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Simple Summary: Numerous factors, such as genomic mutations, chromosomal changes, transcrip-
tional controls, phosphorylation, and protein–protein interactions, among others, can affect the
activation status of proteins. Although each data type only partially reveals the status of a particular
gene’s disruption, downstream expression changes ultimately indicate the functional effects of cancer
driver protein alterations. By combining data on transcriptome and genomic alterations, we have
developed a Bayesian framework to infer driver activation state, and further tested our method
to highlight both statistical and biological significance by applying our model to TCGA HNSCC
patient data.

Abstract: Head and neck squamous cell cancer (HNSCC) is an aggressive cancer resulting from het-
erogeneous causes. To reveal the underlying drivers and signaling mechanisms of different HNSCC
tumors, we developed a novel Bayesian framework to identify drivers of individual tumors and
infer the states of driver proteins in cellular signaling system in HNSCC tumors. First, we system-
atically identify causal relationships between somatic genome alterations (SGAs) and differentially
expressed genes (DEGs) for each TCGA HNSCC tumor using the tumor-specific causal inference
(TCI) model. Then, we generalize the most statistically significant driver SGAs and their regulated
DEGs in TCGA HNSCC cohort. Finally, we develop machine learning models that combine genomic
and transcriptomic data to infer the protein functional activation states of driver SGAs in tumors,
which enable us to represent a tumor in the space of cellular signaling systems. We discovered four
mechanism-oriented subtypes of HNSCC, which show distinguished patterns of activation state
of HNSCC driver proteins, and importantly, this subtyping is orthogonal to previously reported
transcriptomic-based molecular subtyping of HNSCC. Further, our analysis revealed driver proteins
that are likely involved in oncogenic processes induced by HPV infection, even though they are not
perturbed by genomic alterations in HPV+ tumors.

Keywords: HNSCC; cancer drivers; causal inference; cellular signaling; subtyping; tumor-specific;
HPV infection

1. Introduction

Cancer is a complex disease characterized by uncontrollable cell growth and metastasis.
The development of tumor cells is mainly caused by perturbation of oncogenic signaling
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pathways due to various somatic genome alterations (SGAs), such as mutations, copy
number alterations and epigenetic changes [1–3]. As of today, we know that genetic
perturbations and their impact on cancer signaling pathways vary across cancer types
and even among individual tumors of the same tissue type [4,5]. Identifying cancer
driver genes and inferring the activation states of their protein products in individual
tumors may enable the true understanding of the molecular pathogenic mechanism in
individual tumors, which may facilitate the development of mechanism-specific therapies
for individual patients [6–10].

Head and neck squamous carcinoma (HNSCC) is an aggressive and heterogeneous
disease, ranked the sixth most common cancer worldwide [11]. Several risk factors con-
tribute to oncogenesis of HNSCC, including alcohol consumption, smoking and human
papillomavirus (HPV) infection. Over the past decade, the rapid emergence of multi-omics
data has enabled genomic research on systematically identifying genetic markers and
cancer driver genes for HNSCC patient molecular subtyping. Chung et al. first introduced
four molecular subtypes (basal, mesenchymal, atypical, and classical) based on the gene
expression pattern in 60 HNSCC tumors and were able to use this first subtyping method
to predict lymph node metastasis. They also identified driver genes enriched in these
subtypes, which may help future research in therapy discovery [12,13]. Similarly, the
Cancer Genome Atlas (TCGA) group classified HNSCC patients into four groups based on
expression data and investigated the association between these four groups and clinical
factors and single gene alterations [14]. These two major studies revealed high degree
of HNSCC heterogeneity in terms of molecular phenotypes, likely cellular/molecular
mechanisms for tumorigenesis among HNSCC. Despite these past efforts, it remains a
major challenge to integrate multi-omics data to tease out the exact disease mechanisms
of individual tumors, including the understanding of which particular SGAs in a tumor
are drivers for oncogenesis and which pathways are perturbed by these driver SGAs in a
tumor. Equipped with such a mechanistic understanding for individual tumors, it would
be possible to group HNSCC tumors bearing similar disease mechanisms and help guide
therapy design for treating individual tumors.

In this work, we extended our work on tumor-specific causal inference (TCI) and
developed a novel Bayesian framework to characterize the activation status of cancer driver
genes in a context specific manner (Figure 1) [8]. We used the TCI model to identify major
driver genes among TCGA HNSCC tumors and their target differentially expressed genes
(DEGs) in HNSCC. Then, based on TCI-inferred causal relationship between driver genes
and DEGs, we developed an expectation-maximization (EM) algorithm [15] to infer protein
activation states for these driver proteins in individual tumors (Figure 1b). Through mining
the patterns of driver protein activation states, we identified four HNSCC molecular sub-
types that are informative of patient outcomes while orthogonal to previous subtyping. Our
method provides a novel framework of understanding the mechanisms of tumorigenesis of
HNSCC that cannot be directly detected using either SGA or transcriptomic data alone.
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Figure 1. Workflow of the driver activation state inference, pathway analysis, subtyping and sur-
vival analysis, and driver-HPV status association analysis for HNSCC patients. (a). Integration of 
multi-omics data types to infer driver activation state inference using TCI method and EM method. 
Mutations and CNV data are combined into SGA data and expression data are transformed to DEG 
data, which are used as the input of the TCI model. TCI calculates casual relationships between 
SGAs and DEGs for each individual patient, and we further generalize the most statistically signif-
icant causal SGA → DEG interactions in TCGA HNSCC patient cohort. Based on TCI inferred SGA 
→ DEG causal relationship and selected DEG expression profile, EM algorithm is used to infer pro-
tein activation states for each HNSCC patient. (b). HNSCC patients can be divided into four sub-
types based on 64 driver activation state and their survival outcome are significantly different 
among these patient subtypes. Our analysis also shows the viral driver proteins can be triggered by 
HPV status and regulate its downstream gene expression. 

2. Materials and Methods 
2.1. Data Collection and Preprocessing 

In this work, we collected genomic data, i.e., mutation, copy number alteration and 
gene expression, for a cohort of 5097 tumor samples across 16 different cancer types from 
TCGA, which were all obtained from the Xena platform [16]. First, we combined mutation 
data and copy number alteration data (GISTIC2) as somatic genome alterations (SGAs), 
such that a gene in a given tumor was designated as altered if it was affected by either an 
SM event and/or an SCNA event. Then, we determined differentially expressed genes, i.e., 
DEGs, by comparing the gene expression in the tumor cell against that in the correspond-
ing tissue-specific normal cells. We assumed that the expression of each gene (log 2 based) 
followed Gaussian distribution in normal cells for a specific tissue type, and calculated 
the p values of each gene in a tumor to estimate whether the gene expression was signifi-
cantly different in that tumor from the normal distribution of the normal cells (p < 0.005). 
We thus identified the DEGs for each tumor and created a tumor-gene binary matrix 
where 1 represents expression change and 0 represents no expression change. 

Figure 1. Workflow of the driver activation state inference, pathway analysis, subtyping and sur-
vival analysis, and driver-HPV status association analysis for HNSCC patients. (a). Integration of
multi-omics data types to infer driver activation state inference using TCI method and EM method.
Mutations and CNV data are combined into SGA data and expression data are transformed to DEG
data, which are used as the input of the TCI model. TCI calculates casual relationships between SGAs
and DEGs for each individual patient, and we further generalize the most statistically significant
causal SGA→ DEG interactions in TCGA HNSCC patient cohort. Based on TCI inferred SGA→
DEG causal relationship and selected DEG expression profile, EM algorithm is used to infer protein
activation states for each HNSCC patient. (b). HNSCC patients can be divided into four subtypes
based on 64 driver activation state and their survival outcome are significantly different among these
patient subtypes. Our analysis also shows the viral driver proteins can be triggered by HPV status
and regulate its downstream gene expression.

2. Materials and Methods
2.1. Data Collection and Preprocessing

In this work, we collected genomic data, i.e., mutation, copy number alteration and
gene expression, for a cohort of 5097 tumor samples across 16 different cancer types
from TCGA, which were all obtained from the Xena platform [16]. First, we combined
mutation data and copy number alteration data (GISTIC2) as somatic genome alterations
(SGAs), such that a gene in a given tumor was designated as altered if it was affected by
either an SM event and/or an SCNA event. Then, we determined differentially expressed
genes, i.e., DEGs, by comparing the gene expression in the tumor cell against that in the
corresponding tissue-specific normal cells. We assumed that the expression of each gene
(log 2 based) followed Gaussian distribution in normal cells for a specific tissue type, and
calculated the p values of each gene in a tumor to estimate whether the gene expression
was significantly different in that tumor from the normal distribution of the normal cells
(p < 0.005). We thus identified the DEGs for each tumor and created a tumor-gene binary
matrix where 1 represents expression change and 0 represents no expression change.
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2.2. Bayesian Framework: 1. Tumor-Specific Causal Inference (TCI) Method

Tumor-specific causal inference (TCI) is a novel Bayesian-based framework developed
by our group that infers causal relationships between genome alterations and molecular
phenotypic changes by integrating heterogeneous genomic data types [8]. Let T denote the
tumor set; let SGAt denote a subset of genes with genome alterations in tumor t (i.e., the
SGAs); let DEGt denote a subset of genes that are differentially expressed in tumor t
(i.e., the DEGs). We assumed that a molecular phenotype change (e.g., a DEG) observed in a
specific tumor should be caused by one of the SGAs observed in the tumor or a non-specific
cause denoted as A0. TCI searches for the tumor-specific causal model Mt with a maximal
posterior probability P(Mt|D) given the dataset D, i.e., SGAs and DEGs. In a tumor t, TCI
scores an arc Ah → Ei between SGA Ah and DEG Ei based on the posterior probability of
the arc, using a Bayesian framework as follows:

P(Ah → Ei|D) =
1
Z

P(Ah → Ei) P(D|Ah → Ei) (1)

where
Z = ∑n(SGA)

j=0 P
(

Aj → Ei
)

P
(

D
∣∣Aj → Ei

)
(2)

is a normalization term. Equation (2) shows that a potential causal SGA Ah only competes
with other SGAs observed in the same tumor to explain a molecular phenotype Ei.

As shown in Equation (1), TCI involves two parts: the prior probability that Ah causes Ei,
i.e., P(Ah→ Ei), which can be evaluated at a population-level prior to observing current tumor t,
and the conditional probability (aka the marginal likelihood) of data D, P(D|Ah→ Ei), which
assesses the functional impact of the causal edges. An important innovation of TCI is the
procedure for evaluating P(D|Ah → Ei), which consist of assessing how well Ah explains
the variance of Ei in tumors hosting Ah, as well as how well the variance of Ei is explained
in tumors do not host Ah. Therefore, due to the distinct composition of SGA set for different
tumors, the tumor-specific conditional probability P(D|Ah → Ei) for the same causal edge
can be different in different tumors, which is shown as follows:

P(D|M) = ∏
i=1, n

P(Dhi

∣∣∣∣∣Ah → Ei)=
n

∏
i=1

qi

∏
j=1

Γ
(
αij

)
Γ
(
αij + Nij

) ri

∏
k=1

Γ
(

αijk + Nijk

)
Γ
(

αijk

) (3)

where j indexes over the states of the cause of Ei in M (i.e., some variable Ah); qi is the
number of possible values of Ah (in our case, it is 2, because Ah is modeled as a binary
variable); k is variable which indexes over the states of Ei; ri denotes the total possible
states of Ei (in our case, it is set to 2); Nijk is the number of tumors in dataset D in which
node Ei has value k and its cause Ah in M has the value denoted by j; αijk is a parameter in
a Dirichlet distribution that represents prior belief about P(Ei|cause(Ei)); Γ is the gamma
function; Nij = ∑ri

k Nijk; and αij = ∑ri
k αijk. Detailed information of TCI method can be

found in our original TCI paper [8].

2.3. Discovery of TCI Drivers and Target DEGs in HNSCC Patients

We first extracted TCI inferred SGA→ DEG relationship for all HNSCC patients. We
designated an SGA event in a tumor as a driver if it had 5 or more causal edges to DEGs
that are each assigned a TCI p-value ≤ 0.05. For an SGA Ah, we calculated its driver call
rate as the ratio of number of tumors in which Ah is designated a driver by TCI over the
number of tumors in which Ah occurs. We identified a total of 64 such driver genes with a
driver call rate of 50% or greater in HNSCC patients. For a DEG Dk, we calculated its DEG
call rate as the ratio of number of tumors in which Dk is designated as target DEG of any of
64 drivers over the number of tumors in which Dk occurs. We identified a total of 903 such
genes with a DEG call rate of 50% or greater in HNSCC patients.
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2.4. Bayesian Framework: 2. Inference of Tumor Specific Driver Activation State Using
Expectation Maximization (EM) Algorithm

For the second part of our Bayesian framework, we inferred the tumor-specific driver
activation state using the expectation maximization (EM) method, which is designed to
predict the values of hidden variables based on observed variables [17]. In the context
of our model, we defined SGAt and DEGt, which are two sets of discrete observation
variables that describe the state of SGAs and DEGs in tumor t.

Let PROt denote the hidden variable, namely, protein activation state of the TCI
drivers that we set out to infer from SGAt and DEGt in tumor t. We assumed that the
values of each gene/protein in SGAs and PROs followed a Bernoulli distribution, only
taking the value of 0 or 1. DEGs that are regulated by a gene in PROt are the same as DEGs
that are the TCI inferred targets of the corresponding gene in SGAt and values of each gene
in DEGt follows a Gaussian distribution. The total number of HNSCC samples is N and t
indexes over the tumor samples included in the HNSCC tumor set.

Parameters Initialization: We first used SGAt values as initial values of PROt and
calculate prior probability of driver j being active in tumor t as follows,

P
(

PROj = 1
)
=

∑N
t=1 PROjt

N
(4)

where Ejkt represents the expression value of a gene, k, which is regulated by driver j, in
tumor t, where k indexes over the genes that are TCI inferred target DEGs of driver j.

The expression value Ejkt conditioning on protein activation state of driver j in tumor t
follows a Gaussian distribution as shown in equation Equations (5) and (6).

P
(

Ejkt

∣∣∣ PROjt = 1
)
= 1√

2πσ1
jk

exp (−
(

Ejkt−µ1
jk

)2

2
(

σ1
jk

)2 ) (5)

P
(

Ejkt

∣∣∣ PROjt = 0
)
= 1√

2πσ0
jk

exp (−
(

Ejkt−µ0
jk

)2

2
(

σ0
jk

)2 ) (6)

where expression of gene k follows a Gaussian distribution with mean as µ1
jk and standard

deviation as σ1
jk when protein activation state of driver j equals 1, and follows a Gaussian

distribution with mean as µ0
jk and standard deviation as σ0

jk when protein activation state
of driver j equals 0.

Expectation Step (E step): We calculated the probability that driver j is active based on
the expression profile of its target DEGs in tumor t as follows,

P
(

PROjt = 1
∣∣DEGjt

)
=

P
(

PROj = 1
)

∏
n(DEGjt)

k=1 P(Ejkt

∣∣∣∣PROj = 1)

∑i∈{0,1} P
(

PROj = i
)

∏
n(DEGjt)

k=1 P(Ejkt

∣∣∣∣PROj = i)
(7)

where DEGjt denotes the expression profile of target DEG set of driver j in tumor t. Then,
P
(

PROjt = 1
∣∣DEGjt

)
was discretized if its value is larger or equal to 0.5.

Maximization Step (M step): After initial calculation and determination of
P
(

PROjt = 1
∣∣DEGjt

)
, we updated the parameters in Equations (4)–(6) and started EM

iteration. Then, we used P
(

PROjt = 1
∣∣DEGjt

)
to test convergence. If the absolute dif-

ference between the marginal probability between two iterations was less than 10−4, we
terminated EM and calculated the final prediction of protein activation states.

2.5. Patient Subtyping Using Consensus Clustering

We performed hierarchical clustering method to calculate distance between each pair of
patients based on their DEG or SGA values, and divided patients into several groups based
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on their distance. We used the seaborne python package (https://seaborn.pydata.org/,
accessed on 10 April 2022) and selected Euclidean distance as parameters for hierarchical
clustering analysis. Since the hierarchical clustering method is deterministic, we performed
100 subsampling with a factor of 0.8 for all patient cases. We further used consensus
clustering to decide number of patient groups based on 100 hierarchical clustering results.
Consensus clustering is a robust clustering method that utilize multiple iterations of
hierarchical clustering method. For each cluster number K, we created a consensus matrix
calculate the cumulative distribution function (CDF). Then, we decided the number of
clusters as 4 based on the area under CDF. We used ConsensusClusterPlus R package for
consensus clustering analysis (https://bioconductor.org/packages/-release/bioc/html/
ConsensusClusterPlus.html, accessed on 15 April 2022).

2.6. Reconstruction of Driver→ DEG Causal Network

To assess whether the SGA → DEG causal relationship is activating or repressing,
we calculated the point-biserial correlation between each driver and its target DEGs. We
constructed an r × c SGA→ DEG regulatory matrix M, where r is the number of drivers
and c is the number of target DEGs and mij ∈ {0, 1, −1} denotes a causal relationship
between SGA i and DEG j can be none, activating or repressing. We then performed ISA2
method to identify biclusters of SGAs and their co-activated/repressed DEGs [18,19]. We
used consensus clustering to identify the most significant driver clusters, DEG clusters,
and driver-DEG clusters from 100 ISA2 iterations because ISA2 is a probabilistic algorithm
that produces somewhat different results on different runs due to random initialization
(Supplementary Figure S1).

3. Results
3.1. TCI Method Can Identify Major Cancer Driver Genes and Their Causative DEGs Targets for
HNSCC Patients

We previously developed a Bayesian causal discovery framework, i.e., TCI [8], to
characterize the functional impact of SGAs (combination of gene mutations and copy
number alterations) in regulating DEGs of individual tumors by integrating multiple
genomic data types. We collected genomic data of 5097 tumors across 16 cancer types from
TCGA, and we applied TCI to infer causal relationship between SGAs and DEGs for each
tumor. Then, we collectively identified over 600 significant cancer drivers that regulate
DEGs in tumors of one or more cancer types (Figure 1a). To minimize false discovery rate,
we required that driver call rate and DEG call rate to be greater than or equal to 0.5. A
driver call rate is defined as the ratio of number of tumors in which an SGA is designated
a driver by TCI over the number of tumors in which the SGA occurs. A DEG call rate
is defined as the ratio of number of tumors in which a DEG is designated as target DEG
of any of drivers over the number of tumors in which the DEG occurs. By limiting TCI
inferred SGA→ DEG relationship discovered in HNSCC tumors, we identified 64 driver
genes with a driver call rate of 50% or greater and 903 DEGs designated as targets of any of
64 drivers with a DEG call rate of 50% or greater in HNSCC tumors (Methods).

Among these 64 HNSCC drivers identified by our TCI, majority are well-known drivers
including EGFR, TP53, PIK3CA, NOTCH1, FAT1, HRAS, CDKN2A and NFE2L2 [14,20,21]. Our
method also revealed novel HNSCC drivers, which have been experimentally validated in
recent studies. For example, ZNF703E copy number variation was found to be associated
with its overexpression in HNSCC tumors shown by quantitative real time PCR, and
over-expression of ZNF703E indicated poorer patient survival vs. non-overexpression
ones [22]. LRP1B mutation was reported to be associated with HPV status and poor disease
outcome [23]. MIR548K was identified as one of the seven miRNAs that are associated
with poor prognoses of HNSCC [24]. Pharmacologically inhibiting KEAP1 in HNSCC cells
was found to enhance radiosensitivity of HNSCC cells [25]. ARID1A was identified to be a
tumor suppressor and a tumor stemness repressor in HNSCC cells [26].

https://seaborn.pydata.org/
https://bioconductor.org/packages/-release/bioc/html/ConsensusClusterPlus.html
https://bioconductor.org/packages/-release/bioc/html/ConsensusClusterPlus.html
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The majority of the 64 TCI-identified drivers are cancer drivers or candidates related
with carcinogenesis processes, and we determined their target DEGs to illuminate the
underlying HNSCC pathways or biological processes. Using Reactome pathway analysis
on these 903 TCI-derived target DEGs that are significantly associated with 64 TCI-derived
drivers, we identified 59 significantly enriched pathways including 104 DEGs (Figure 2a,b,
Supplementary Table S1). For example, Collagen production plays an important role
in the development of fibrosis and is a prominent component of the tumor microenvi-
ronment [27]. Our DEGs are shown to be enriched in Collagen biosynthesis pathways—
Collagen formation (p.adjust = 3.4 × 10−12), Collagen biosynthesis and modifying en-
zymes (p.adjust = 8.5 × 10−9), Assembly of collagen fibrils and other multimeric structures
(p.adjust = 5.6 × 10−7), etc. DNA damage created by environmental factors such as tobacco
usage and alcohol consumption are found to be correlated with the increased HNSCC risk
by multiple studies, but the molecular mechanism of DNA replication and repair pathway
in resistance to therapy and treatment of HNSCC patients remains unclear [28–30]. Our
DEGs are also found to be enriched in pathways related to DNA replication and repair
processes—DNA strand elongation pathway (p.adjust =1.6x10−11), Extension of Telomeres
(p.adjust = 4.4 × 10−7), lagging strand synthesis pathway (p.adjust = 4.4 × 10−7), etc. As
shown in Figure 2b, TCI genes involved in these two major groups of enriched pathways
have distinct expression patterns and are regulated by a diverse collection of TCI inferred
drivers except for TP53 and LRP1B. TP53, the most commonly mutated gene in HNSCC
patients, induces cell cycle arrest and apoptosis, and also up-regulates collagen gene ex-
pression to inhibit angiogenesis [24,28,29]. LRP1B, a member of the LDL receptor family
of lipoprotein receptors, has recently been proposed as a putative tumor suppressor, with
functions related to cell cycle arrest and modulation of cell migration/spreading [31–33].

We then set out to reconstruct the driver → DEG regulatory network of all 64 TCI
drivers and 903 DEGs for HNSCC patients, in addition to pathway gene analysis. To
begin, we calculated the point-biserial correlation between each driver and its target
DEGs to determine activating/repressing causal interactions. Calculating the point-biserial
correlation is equivalent to calculating the Pearson correlation between a continuous
and a dichotomous variable. Then, we applied ISA2 bi-clustering method and con-
sensus clustering method to divide drivers and DEGs into various groups (Method,
Supplementary Figure S1). Figure 2c illustrates the causal network structure between
drivers and DEGs, with DEGs separated into 11 groups and each group is driven by a
distinct set of drivers. Genes in the top right corner, for example, are heavily involved in
cell cycle G1/S phase. TCI drivers, i.e., RB1, ARID1A and FBXW7, positively control their
expression, which is experimentally supported by literature evidence [33–35].

3.2. TCI-Derived Molecular Profiles Predict Significant Prognostic Outcome Differences among
HNSCC Patient Subtypes

HNSCC is a genomic disease of high degree of inter-tumor heterogeneity, in terms
of genomic alterations and molecular/cellular phenotyping. It is an attempting goal to
discover patterns of genomic alterations and discover subtypes of HNSCC with common
disease mechanisms. As a test, we directly used all SGAs data as input features and
grouped TCGA HNSCC tumors into four clusters—where the number of clusters was
pre-defined per previous studies [10–12]—according to similarity of SGA profiles of the
tumors (Figure 3a). However, no clear patterns can be visually discerned according to this
analysis. Further examining the survivals of these patient groups did not show significant
differences among the groups (p = 0.71).

We then set out to examine whether the 64 drivers identified by the TCI are more
informative of disease mechanisms and patient outcomes. Using genomic status of the
TCI-derived driver genes as input features, we were able to reveal certain patterns of
genome alterations of tumors which segregate patients into groups with more significant
survival outcome differences (p = 1.5 × 10−2) (Figure 3b). Visually inspecting the figure,
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one can see certain SGAs events co-occur in tumors within a common cluster. Thus, the
results indicate that SGA status of 64 drivers are informative for HNSCC patient subtyping.
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Figure 2. TCI result analysis for HNSCC patients. (a) Reactome pathway enrichment analysis of 903
TCI DEGs. Top 20 pathways with highest adjusted p values are listed. (b) 104 gene from 59 enriched
Reactome pathways can be separated into 2 groups based on their expression profile. Forty-seven
genes in the upper part are more associated with collagen biosynthesis processes with TP53, CDKN2A,
TTN, EGFR and LRB1P as their major drivers. Fifty-seven genes in the lower part are more associated
with cell cycle and DNA repair processes with TP53, RB1, CSMD3, SYNE1 and LRB1P as their major
drivers; (c) Driver and DEG causal relationship network. Each yellow node represents a TCI driver
and each green node represents a DEG. Each red line represent a driver→ DEG activating causal
interaction and each blue line represents a repressing driver→ DEG causal interaction.
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to calculated p value for patient groups categorized using different datasets. (e). Statistical associa-
tion of clinical features with 4 HNSCC patient subtypes categorized using 903 TCI DEGs. NA in the 
legend represents missing values. (f). Violin plot of age and tumor mutation burden (TMB) distri-
butions in 4 HNSCC patient subtypes categorized using 903 TCI DEGs. 

We then set out to examine whether the 64 drivers identified by the TCI are more 
informative of disease mechanisms and patient outcomes. Using genomic status of the 
TCI-derived driver genes as input features, we were able to reveal certain patterns of ge-
nome alterations of tumors which segregate patients into groups with more significant 
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can see certain SGAs events co-occur in tumors within a common cluster. Thus, the results 
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Figure 3. Molecular subtyping of HNSCC tumors using TCI-derived features. The subtypes of
HNSCC patients are classified using hierarchical clustering and then studied using survival analysis
using (a) all 17,646 SGA states, (b) 64 TCI SGA states, (c). all 10,120 gene expression levels and
(d) 903 TCI-inferred DEG expression levelss, respectively. The colors of the side bar of the heatmap
represent the subtype. Survival times are constrained to 2500 days. Survival analysis is carried out to
calculated p value for patient groups categorized using different datasets. (e). Statistical association of
clinical features with 4 HNSCC patient subtypes categorized using 903 TCI DEGs. NA in the legend
represents missing values. (f). Violin plot of age and tumor mutation burden (TMB) distributions in 4
HNSCC patient subtypes categorized using 903 TCI DEGs.

Since SGA affects oncogenesis through perturbing signaling pathways, and a common
signaling pathway can be perturbed by distinct SGAs in different tumors, we hypothesized
that transcriptome regulated by SGA-perturbed pathways can be more informative of dis-
ease mechanisms of tumors. We then performed clustering analyses of the TCGA HNSCC
tumors, using all 20k DEGs observed in HNSCC tumors and 904 TCI-derived driver-
targeted DEGs as input features, and we divided tumors into four subtypes (Figure 3c,d). It
is interesting to note that more clearer patterns were revealed by the driver-targeted DEGs;
moreover, patient groups derived using these features exhibited much more significant
differences in survival outcomes (p = 1.4 × 10−3). This result suggests that the 903 DEGs
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causally regulated by the 64 TCI drivers provided a concise and effective representation of
HNSCC tumors’ characteristics in terms of pathway perturbation by the driver SGAs.

We compared our four HNSCC subtypes with previously reported TCGA HNSCC
molecular subtyping and check the patient overlaps between two studies. Survival analysis
shows that both studies have categorized patients into groups with significant prognos-
tic outcomes, but our subtyping is orthogonal to TCGA HNSCC molecular subtyping
(Supplementary Figure S2a). While 32 out of 46 tumors in our TCI-derived Subtype 1
are categorized as Atypical in TCGA paper, Atypical tumors are also distributed in our
subtype 1, 2, and 4, indicating our methods has divide the Atypical group. Patients in the
TCI-derived subtype 2 mainly correspond to the Classical subtype defined in TCGA study,
i.e., 37 out of 76, and Atypical, i.e., 22 out of 76. Patients in subtypes 3 and 4 mainly contain
patients from TCGA Basal, i.e., 40 out of 116 for subtype 3 and 27 out of 47 for subtype
4, and Mesenchymal, i.e., 45 out of 116 for subtype 3 and 16 out of 47 for subtype 4. The
patient overlap ratio between our subtype 3 and 4 and TCGA Basal and Mesenchymal is
70%. The survival outcomes are not significantly different between patients in the TCGA
Basal and Mesenchymal classes (Supplementary Figure S2b,c). However, based on our
TCI-derived subtyping, we are able to divide the same group of patients into two groups
with significant prognostic outcomes as shown in Supplementary Figure S2d,e.

We then examined the association between the 903 DEG-derived four patient sub-
groups and known HNSCC risk factors to examine whether our subtyping reflect disease
mechanism of HNSCC. As shown in Figure 3e, the number of male patients is about three
times as female patients in our cohort. Group 3 and 4 with more female patients, i.e., 38%
and 31%, have worse survival outcomes than group 1 and 2, i.e., 19% and 17% (p = 0.21).
Majority of patients reported a history of smoking, but there is no correlation between
smoking frequency and subsequent survival outcome in four patient subgroups. Alcohol
consumption level is also similar among four patient groups (p = 0.78). For molecular fea-
tures, we notice that patient group 1 are significantly enriched with HPV negative patients,
i.e., ~70%, and the patients in this group had the best survival outcome. We also compared
mutation status of three genes, i.e., TP53, NOTCH1, NSD1, in the four patient groups. TP53
is the most frequent mutated gene in HNSCC, but TP53 mutation rate is much lower in
group 1 (27%) than in other groups (group 2: 92%, group 3: 76%, group 4: 82%). NOTCH1
is the second most frequent mutated genes in HNSCC, and its mutation rate is lower in
patient group 1 (12%) and 2 (18%) than in group 3 (27%) and 4 (20%) as shown in Figure 3e
(p < 0.05). The NSD1 gene is a tumor suppressor genes and is associated with HNSCC
patient survival outcome [36]. NSD1 mutation is mainly enriched in patient group 2 (33%)
compared to the other three groups (group 1: 10%, group 3: 6%, group 4: 4%), as shown in
Figure 3b (p < 0.01), indicating that it may play an important role in cancer development of
this subtype of tumors. As shown in Figure 3f, there is no significant difference in age and
tumor mutational burden (TMB) levels across patient groups.

3.3. Infer Driver Activation States and Represent HNSCC Tumors in the Space of Cellular
Signaling Systems

Because different SGAs can perturb a pathway in different tumors, we reasoned that
when a pathway is disrupted by SGA in one member or activated by cross talks from
other pathways, member proteins’ functional states likely are active. In other words, even
if a driver protein is not perturbed by an SGA event, it can be in an active state due to
signals from upstream or crosstalk with other pathways. The active states of pathways
(and their member proteins) dictate a tumor’s disease mechanisms, hence gaining insight
of the functional states of pathways and signaling proteins would be informative for
precision oncology.

The TCI model provides a framework to infer the activation states of driver proteins
by combining the genomic and transcriptomic data. Based on the causal relationships
between SGAs and their target DEGs, we treat the functional states of driver proteins as
latent variables, and we trained a statistical model using the expectation-maximization
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(EM) algorithm to infer the functional states of all 64 HNSCC-related driver protein in
an individual tumor conditioning on the SGA and DEG data observed from the tumor
(Method). As shown in Figure 4a, the introduction of EM algorithm enables us to rep-
resent each individual HNSCC tumor in the space of cellular signaling systems, by pro-
jecting transcriptome data into protein activity state. Based on the 64 drivers’ protein
activation pattern in HNSCC tumors, we are also able to divide patients into four groups
(named as the Protein Activation subgroups). The four subgroups categorized by using
predicted protein activation pattern also shows significant survival outcome difference,
i.e., p = 2.5 × 10−3 (Figure 4e), and the patient membership is in accordance with four sub-
types categorized by 903 DEGs. This result suggests the integrity of molecular information
is maintained during transformation from TCI identified 903 HNSCC gene expression to
64 TCI driver activities.

Cancers 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 4. Clustering based on inferred protein states identified four subtypes and drivers found to 
be associated with HPV-positive patients. (a) Four subtypes of HNSCC samples were discovered 
based on EM inferred driver protein activation states, where red denotes inferred driver state is on 
and white denotes inferred driver state is off. (b) 70.7% of patients in subtype 2 are HPV-positive 
patients, while 1.5% of patients in subtype 3 are HPV-positive. Patients in subtype 2 and 3 are asso-
ciated with different set of drivers. (c) Bar plot of drivers with higher inferred protein activation rate 
but similar SGA frequencies in HPV-positive than in HPV-negative patients, where yellow bar de-
notes the SGA frequency and purple bar denote the inferred driver activation rate. (d) Expression 
profiles of TCI-derived PIK3CA targeted DEGs in three groups of patients, i.e., patients with PIK3CA 
SGA, patients with inferred PIK3CA inferred protein activity and patients without PIK3CA SGA or 
inferred protein activity. (e) Survival analysis of four HNSCC patients subtypes categorized using 
inferred driver activation states. 

Figure 4. Clustering based on inferred protein states identified four subtypes and drivers found to be
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denotes inferred driver state is off. (b) 70.7% of patients in subtype 2 are HPV-positive patients,
while 1.5% of patients in subtype 3 are HPV-positive. Patients in subtype 2 and 3 are associated
with different set of drivers. (c) Bar plot of drivers with higher inferred protein activation rate but
similar SGA frequencies in HPV-positive than in HPV-negative patients, where yellow bar denotes
the SGA frequency and purple bar denote the inferred driver activation rate. (d) Expression profiles
of TCI-derived PIK3CA targeted DEGs in three groups of patients, i.e., patients with PIK3CA SGA,
patients with inferred PIK3CA inferred protein activity and patients without PIK3CA SGA or inferred
protein activity. (e) Survival analysis of four HNSCC patients subtypes categorized using inferred
driver activation states.

As shown in Figure 4b, 70.7% of patients in Protein Activation subtype 2 are HPV-
positive associated with best survival outcomes, while only 1.5% of patients in Protein
Activation subtype 3 are HPV-positive associated with much worse survival outcomes.
HPV-positive patients have active drivers that are fundamentally different from HPV-
negative patients, implying that HPV virus might have activated these driver proteins
to cause HPV-associated pathway activities. Figure 4c illustrate that several drivers are
predicted to be functionally more active in HPV-positive patients than in HPV-negative
patients, while their SGA states are similar. For example, HPV infection activates the PI3K
signaling pathway by modifying various molecular events to promote carcinogenesis, hence
PI3K pathway plays a more critical role in HPV-positive HNSCC cancer [17]. However,
the functional importance of PIK3CA in HPV-positive patients will obscured if based
on its mutation rate, which is slightly greater in HPV-positive than in HPV-negative
patients, i.e., 50% and 32%, respectively. Because our method inferred PIK3CA activity in
HPV-positive patients without PIK3CA mutations, PIK3CA is inferred to be active, either
mutated or functionally activated (presumably through pathway cross-talks), in 98.5% of
HPV-positive HNSCC patients, comparing to 57.8% of HPV-negative HNSCC patients.
As shown in Figure 4d, patients with PIK3CA mutations and inferred PIK3CA activity
exhibit similar expression profile of PIK3CA target DEGs, whereas patients without PIK3CA
mutations or inferred PIK3CA activity have completely distinct expression profile. Target
DEGs of other drivers in Figure 4c have similar expression patterns for patients with and
without driver mutations, as well as predicted driver activity (Supplementary Figure S3).

4. Discussion

In this study, we have developed and evaluated a novel and effective approach for
identifying signaling mechanisms by combining transcriptome and protein perturbations
in individual HNSCC tumors. Our method can depict tumors in the space of cellular
signaling system, whereas mutation data only show the perturbation status of a single
gene. The TCI-derived drivers and their causal DEGs are found to be enriched in a variety
of carcinogenesis pathways, and we are able to classify HNSCC patient tumors into four
subgroups with significant survival differences. The novelty and potential utility of our
methods are as follows.

First, the TCI method differentiates driver and passenger SGAs and further infers the
causal relationship between SGAs and DEGs at the level of individual tumors. This provides
researchers a way to study disease mechanisms of individual tumors, which in turn enables
discovery of the tumor subtypes that share common disease mechanisms. On the other
hand, the conventional molecular subtyping often utilizes the whole transcriptome, which
can be significantly influenced by cell origins and other non-oncogenic factors influencing
gene expression. Second, our method enables us to infer the “activation states” of all
driver proteins in a tumor, even when such genes are not perturbed. Such information
can be critical in the process of clinical decision making in precision medicine, laying the
groundwork for drug sensitivity prediction and repurposing. Conventionally, application
of a molecularly targeted drug is mainly guided by the mutation status of the targeted
proteins. It can be conjecture that if a targeted protein is aberrantly activated in a tumor,
the cancer cells may respond to a drug that targets the protein. This hypothesis remains to
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be tested in the future. Third, inferring the state of driver proteins will enable researchers
to further tease out the signaling pathways by inferring the causal relationships among
driver SGAs. For example, our results suggest that many driver proteins might have been
aberrantly activated in the HPV+ tumors, even though their genes were not perturbed
by SGA events. This indicates that HPV infection may activate these oncogenic proteins
through previous unknown cross talks, such as protein–protein interactions. In summary,
we anticipate that the capability of identifying driver genes and infer their protein activation
states in tumors will have a broad impact on studying cancer disease mechanisms and
guiding precision medicine. It would be interesting to further reconstruct cancer pathways
based on driver status and target DEG expression profile.

5. Conclusions

By integrating transcriptome and genomic alterations data in individual HNSCC
tumors, we successfully developed and assessed a unique and efficient Bayesian method
for inferring the driver activation state. While mutation data only expose the perturbation
status of a single gene, our technique can infer driver activation state and depict tumors in
the context of cellular signaling systems. The TCI-derived drivers and their causal DEGs
are found to be enriched in a variety of carcinogenesis pathways that are patient-specific,
and we can classify HNSCC patient tumors into four subgroups with notable survival
differences and biological significance.

Our comprehension of the mechanisms behind HNSCC disease and the advancement
of tailored medicine will be significantly enhanced by the reconstruction of cancer pathways
and the determination of their activity for each patient. The patient-specific active state
of driver genes, some of which are therapeutic targets, could be used to predict drug
sensitivity and provide insights into personalized therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14194825/s1, Figure S1: Consensus clustering of drivers
and DEGs; Figure S2: HNSCC patient subtype comparison between our study and previous TCGA
molecular subtyping; Figure S3: Expression profiles of TCI-derived driver targeted DEGs in three
groups of patients, i.e., patients with driver SGA, patients with inferred driver inferred protein activity
and patients without driver SGA or inferred protein activity; Table S1: Reactome enriched pathways.
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