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Abstract: We apply the non-Markov-type analysis of state-to-state transitions to nearly microsecond
molecular dynamics (MD) simulation data at a folding temperature of a small artificial protein,
chignolin, and we found that the time scales obtained are consistent with our previous result using
the weighted ensemble simulations, which is a general path-sampling method to extract the kinetic
properties of molecules. Previously, we also applied diffusion map (DM) analysis, which is one
of a manifold of learning techniques, to the same trajectory of chignolin in order to cluster the
conformational states and found that DM and relaxation mode analysis give similar results for the
eigenvectors. In this paper, we divide the same trajectory into shorter pieces and further apply DM to
such short-length trajectories to investigate how the obtained eigenvectors are useful to characterize
the conformational change of chignolin.

Keywords: molecular dynamics simulation; rare event; Markov state model; non-Markov-type
analysis; diffusion map; weighted ensemble simulation

1. Introduction

The kinetic description of (bio)molecules is inevitable to understand their chemical
reactions or conformational change, but it is still difficult to thoroughly understand such
transition processes due to the limitations of experimental and computational means.
Recently, in particular for numerical simulations of biomolecules, the Markov state model
(MSM) [1] has been often employed to analyze the kinetic properties of molecules, such
as reaction rates and reaction pathways. A good thing about the MSM is its conceptual
simplicity and ease of application. By calculating the so-called “transition matrix” (as
described below), we can estimate the rate as an inverse of a mean first passage time
(MFPT) between two states of concern. Furthermore, using transition path theory [2], we
can also estimate dominant pathways using a committor function [3,4]. However, there
are at least three issues in the MSM, which are (1) the “lag time” (this represents a time
interval between observations of some quantities in a trajectory) dependence of the result,
(2) the state definition dependence of the result, and (3) the effects of the finiteness of the
trajectory data. These are why many researchers have been developing new or improved
methods for calculating reaction rates and other kinetic properties.
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One such method is non-Markov-type analysis recently introduced by Zuckerman
and coworkers [5,6]. This method is an extension of the conventional MSM, which lifts
Problems (1) and (2) above, and the rate estimations can be robust, as shown in [5,6].
However, this type of analysis needs a very long-time trajectory or bunches of trajectories
to robustly estimate kinetic properties. To overcome this issue, transition path sampling
(TPS) [4] is often employed; however, the original idea of TPS is too demanding, and we
need to employ “easier” path sampling methods based on collective variables (CVs), such
as partial path sampling [7], forward flux sampling [8], or the weighted ensemble (WE)
method [9]. We have applied the WE method to several proteins including chignolin [10–12]
and estimated the rate constants between two metastable states. Hence, it is interesting
to compare the rate constants using different computational methods, which is one of the
concerns in this paper.

Another concern is how to choose “optimal” CVs. For biomolecules, CVs are often chosen
based on chemical intuitions or traditional ideas, but recently, machine learning or manifold
learning techniques have become popular to extract CVs. Historically, principal component
analysis (PCA) has been used over the years, but there are several problems in PCA, so
many researchers have been devising more advanced approaches such as relaxation mode
analysis (RMA) [13–17], time-structured independent component analysis (tICA) [18–20],
the isomap [21–23], the diffusion map (DM) [24–26], and many others. It is assumed
that the kinetic properties are not so sensitive to the choice of the CVs (as exemplified
in the reaction flux formalism [4,27]), but “optimal” CVs should be better for both the
convergence of calculations and the interpretations of the results. Previously, we used
DM for a long-time trajectory of chignolin at a high temperature (420 K) [10] and found
that (1) the first few DM eigenvectors well correlated with eigenvectors calculated from
RMA, (2) the second DM eigenvector correlated most with the dihedral angle of glycine in
chignolin, and (3) the efficiency to calculate the kinetic properties of chignolin does not seem
to depend on whether we choose hydrogen bond distances or DMs as CVs. The trajectory
analyzed was long enough (∼750 ns) to sample the whole conformational space at the
folding temperature, but it is not always the case when we attack bigger or longer-time
scale problems. Hence, it is always important to consider what we can learn from shorter
trajectories about the global information of the conformational space. Dividing the same
trajectory into shorter pieces, we here investigate the kinetic properties of chignolin from
shorter-time perspectives, hoping to connect with the enhanced sampling techniques such
as the weighted ensemble method [9].

This paper is organized as follows. In Section 2, we briefly describe the methodologies
(non-Markov-type analysis and diffusion map analysis) used here for the investigation
of the kinetic properties of a small protein (chignolin). In Section 3, after describing the
simulated system, we present numerical results for the kinetic properties of chignolin and
discuss the connection with the previous results. In Section 4, we conclude the paper.

2. Methods
2.1. Non-Markov-Type Analysis

Recently, Zuckerman and coworkers advocated for a new trajectory analysis method
called non-Markov-type analysis [5,6], which is an extension of the conventional MSM [1].
We will briefly summarize it here for completeness.

The basic quantity for the Markov-type analysis is the transition matrix Tij calculated
as [1]:

Tij =
Nij

∑j Nij
(1)

where Nij is the counting matrix between states i and j, which is directly enumerated from
a given trajectory with a given lag time τ (hereafter, we omit the τ dependence for variables
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such as Nij and Tij). It is well known that from this transition matrix, we can calculate the
equilibrium population Peq

i for each state i as:

Peq
i = ∑

j
Peq

j Tji (2)

and the mean first passage time (MFPT) Fi f from state i to f as

Fi f = 1 + ∑
j 6= f

TijFj f , (3)

where time is measured in units of the lag time τ. These two relations are most relevant for
the practical application of the MSM. The latter relation is proven as follows. We can define
the first passage time distribution from state i to j over n steps f (n)ij as

f (n)ij = ∑
k 6=j

Tik f (n−1)
kj . (4)

where f (n)ij is recursively defined using the following relations:

f (1)ij = Tij, f (2)ij = ∑
k 6=j

Tik f (1)kj , · · · . (5)

From these distributions, the MFPT is defined as

Fij =
∞

∑
n=1

n f (n)ij (6)

and just the rearrangement of the terms leads to Equation (3).
In the non-Markov-type analysis [5,6], we keep track of which state a trajectory is in

until it transits to other states, so there remains a kind of memory in the analysis (this is
why we call it non-Markov). For concreteness, we take a three-state model (A, I, B) and
construct the transition matrix from state A to B, T A→B, as

T A→B =

 TAA
11 TAA

12 TAB
13

TAA
21 TAA

22 TAB
23

0 0 1

. (7)

Here, Tµν
ij is a conditional transition matrix where the last state is µ(=A) and the next

entering state is ν(=A,B), and i, j runs through (1,2,3), which are identified as (A,I,B). From
this transition matrix, we can calculate the first passage time distribution and MFPT as in
the case of the conventional MSM.

There is a similar method called core-set MSM [28], which is an extension of the
milestoning method [29] using the idea of a “core set”. We found that the results obtained
are similar for the system analyzed, so we here only show the numerical results using the
non-Markov-type analysis.

2.2. Diffusion Map Analysis

The diffusion map (DM) is a manifold-learning method, which was invented by
Coifman and coworkers [24] and since then has been applied to many problems including
image classification, speaker classification, and so on. The basic idea is to extract a low-
dimensional manifold embedded in a high-dimensional data space, and to this end, we
construct a matrix, which will be diagonalized. The construction goes as follows. Given we
have time series data or a data ensemble, where the dimension of the data space is M and
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the number of samples is N, i.e., we have xi ∈ RM(i = 1, · · · , N), we firstly consider the
following Gaussian kernel:

k(xi, xj) = exp

(
−
||xi − xj||2

2ε

)
(8)

where || · || is a metric and a normal Cartesian metric is usually employed. ε is a hyperpa-
rameter, which is tuned by some criteria. From this kernel, we next construct the N × N
“transition matrix” Mij as follows:

Mij =
k(xi, xj)

p(xi)
(9)

with

p(xi) = ∑
j

k(xi, xj). (10)

This form looks like a transition matrix Tij in the MSM defined above because both Nij
and k(xi, xj) represent a propensity to make a move from state i to j. Another construction
starts from defining the following matrix:

Kij =
k(xi, xj)√
p(xi)p(xj)

, (11)

and in this case, a transition matrix Mij is defined as

M∗ij =
Kij

∑j Kij
. (12)

It is known that regarding this form as a propagator for a density function, the
backward Fokker–Planck (FP) equation is obtained in the N → ∞, ε→ 0 limit. However,
notice that the time series data analyzed do not necessarily have such a stochastic character
that the data are generated by the backward FP equation. Since the eigenvalues and
eigenvectors calculated from Mij and M∗ij are qualitatively similar, we use the first transition
matrix Mij (9) for the numerical analysis of the trajectory data.

By diagonalizing Mij with ∑j Mijuα(xj) = λαuα(xi), we obtain the eigenfunctions
uα(xi) and eigenvalues λα. There is the following property that λ1 = 1 > λ2 > λ3 > · · · ,
and u1(x) represents the equilibrium distribution as in the case of the MSM. As the CVs
in this paper, we decided to take the second and third DM coordinates (λt

2u2(x), λt
3u3(x))

where t is time measured in units of the lag time (for simplicity, we take t = 1 in this paper).

3. Results and Discussion
3.1. On Chignolin and Simulation Setup

The molecular system we used here is a small peptide, chignolin (PDBID: 1UAO),
which is an artificially synthesized peptide [30] with only 10 amino acids (GYDPETGTWG).
It is known that this is one of the smallest peptides that has a unique fold (native state) [30],
so it can be regarded as a “mini-protein”. After its discovery, chignolin has been studied
by many researchers with MD simulations and has been used to examine new simulation
algorithms and protocols. The free energy landscape using two hydrogen bond (HB)
distances was calculated by Terada and coworkers using the multicanonical sampling
method [31] and multiscale enhanced sampling method [32], and it was found that there
is a misfolded state where the HB configuration is different from that in the native state
(Figure 1). These native and misfolded states were obtained by other researchers [33–35].
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Note that there are two types of chignolin, the above “original” chignolin [30] and a
mutated one called CLN025 (PDBID: 2RVD, 5AWL) with amino acid sequence YYDOPET-
GTWY [36]. The dynamics of CLN025, as well as other small peptides and proteins was
extensively studied by D.E. Shaw’s research group using their Anton hardware [37]. Zuck-
erman’s group used the Anton data to clarify the folding mechanism and folding rate of
CLN025 and other peptides at room temperature [5]. The MD simulations of CLN025
showed that CLN025 has a simple two-state folding (native and unfolding) mechanism
without a misfolded state. Here, we will examine the “original” chignolin, which has
somewhat complicated folding pathways.

Directly related to our study, one of the authors (A.M.) performed an MD simulation of
the original chignolin near its folding transition temperature and showed the effectiveness
of relaxation mode analysis (RMA) [38], which extracts slow relaxation modes and their
associated timescales from simulation data. Historically, RMA was developed to examine
the “dynamic” properties of spin systems [13] and homopolymer systems [14,15], but has
also been recently applied to biomolecular systems [16,17,38]. (RMA is similar to time-
structure-based independent component analysis (tICA) in [18–20], but tICA is a special
case of RMA with t0 = 0. From RMA, the concept of slow relaxation is naturally introduced.
See the conclusion of [16] for more details about the difference between tICA and RMA.)
In [38], the free energy landscape using slow modes obtained by RMA was calculated and
an intermediate state was found in addition to the previously found native and misfolded
states, as shown in Figure 1. Here, we use the same trajectory data of chignolin in [38], so
the setup of the molecular dynamics calculation is the same as well [38]. An MD simulation,
augmented by a GPGPU, was performed using the AMBER package (AMBER 11.0) with
the ff99SB force field and TIP3P water model. An extended structure was solvated with
a 15 Å buffer of TIP3P water around the peptide in each dimensional direction. The
numbers of atoms of the peptide and water molecules are 138 and 10,941 (3647 water
molecules), respectively. Two potassium ions (Na+) are included in the system, resulting
in a net-neutral system. The total number of atoms in the system is 11,081, and a 750 ns
MD production run at 1 atm pressure and a 420 K temperature (near folding temperature)
was performed with a time step of 2 fs. The Langevin thermostat with a friction constant
γ = 2.0 ps−1 was used for temperature control. For analysis, the coordinates were saved
every 10 ps, and the total number of samples was 75,000. The free energy landscape of
chignolin along the first and second slowest relaxation mode (RM) directions is shown in
Figure 1.

3.2. First Passage Time Distributions and Transition Rates

We here evaluate the first passage time distributions (FPTDs) using the non-Markov-
type analysis introduced above. From the free energy landscape in Figure 1, we define
three, folded (F), misfolded (M), and intermediate (I), states whose centers are (−3.0, 0.0),
(3.0,−5.0), and (2.0, 2.0), respectively with a radius of 1.4 (the rest is regarded as an unfolded
state). We then count the transitions between these states and construct the conditional
transition matrix Tµν

ij with a lag time of 10 ps. Using Equations (3) and (4), we can calculate
the first passage time distribution and MFPT, respectively. For comparison, we also employ
a “naive” method to calculate the first passage time distribution as follows: We pick xi,
which is classified as state A, and then, search along the time series when it makes a first
transition to state B. When it happens at xj, we then calculate the FPT from state A to B as
(j− i)τ where τ is the lag time.

We show the numerical results for FPTDs among F, M, and I in Figure 2. Basically,
the order of the time scales are ∼10 ns (for detail, see the caption in Figure 2), and there
are slight differences between the forward and backward transitions. We also notice that
the naive method agrees well with the non-Markov-type analysis, though there are large
fluctuations in the naive method. We believe that we need much longer simulations to
obtain fully converged results when we use the naive method. On the other hand, when
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we use the non-Markov analysis, the convergence seems to be faster (shorter simulations
give a reasonable result), as shown in Figure 3.

We previously estimated the MFPTs for the conformational change dynamics of chig-
nolin using the weighted ensemble (WE) method [10], and it turned out that the time
scales for MFPTs obtained were also ∼10 ns when we assumed a linear regression for the
population dynamics. (In the previous paper, we obtained shorter time scales for relaxation
using a three-state kinetic model, but such time scales are not directly related to the MFPTs.)
Hence, we conclude that the previous WE simulation is consistent with the present analysis.

Figure 1. Free energy landscape of chignolin at 420 K along the first and second relaxation mode
(RM) coordinates. The folded (native), misfolded, and intermediate states are indicated by circles
with a radius of 1.4 (a.u.). The multiple typical structures corresponding to these states are also
depicted using VMD [39].

3.3. Correlations between Dihedral Angles of Chignolin and Collective Variables

Previously, we employed the diffusion map (DM) method to extract the collective
variables (CVs) of chignolin [10] and discussed the correlation between a dihedral angle
of glycine and the DM coordinates and relaxation mode (RM) coordinates. To look into
more detail of such correlations, we calculated the Pearson correlation coefficients between
several collective variables (second DM coordinate, first RM coordinate, and two hydrogen
bond distances between Asp3O and Gly7N named HB1 or between Asp3N and Thr8O
named HB2) and 16 dihedral angles (φ, ψ) of chignolin in Figure 4. For the numerical
protocols for the DM and RM coordinates, see the previous papers [10,38]. We see that
except HB2, the correlations are good, indicating that HB1 is a “good” CV since we know
that the second DM and first RM coordinates are good CVs. In addition, the absolute
values of the coefficients are the largest at the 12th and 14th angles (except HB2), which
are the ψ’s of glycine and threonine, indicating the importance of these two residues for
conformational change.

The cross-correlations between the DM and RM coordinates are shown below. We
see that the correspondence between DM2 and RM1 or DM3 and RM2 is good, but that
between DM4 and RM3 is less significant.

DM2 DM3 DM4
RM1
RM2
RM3

 0.87 −0.25 0.12
−0.19 −0.81 0.09
0.13 −0.03 −0.57
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Figure 2. First passage time distributions between three states (F, M, and I) defined in Figure 1
calculated by non-Markov-type analysis and the naive method explained in the text. (a) F ↔ M,
(b) F ↔ I, and (c) M ↔ I. The MFPTs calculated by the non-Markov analysis are FFM = 13 ns,
FMF = 7.8 ns, FFI = 5.9 ns, FIF = 3.7 ns, FMI = 4.9 ns, and FIM = 6.0 ns.
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Figure 3. Sample number dependence of the first passage time distribution for the F→M transition.
The numbers of samples used here are 75,000, 50,000, and 25,000.
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Figure 4. The Pearson correlation coefficients between several collective variables (second DM
coordinate, first RM coordinate, and two hydrogen bond distances between Asp3O and Gly7N
named HB1 or between Asp3N and Thr8O named HB2) and 16 dihedral angles (φ, ψ) of chignolin.

3.4. Short-Time Diffusion Map Analysis for Chignolin

Finally, we show a different type of analysis using the DM method, that is short-time
diffusion map analysis. Clementi et al. [25] and Trstanova et al. [26] have used this type
of analysis for different molecular systems, and we here apply this method to chignolin
dynamics. The basic idea is simple and trivial: we chop a long-time trajectory into shorter
pieces, and apply the DM method to each short piece of the trajectories. As shown in [26],
DM coordinates extracted by such short-time DM can approximate the local equilibrium
dynamics of the system, and furthermore (more importantly), as shown in [25], the short-
time DM might be able to extract the directions of conformational change, which can be
further used for sampling. This kind of idea was recently elucidated by Morishita [40], but
his idea is to combine short-time principal component analysis [41] with sampling. Here,
we examine chignolin dynamics in terms of short-time DM analysis.

We tested two time intervals to calculate the DM coordinates, which are 7.5 ns and
0.75 ns. Since 10 ps is the time interval to save the trajectory for chignolin, each DM matrix
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is 750 × 750 and 75 × 75, respectively. In Figure 5, we depict the time courses of the
second and third short-time DM coordinates, as well as the conventional DM coordinates
(calculated by the full trajectory, but with a time interval of 100 ps) and the glycine dihedral
angle. We see if we use a longer time interval (7.5 ns), the behavior of the short-time DM
is similar to that of the long-time DM, though the correlations between short-time and
long-time DM can interchange between DM2 and DM3 (for example, the time duration
between 25 and 30 ns). If we use a shorter time interval (0.75 ns), such a correspondence is
less significant, but we can see that at the transitions, the fluctuations of the DM2 and DM3
coordinates become large, indicating the usefulness of the short-time DM to detect rare
events. Hence, if we use the short-time DM to extract the tentative CVs for conformational
change or rare events, it will be possible to enhance the sampling of the conformational
space or the calculations of the kinetic properties using these coordinates.

-1

-0.5

 0

 0.5

 1

 1.5

 20  25  30  35  40  45  50

C
V

s

t(ns)

-1

-0.5

 0

 0.5

 1

 1.5

 20  25  30  35  40  45  50

C
V

s

t(ns)

Figure 5. From top to bottom for each panel: The dihedral angle of glycine in chignolin (red), 2nd
DM coordinate from the full trajectory (green), 3rd DM coordinate from the full trajectory (blue), 2nd
DM coordinate from the shorter trajectories (multiple colors for different trajectory segments), and
3rd DM coordinate from the shorter trajectories (multiple colors for different trajectory segments).
Top panel: The time interval is 7.5 ns. Bottom panel: The time interval is 0.75 ns.
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4. Concluding Remarks

We analyzed a 750 ns-long molecular dynamics trajectory of chignolin, a small peptide
with 10 amino acids, in terms of kinetic properties. There are three particular metastable
states in chignolin, folded, misfolded, and intermediate states, and the first passage time
distributions between these states were estimated using the non-Markov-type analysis and
the naive method. The estimated mean first passage times are ∼10 ns, which is comparable
to the time scales calculated by the weighted ensemble method. We also applied the short-
time diffusion map analysis to the same trajectory and found that the DM coordinates
calculated from short-time trajectories correlate well with those calculated from a long-time
trajectory, and even if we use a short-time interval (0.75 ns), the conformational change or
rare events can be detected as the large fluctuations of the DM coordinates.

We mention further issues related to this study: We here used the previous trajectory
at a high temperature to accelerate the convergence and computation, but if the temper-
ature decreases, the computation becomes harder because of the existence of high free
energy barriers. For lower temperatures or bigger systems, we should use more powerful
computational resources such as Anton [37] or accelerated simulation methods such as the
weighted ensemble method [9], keeping the kinetic properties of the system intact. One
idea is to use short-time DM analysis to extract good CVs, which are further combined
with the weighted ensemble method for more efficient sampling of the kinetics.
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