On the

other hand, prior studies showed that miR-661 was a tumor promoter in non-small cell lung

cancer, colon cancer and ovarian cancer [55–57]. However, the roles of miR-661 in HCC

development has not been investigated. Taken together, we speculate that miR-539 and miR-

661 can be use as potential HCC prognosis markers and can serve as targets of interest for

many functional studies.

Tyrosine metabolism is an important process that is often dysregulated in various diseases

including cancers and chronic disorders [58]. Tyrosinemia type I patients have a higher risk of

developing HCC [58]. The reasons for this high incidence of HCC are unknown [58]. A meta-

bolomics study on esophageal cancer (EC) showed that tyrosine decreased in serum of patients

with EC compared with healthy control [59, 60]. There has been little evidence on how tyro-

sine metabolism might contribute to cancer development even though changes in expression

of some tyrosine metabolic genes have been reported in HCC patients [23, 61]. Our interesting

findings add to existing body of knowledge in tyrosine catabolism in HCC.

Conclusions

Our results from the integrative databases and comprehensive analysis of this study demon-

strated the downregulation of tyrosine catabolic genes and their prognostic value in HCC (Figs

1–4 and S1 and S2). We provided evidence on how expressing these genes in HCC can negate

HCC development (Figs 5 and S3) as well as identified candidate microRNAs that can regulate
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the expression of tyrosine catabolic genes, which might be used as potential prognostic bio-

marker for HCC (Figs 6 and S6). Even though this study provided an interesting observation

of tyrosine catabolic genes in HCC and data to support, further in vitro and in vivo experi-

ments need to be applied to reveal the mechanism through which tyrosine catabolism affects

in HCC development.

Materials and methods

Oncomine analysis

The Oncomine online databases [30] were accessed for the visualization of gene expression.

Oncomine is an online cancer microarray database used to facilitate and promote discoveries

from genome-wide expression analyses. The pan-cancer studies in Oncomine were selected to

compare the expression levels in tumor vs normal tissue adjacent to the tumor. The selection

criteria for the Oncomine studies were p< 0.05 as a threshold, 2-fold change and gene rank in

the top 10%. The p value, fold changes, and cancer subtypes were extracted.

Gene expression analysis

The TCGA data was analysed by GEPIA [31] (http://gepia.cancer-pku.cn/). For the differential

expression analysis, the genes were log2(TPM + 1) transformed. One-way ANNOVA was used

to compute p value. Those with log2(TPM+1)> 1 and p< 0.01 were then considered differen-

tially expressed genes. Normal tissues are matched TCGA adjacent tissue and GTEx normal

tissue.

Survival analysis

The overall survival curves of TAT, HPD, HGD, GSTZ1 and FAH were investigated using the

Kaplan-Meier method with the log-rank test. We set the high and low gene expression level

groups by the median value for TAT, HPD HGD and FAH. For GSTZ1, the cutoff for high

expression group is 75% and cutoff for low expression group is 25%. The overall survival plot

was obtained with the hazards ratio (HR, based on Cox PH Model), the 95% confidence inter-

val information and the p value. The log-rank p value was calculated with< 0.05 considered

statistically significant. The whole process was implemented using the web-based tool GEPIA

[31].

The prognostic values of hsa-miR-539 and has-miR-661 in HCC were analyzed using

Kaplan Meier plotter (KM plotter) database [62]. Survival data of has-miR-539 was derived

from the “RNA-seq” dataset which has 421 samples. Survival data of has-miR-661 was derived

from the “Non-commercial spotted” dataset which has 166 samples. In brief, the miRNAs

were entered into the database, the best cutoff is automatically selected, after which survival

plots were generated and hazard ratio, 95% confidence intervals, log rank p value were dis-

played on the webpage. The log rank p value was calculated with < 0.05 considered statistically

significant.

Gene expression omnibus data mining

We retrieved transcriptome profiles of HCC tissues from GEO which is a public genomics

database, allowing users to investigate gene expression profiles of interest [63]. The GSE89377

is a microarray dataset of multi-stage HCC in a GPL570 Affymetrix Human Genome U133

Plus 2.0 Array Platform. It contains 108 samples in total, including 13 healthy people, 5 with

early HCC, 9 with Stage 1 HCC, 12 with Stage 2 HCC and 14 with Stage 3 HCC.
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Processed gene expression dataset was downloaded using GEOquery [64]. Limma [65] R

packages was used to determine the DEGs between normal and HCC tissues. p� 0.01 was

used as the cutoff value.

Differentially expressed genes identification and GSEA

The GSE117822 dataset was processed by Bioconductor package DESeq2 [34] to identify

DEGs (fold change cut-off� 1 and significance p value� 0.01) and analyzed by GSEA with

the Molecular Signatures Database “Canonical Pathways” gene set collection [35]. The default

GSEA basic parameters were used.

Quantification of immunohistochemistry images from Human Protein

Atlas

Immunohistochemistry (IHC) images were downloaded from the publicly available The

Human Protein Atlas [66] (HPA; http://www.proteinatlas.org) version 8.0. The analyses in

present study were performed using HPA images of liver sections that were labeled with anti-

bodies for HPD (antibody HPA038321), HGD (antibody HPA047374), GSTZ1 (antibody

HPA004701) and FAH (antibody HPA041370). A custom script written in MATLAB pro-

gramming language was used to detect positive staining based on brown pixel-counting. The

absolute amount of antibody-specific chromogen per pixel was determined and normalized

against total tissue area. Code is available at http://github.com/nguyenquyha/IHC-method.

Statistical analyses were performed using GraphPad Prism 8.0.2. Unpaired student’s t test was

used. P� 0.05 was considered statistical significant.

Identify miRNA candidates by Targetscan

Targetscan [67] database (http://www.targetscan.org) were accessed for identifying miRNA

candidates. In brief, gene name was entered to retrieve a list of microRNAs that was predicted

to target the input gene. Predicted microRNAs with non-canonical site type were not consid-

ered. After that, the predicted miRNA lists were compared to find common miRNAs that tar-

get TAT, HPD, GSTZ1 and FAH.

Copy Number analysis

Copy number alteration data from Gene-Centric GISTIC analyses was retrieved from TCGA

Copy Number Portal (http://portals.broadinstitute.org/tcga/home). Liver hepatocarcinoma

tumor type was selected for this analysis using the stddata__2015_04_02 TCGA/GDAC tumor

sample sets from FireHose. In brief, after the analysis version was chosen and gene names

were entered into the GISTIC browser, deletions data was generated with the default parame-

ters (deletion threshold = 0.1, broad length cutoff = 0.5, peak confidence level = 0.95, signifi-

cance threshold = 0.25). Gene copy number was plotted against gene expression level using

cBioportal.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 8.0.2. Independent Student’s t test

was used to compare the mean value of two groups. Bars and error represent mean ± standard

deviations (SD) of replicate measurements. Statistical significance was defined as p� 0.05.
�p� 0.05, ��p� 0.01 and ���p� 0.001.
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Supporting information

S1 Fig. Tyrosine catabolism enzyme-encoding gene expression across TCGA pan-cancer

datasets. Plots were taken from GEPIA online databases (http://gepia.cancer-pku.cn). Data

indicates expression after normalization by log2(TMP+1) for comparison between tumor and

normal tissues in pan-cancer. The cancer abbreviation names are shown according to TCGA

study abbreviations.

(DOCX)

S2 Fig. Disease-free survival outcomes of HCC patients. Disease-free survival outcomes of

364 HCC patients were analyzed using log-rank tests based on gene expression in HCC tissues

from the TCGA cohort. Kaplan-Meier curves are plotted using GEPIA for TAT, HPD, HGD,

GSTZ1 and FAH, and HRs and 95% confidence intervals are shown. Abbreviation: HCC,

hepatocellular carcinoma, HRs, hazard ratios; TCGA, the Cancer Genome Atlas.

(DOCX)

S3 Fig. Enriched GSEA canonical pathways of differentially expressed genes in GSTZ1

overexpressed liver cancer cells. GSEA of canonical pathways for differentially expressed

genes in GSTZ1 overexpressed liver cancer cells compared to empty vector control. The top

twenty significantly enriched canonical pathways (both upregulated and downregulated) were

displayed with their corresponding normalized enrichment score. Multiple pathways appear

to be related to metabolism, oxidations and cancer development.

(DOCX)

S4 Fig. The mutation profiles of tyrosine catabolic genes. The mutation profiles of TAT,

HPD, HGD, GSTZ1 and FAH was obtained from cBioPortal (Liver hepatocellular Carcinoma,

TCGA, PanCancer Atlas, 353 samples).

(DOCX)

S5 Fig. Gene copy number relative to gene expression of tyrosine catabolic genes. Compari-

sons of TAT, HPD, HGD, GSTZ1 and FAH relative mRNA expression levels to putative muta-

tion types and relative copy number. Data and plots were obtained from cBioPortal (Liver

hepatocellular Carcinoma, TCGA, PanCancer Atlas, 353 samples).

(DOCX)

S6 Fig. The anti-correlation between miR-539 and tyrosine catabolic genes. The anti-corre-

lation (Pearson correlation: r<0, p<0.05) between miR-539 and TAT, HPD, HGD and GSTZ1

in hepatocellular carcinoma was obtained from starBase35 co-expression analysis on

Resource table.

Software and Algorithms Version Source

GraphPad PRISM 8.0.2 https://www.graphpad.com

R 3.5.3 https://www.r-project.org/

limma R package 3.8 https://bioconductor.org/packages/release/bioc/html/limma.html

Cytoscape 3.7.1 https://cytoscape.org/

EnrichmentMAP 3.2.0 http://apps.cytoscape.org/apps/enrichmentmap

GEPIA 1 http://gepia.cancer-pku.cn

Oncomine NA https://www.oncomine.org

KMPlotter NA https://kmplot.com

GSEA software 2–2.2.3 http://software.broadinstitute.org/gsea/index.jsp

https://doi.org/10.1371/journal.pone.0229276.t003
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TCGA-LIHC dataset.

(DOCX)

S1 Table. TCGA study abbreviation.

(DOCX)
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