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Predicting the Mutating 
Distribution at Antigenic Sites of 
the Influenza Virus
Hongyang Xu1,2,*, Yiyan Yang1,*, Shuning Wang1,4, Ruixin Zhu1, Tianyi Qiu1, Jingxuan Qiu1, 
Qingchen Zhang1, Li Jin5, Yungang He2, Kailin Tang1 & Zhiwei Cao1,3

Mutations of the influenza virus lead to antigenic changes that cause recurrent epidemics and vaccine 
resistance. Preventive measures would benefit greatly from the ability to predict the potential 
distribution of new antigenic sites in future strains. By leveraging the extensive historical records of 
HA sequences for 90 years, we designed a computational model to simulate the dynamic evolution of 
antigenic sites in A/H1N1. With templates of antigenic sequences, the model can effectively predict 
the potential distribution of future antigenic mutants. Validation on 10932 HA sequences from the last 
16 years showing that the mutated antigenic sites of over 94% of reported strains fell in our predicted 
profile. Meanwhile, our model can successfully capture 96% of antigenic sites in those dominant 
epitopes. Similar results are observed on the complete set of H3N2 historical data, supporting the 
general applicability of our model to multiple sub-types of influenza. Our results suggest that the 
mutational profile of future antigenic sites can be predicted based on historical evolutionary traces 
despite the widespread, random mutations in influenza. Coupled with closely monitored sequence data 
from influenza surveillance networks, our method can help to forecast changes in viral antigenicity for 
seasonal flu and inform public health interventions.

The seasonal influenza virus is well known for its rapid mutation rate and constant antigenic changes, which 
causes a major and persistent challenge to public health. To better understand these changes, previous studies 
have established evolutionary models to trace back the genomic variations and epidemiological dynamics at 
genome level1,2. Meanwhile, the rapid accumulation of high-quality genome sequences has provided new oppor-
tunities to analyse virus spread and phylodynamics based on current and past influenza genomes aiming for 
better preventive measures3,4. Recently, several computational studies proposed effective methods to help in rec-
ommending vaccine strains as early as possible from known genomic sequences5–7.

The above efforts were informative, but the spread of seasonal influenza remains a challenge despite various 
efforts of vaccination strategies. Several factors may hinder the efficacy of the current vaccination strategies. At 
present WHO usually recommends strains which have arisen in the past as vaccine strains. Despite of the rapid 
response from WHO in making recommendations, at least six to eight months are required for industrial produc-
tion and market distribution of the vaccine. When the vaccines are applied seasons later, the proposed strains may 
no longer be prevalent in the community, reducing the efficacy of the vaccine. Most importantly, a large amount 
of new mutants, especially within the epitope regions of major HA antigens, will likely have emerged across the 
seasons and may evade the protection provided by the WHO-recommended vaccines. Only when the future 
distribution of new epitope mutants is obtained for major antigens, can better preventive measures be achieved. 
Although a wealth of genomic data has been accumulated, extensive data of antigenic sequences has not yet been 
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used to predict future mutant profiles. The question we sought to address here is whether the distribution profiles 
of the new antigenic variants are predictable in upcoming seasons.

In our study, the HA protein sequences of the A/H1N1 virus were used as an example to demonstrate how 
to achieve the above goals. We demonstrated that our model also perform well with A/H3N2 data. Our results 
revealed that the future mutant profiles of the HA antigen sites are predictable, including those dominant anti-
genic sequences.

Results
Model construction to compute mutating distribution for HA antigenic sites. Seasonal influ-
enza is hypothesized to escape host immune responses by gradual genetic evolution or a neutral network until a 
dominant strain with higher fitness emerges8. Then, the offspring of this beneficial mutant will spread throughout 
the population and cause a sudden shift in phenotype9. Above hypothesis motivated us to compute the potential 
distribution of future mutants from seeding or template sequences. The assumptions of our model include the 
following: 1) the major antigen of HA experiences greater evolutional pressure compared with other proteins in 
the virus, and thus deserve an antigen-specific evolutional model instead of a model at genome level; 2) residual 
diversities at different positions of antigenic sites often imply different adaptive abilities, such as contact transmis-
sibility10 and immune-escaping ability, while the adaptive ability might be partially inferred from the historical 
trace of antigenic positions; and 3) the final dominance of an antigenic mutant may be related not only to its 
inherent adaptive ability, but also its population. The bigger population of an antigenic sequence accumulated, the 
more likely it may survive the natural selection.

Figure 1 presents the workflow of the model. In steps A to C, a nucleotide transition matrix was generated for 
HA antigen according to 90 years of historical training data. To construct the phylogenetic trees, representative 
HA nucleotide sequences were randomly chosen from training data based on geographic and temporal ranges. 
Steps D to G represent the mutation-selection ranking model for the template sequences. The epitope regions of 
HA protein have been extensively studied for H1N1 and well characterized as five antigenic sites. In this study, we 
chose a large epitope area with 11 residues for Ca1, 8 for Ca2, 6 for Cb, 13 for Sa and 12 for Sb11–14. After simula-
tion and redundancy removal, the top abundant sequences with big population were selected for further ranking 
according to dominance likeliness denoted by both theoretical population and adaptive ability. Different cutoffs of 
relative abundance were tested for the model performance, as illustrated in Supplementary Figure S1. The top 100 
were tentatively chosen given that most of the dominant sequences will not be missed under this cutoff. Normally, 
the top 100 cutoff can cover 50 to 80% of simulated sequences before redundancy removal and 0.05 to 0.1% of 
non-redundant sequences simulated for each site.

Sampling was done for the representative sequences to construct phylogenetic tree and results suggest no sta-
tistical differences between simulated trees. A background model was also constructed based on the simulation 
of random mutations as a control. The mutation rate from a specific DNA base to any other was equally set to 
0.25 to eliminate evolutionary pressure differences. The results of this random model were all zero, supporting 
the validity of our mutation model.

Model validation using posterior observed data. The model was evaluated via data from 1999 to 2014 
using WHO-recommended vaccine strains as templates. Over the 16 years, a total of four vaccine strains were 
primarily recommended by WHO: 1) the A/Beijing/262/1995 (H1N1)-like strain was proposed in February 1999 
for the Northern hemisphere; 2) the A/New Caledonia/20/1999 (H1N1)-like strain was recommended in October 

Figure 1. Overview of our model to calculate the mutating distribution for the HA antigenic sites. Steps 
(A–C) illustrate the construction of the nucleotide transition matrix for HA antigens. Steps (D–F) present the 
mutant simulation and selection for the template sequences. In step (G), the top 100 mutants are re-ranked 
according to potential dominance likeliness score.
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1999 for the Southern hemisphere; 3) the A/Solomon Island/3/2006 strain was given in September 2006; and 4) 
the A/California/07/2009 strain was suggested in April 2009.

Two measurements, type coverage and strain coverage, were defined for the model evaluation. The difference 
between them is whether the sequence redundancy is removed among the same group of antigenic sites of col-
lected strains (see MATERIALS AND METHODS). Thus the strain coverage is expected to be more indicative 
than type coverage in evaluating the infection spread within a community. Prediction results with low type cover-
age but high strain coverage often include dominant and widely distributed antigenic mutants.

Figure 2 displays the type coverage and strain coverage across 16 years for each individual antigenic site. For 
clearer illustration, all antigenic sequences during the 16 years are grouped by two-year intervals and the detailed 
results from the 1995 template are presented separately in Supplementary Table S1. As observed in Fig. 2, the 
type coverage tends to drop with time for both the combined and individual sites. This could be explained by the 
increasingly accumulated sequence data and mutant types reported over time. We also observed a diversity peak 
of each antigenic site during 2009–2010 (Fig. 2G), supporting the critical adaptation phase to new host4. From 
2009 when a new type of “swine flu” emerged, all predictions based on previous templates become ineffective. 
However, this failure was soon rescued by template updating. Overall, the strain coverage are maintained at above 
94% on average of the five sites with proper template replacement for the past 16 years despite of the erratic curve 
of type coverage (Fig. 2G). This finding suggests that although a vast number of mutants continually emerge, over 
90% of new antigenic sequences in reported strains fall within the predicted profiles.

Different mutants often co-exist at a given time, but their fitness abilities to host pressure vary significantly. 
It is desirable to investigate how well those dominant antigenic mutants observed in the community can be pre-
dicted by our model. Table 1 presents the predicted ranking of five antigenic sites in those globally dominant 
strains. In general, 96% (24/25) of antigenic sites in the dominant strains are located within the top 100 profiles, 
and 92% (23/25) are located within the top 50 lists for each site. Interesting finding is that some antigen sites of 
dominant strains seldom change within an epidemic cycle divided by vaccine strain replacement, such as Ca2 
and Cb, whereas others change more frequently. The ability of our method to successfully predict the top few 
dominant mutants of antigenic sites suggests an advance beyond existing methods that could be important for 
informing preventive strategies.

Figure 2. The type coverage and strain coverage during the entire validation period from 1999 to 2014. The 
results were grouped every two years using three different template strains announced in 1999, 2006 and 2009. 
(A) The average results of the five antigenic sites representing the overall epitope areas on the HA protein. The 
Y-axis on the left indicates the type coverage (solid line) and strain coverage (dashed line) in proportion. The 
X-axis indicates the evaluation period. (B–F) Prediction results for each individual site. (G) The strain coverage 
of the prediction profile with three template strains and five sites indicated in one graph. The Y-axis on the right 
indicates the number of antigenic types in the bar plot.
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Model performance of different template sequences. As being indicated, WHO recommended vac-
cine strains are good templates to predict future mutant profiles at antigenic sties. However, it is highly desirable 
to assess the model application during emergency outbreak when WHO vaccine strain has not become available 
yet. In recent history of A/H1N1, April of 2009 represents a critical time when a new type of “swine flu” virus with 
the host transferring ability became pandemic in human community. Compared with the other seasonal H1N1 
influenza, the diversification and spread of “swine flu” were well characterized during the early outbreak15 and 
thus presented an opportunity to investigate the template influence in emergent outbreak.

We tested two earliest reported sequences and another two abundant representatives, each from the top 
two abundant epitope clade covering five sites in the month of April 2009. The clades are defined as clus-
ters of sequences sharing the same epitopes (combined by five antigenic sites). Then these clades are ranked 
by their sequence abundancy (see Supplementary Table S2). Coincidently, the earliest reported strain  
A/California/04/2009 shares the exactly same epitope sequences with the WHO recommended strain  
A/California/07/2009, which also lies in the largest epitope clade in the prediction results. Compared with  
A/California/04/2009 (both the earliest and in the most abundant clade), the predicted type coverage and strain cov-
erage for A/Mexico/3955/2009 (early but not abundant) were considerably reduced (see Supplementary Table S3).  
The likely reason could be that the early strains may still be in the process of host adaptation without enough 
fitness ability. However, the predictions from A/Ohio/07/2009 (the second most abundant) performed similarly 
well as the A/California/07/2009, suggesting the multiple possibilities of template choosing (see Supplementary 
Table S3). Finally, the mutant profiles at antigenic sites of A/H1N1 influenza virus are predicted based on 2014 
template in Supplementary Table S4 for future validation after 2015.

Model application to A/H3N2. We assessed the broader applicability of our method by applying it to 
the human influenza A/H3N2. When the model was tested by data from 2002 to 2014, an average strain cov-
erage achieved 92.97% as being presented in Supplementary Figure S2. Moreover, 74.1% of the antigenic sites 
in dominant epitopes are located within the top 100 profiles, and 70.4% fall in the top 50 profile for each site 
(see Supplementary Table S5). Corresponding type coverages and strain coverages are presented in detail in 
Supplementary Figure S3 and Table S6. It is worth noting that more frequent vaccine strains are recommended by 
WHO for A/H3N2 compared with A/H1N1. So does to the template replacement. This difference may result from 
the higher rate of adaptive evolution for H3N216. Our predictions for H3N2 are thus comparable with H1N1, 
although slightly less effective in the B site, which is likely due to the different preferences for genetic changes 
observed in this region17. Therefore, our model is applicable to different influenza virus subtypes.

Discussion
In spite of the latest computational technology to facilitate vaccine design, current preventive strategies can only 
evaluate and recommend those influenza variants that have arisen in the past. Predicting future profiles of new 
antigenic mutants would significantly improve the efficacy of current measures through expecting the upcoming 
antigenicity. In this study, a computational model was designed to simulate the future distribution of new anti-
genic mutants based on the evolutionary footprints at antigenic sites. Our results provide strong evidence that the 
profile of future antigenic variants of the HA antigen can be predicted along their own evolutionary trajectories 
despite wide, fast and constant changes.

Year

Epitope with 
Relative 

abundancea
Rank 

combinationb Year

Epitope with 
Relative 

abundancea
Rank 

combinationb

1999c 54.55% 1,1,1,1,19 2007d 46.03% 1,2,2,1,6

2000c
30.68% 11,1,1,1,1 2008d 28.65% 1,1,2,1,--

17.05% 11,1,1,1,11
2009e

57.09% 2,1,1,1,1

2001c 51.15% 1,1,1,18,1 18.48% 1,1,1,1,1

2002c
31.25% 1,1,1,18,19

2010e
44.49% 2,1,1,1,1

18.75% 1,1,1,18,1 15.66% 2,1,1,1,24

2003c
46.94% 11,1,1,78,27 2011e 53.07% 2,1,1,1,24

34.69% 11,1,1,1,1 2012e 65.80% 2,1,1,1,24

2004c
50.00% 11,1,1,1,1

2013e
43.55% 2,1,1,39,24

25.00% 11,1,1,1,19 19.41% 2,1,1,1,24

2005c 77.78% 11,1,1,1,1 2014e 84.91% 2,1,1,39,24

2006c 28.32% 11,1,1,1,1

Table 1. Rank combination of dominant epitopes observed every year from 1999 to 2014. aThe relative 
abundance of epitopes (combined by five antigenic sites) are generated from epitope sequence variation in 
reported strains every year. Dominant epitopes are listed with relative abundance above 15% in the yearly 
reported data during 1999–2014. bThe predicted combination rank of five sites are for Ca1, Ca2, Cb, Sa, Sb, 
respectively. Only mutants falling within top100 are recorded, otherwise represented by ‘--’. cThe combination 
rank during 1999–2006 are predicted by template A/New Caledonia/20/1999. dThe combination rank during 
2007–2008 are predicted by template A/Solomon Islands/3/2006. eThe combination rank during 2009-2014 are 
predicted by template A/California/7/2009.
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Template selection plays an important role in predicting future dominant mutants. The most effective and 
desirable templates would be those epitopes being able to produce more offspring to survive the natural selection 
in community. The vaccine strains proposed by the WHO are based on information regularly provided by the 
WHO Global Influenza Surveillance Network (GISN), combining retrospective antigenic, epidemiological, and 
genetic data. The phylogeny trees from Surveillance Reports of the WHO Influenza Centre for each H1N1 vac-
cine strain showed that the vaccine strain is frequently not only the strain at the top of a large clade but also the 
strain producing the majority of the clade offspring (see Supplementary Text). Thus, taking sequences of WHO 
vaccine as templates would give satisfying results most of the time. However, relying on WHO vaccine strains may 
not be fully warranted as new strains may also emerge from other circulating strains, or in emergent cases when 
the WHO vaccine strain is not published. Alternative templates would also be feasible as our results suggested 
in Fig. 2G that both New Caledonia/20/1999 and Solomon Islands/3/2006 templates work well in 2007–2008. 
Second example comes from the similar results from both the most abundant strain of A/California/07/2009 and 
the second abundant strain of A/Ohio/07/2009, as Supplementary Table S3 shows. Thus the template choosing 
is important but not super-sensitive. As the antigenic sequences of an influenza subtype are often similar during 
a circulation period, the final ranking of our model is expected to be robust for a substantial degree of template 
variations.

Currently identifying the right mutants from the candidate list is highly challenging, as it may be related to 
not only the fitness of each mutant but also the community population and even regional environment and social 
reporting system. However, our model provides a likely list of mutated HA sequences in future. Despite of the 
long list, they might form a few antigenic clusters. As being reported in previous studies, influenza virus evolves 
its antigenicity by population18. In addition to the traditional models correlating HA sequences with antigenicity 
map19,20, Liu et al. has recently developed latest PREDEC tools to calculate the antigenicity clusters based on HA 
sequences and showed good correlation with influenza circulation5,21. Given the likely list of future HA sequences, 
predicting new antigenicity cluster may become theoretically possible in future. It is noted that our model is 
based on continuous genetic evolution instead of antigenic evolution. According to Liu’s work21, our validation 
window covers two distinct phylogeny lineages (one before and one after 2009 swine-origin influenza virus) and 
three different antigenic clusters in major northern sphere (NE99, SO06 and CA09). From Fig. 2G, we can see 
that our work can perform well until 2009 when new lineage emerged. While during 2006–2008, the prediction 
from template CA09 can still maintain high performance even a new antigenic cluster SO06 formed. Although 
the validation time is limited because of the data collection, our model would be applicable to circulation period 
without genetic evolutional shift.

In conclusion, our study indicates that the temporal antigenic sequences can be leveraged to predict the 
mutating distribution of new antigenic sites in near future and provides an model to effectively make such pre-
dictions for the A/H1N1 and A/H3N2 viruses. In this paper, we divided the epitope areas into antigenic sites due 
to the limitation of computational power. Predicting epitope changes as a whole is theoretically feasible once the 
computational resources are available. As the assumption of this model is based on continuous genetic evolu-
tion, the model is currently limited to seasonal flu. Future improvements include a refined mutation matrix and 
dominance calculation incorporating mutational correlation between different antigenic sites as well as multiple 
templates. Coupled with the advanced antigenicity estimation, these predictions could help to target a group of 
upcoming epitopes that will be potentially dominant in the future rather than a single possibility. Given the rapid 
accumulation of high-resolution and high-coverage genomic data, our strategy may also be useful in anticipating 
the evolution of other highly mutagenic RNA viruses.

Materials and Methods
Data resources. All data was downloaded from the NCBI Influenza Virus Resources database22. For H1N1, 
training data covers 1593 HA sequences including 892 unique ones dated by Dec. 31, 2008, and testing data covers 
11715 HA sequences dated from Jan. 1999 to Dec. 2014. For H3N2, training data contains 5278 HA sequences 
(1968–2011), while testing data contains 5915 HA sequences dated from Jan 2002 to Dec. 2014.

Construction of a mutation model for HA antigenic sites. Transition matrix of HA antigen. 200 
representative sequences were randomly chosen thrice from the 892 sequences with at least one sequence per year 
and at least one sequence per country. Multiple sequence alignment (MSA) was performed using Clustalw223. 
Maximum parsimony (MP) phylogeny trees were generated by PHYLIP24, because the mutation rate is not con-
stant here while MP was reported to be not sensitive to nucleotide substitution25. The nucleotide substitutions at 
four-fold degeneration sites were counted under neutral evolution. Then mutational probability was calculated 
among paired nucleotides as the number of substitutions divided by the corresponding total number of four-fold 
degeneration sites26. Finally, the nucleotide transition matrix was generated as an average. The transition matrix 
for amino acids was derived as below example: given a triplet code of ATC, its probability changing to ATT is

( → ) = ( → ) ⋅ ( → ) ⋅ ( → ),P ATC ATT P A A P T T P C T

where P indicates the mutation probabilities among nucleotides.

Mutation simulation of a given HA antigenic site. Given a template sequence in a specific antigenic sites, muta-
tional sequences were randomly generated according to the specific probabilities of transition matrix. To balance 
the computational cost and coverage of potential mutations, 109 simulations were performed for each antigenic 
site as a pool under neutral selection. This simulation was done 100 times before further ranking and filtering. 
For each simulation, we only used the antigenic site sequence from template rather than the whole HA1 sequence.
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Re-ranking the top abundant mutants by dominance likeliness. The dominance likeliness of a 
mutated antigenic sequence consists of historically adaptive ability (PSSM score27) and theoretical abundance in 
simulating results.

Set = = , = N sS {s i 1 to a a a ai i i1 i2 i3 im, ∈a {20 amino acid types}ij , = mj 1 to } as MSA profile of N 
simulated sequences. N means the total number of simulated sequences in TOP 100 ranking list before sequence 
redundancy being removed. Set Paij

 as the probability that amino acid aij appears in position j of S, Aaij
 as the 

background frequency of aij observed in whole HA sequences. ( = )x yIk  is a binary number that equals 1 if x =  y, 
otherwise 0. ∑ ( = )= I s s

N
k 1
n

k i k  actually represents the relative amount of a unique sequence (top 1 to top 100) in the 
total number of simulated N results. The norm function is to adjust all values into range [0,1]. The dominance 
likeliness (DL) for si is calculated as follows:

∑= α ⋅
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where the first part represents PSSM score of an antigenic mutant and the second part represents the theoretical 
abundance. In the second part, ∏ = Aj 1

m
aij

 at the bottom is intended to delete amino acids preference, for the same 
purpose with the PSSM score part. The parameter α was artificially optimized by testing different values from 0 
to 1 at step size of 0.05, and eventually 0.65 was chosen for H1N1 and 0.4 for H3N2. Noting the significant differ-
ence of both sequence accumulation and host-transferring before and after 2009, two PSSMs are introduced for 
H1N1. The pre-2009 PSSM is derived from sequence data from 1918 to 1999, whereas the post-2009 one is 
obtained from data reported merely in 2009.

Evaluation parameters. Type coverage was calculated as. 

= / ( )Typecoverage N N 2top100 total

Ntop100 – the number of antigenic types correctly predicted in top 100 simulated mutant list; N total – the total 
number of observed antigenic site types collected in corresponding period. An antigenic type is defined as one 
unique sequence of antigenic site such as Ca1, after redundancy being removed from multiple strain sequences 
reported.

 Strain coverage was calculated as. 

= / ( )Straincoverage Ns Ns 3top100 total

Nstop100 the number of observed strains carrying those successfully captured antigenic sites; Nstotal the total 
number of reported strains observed in the corresponding period.

An example to calculate the type coverage and strain coverage is illustrated in the Supplementary Text.
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