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ABSTRACT
In this work, a target-based drug screening method is proposed exploiting the synergy effect of ligand-
based and structure-based computer-assisted drug design. The new method provides great flexibility in
drug design and drug candidates with considerably lower risk in an efficient manner. As a model system,
45 sulphonamides (33 training, 12 testing ligands) in complex with carbonic anhydrase IX were used for
development of quantitative structure-activity-lipophilicity (property)-relationships (QSPRs). For each lig-
and, nearly 5,000 molecular descriptors were calculated, while lipophilicity (logkw) and inhibitory activity
(logKi) were used as drug properties. Genetic algorithm-partial least squares (GA-PLS) provided a QSPR
model with high prediction capability employing only seven molecular descriptors. As a proof-of-concept,
optimal drug structure was obtained by inverting the model with respect to reference drug properties.
3509 ligands were ranked accordingly. Top 10 ligands were further validated through molecular docking.
Large-scale MD simulations were performed to test the stability of structures of selected ligands obtained
through docking complemented with biophysical experiments.
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1. Introduction

Throughout the years, drugs were discovered by identification of
their active ligands through observations in treatment or by occa-
sional and serendipitous exploration. Drug design was dominated

with structure-based methods, focussed on development and ana-
lysis of the ligands themselves. With the development of modern
technologies, in silico methods such as target-based drug design
(TBDD) and virtual ligand screening (VLS) have emerged as
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promising approaches for determination of active ligands for specific
biological targets1. TBDD is a process which involves definition of a
drug target which can be a gene, a genetic product2 or a com-
pound related to a specific molecular mechanism3. Besides that, sev-
eral bioassays and computational methods can be used to test
molecular target-drug interactions in order to determine whether
the drug results in activation or inhibition4. Modern genomic investi-
gation has opened a door to discovery of numerous drug targets,
which led to the development of entire libraries of ligands gener-
ated for molecular targets using computational drug design tools5.

Computational drug design tools include computer-aided drug
design and discovery (CADD), ligand- and structure-based meth-
ods (incl. molecular docking, pharmacophore modelling), and
afore-mentioned VLS. Structure- and ligand-based approaches
greatly differ with respect to the information used for modelling.
On top of that, 3 D structure of the target is not always known or
troublesome to crystallise6. Molecular docking7 is a traditional
method used in CADD in which the preferred orientation of a
small molecule corresponding to its binding mode is optimised
with respect to the target of interest resulting in formation of a
stable complex. Docking algorithms can be applied for the search
of potential ligands from a library, modelling of binding mode
and affinity of candidate or known ligands8. In spite of efficiency
of docking methods, pharmacophore modelling is used more fre-
quently and generally requires less time9, although pharmaco-
phore identification can on occasion arise from a docking study. It
is also more precise than the traditional ligand-based approach8.
However, protein flexibility is being recognised as of fundamental
importance for wider applicability of docking methods and ana-
lysis of ligand-induced changes in protein binding sites. Simple
molecular dynamics can be introduced for validation of structures
obtained through molecular docking.

Disadvantages of all the mentioned methods can be improved
by means of integration, i.e. integrated ligand- and structure-
based approaches: (i) interaction-based and (ii) similarity-based
docking. The former involves identification of interactions
between the protein and target using known physico-chemical
data, while the latter focuses on combination of structure-based
docking methods with ligand similarity methods10 that makes VLS
much more efficient8.

In this work, we tackle the problematics of integration in a dif-
ferent manner, with a synergistic methodology (Figure 1) combin-
ing experiments, high-throughput computing and mathematical
programming, or mathematical optimisation. At its core, it follows
the reasoning: if drug properties are a function of molecular struc-
ture, then the ideal drug candidate’s molecular structure can be
obtained as an inverse function of their desired value (e.g. minimum,
maximum or with respect to a reference).

Upon validation of the model, it is inverted to obtain a
molecular structure of an ideal candidate drug with desired prop-
erties (e.g. minimum or maximum y-values). This model inversion
is essentially a constrained optimisation problem and should be
done using an appropriate mathematical optimisation method
because the relationship in Equation (1) is subjective, not injective
(i.e. one-to-one) in general.

General optimisation formulation is:

x� ¼ arg min J xð Þ
s:t: h xð Þ ¼ 0; g xð Þ � 0

xi;min � xi � xmax

(1)

This optimisation formulation of drug discovery gives great ver-
satility of the proposed methodology because the objective func-
tion J(x) can be any form. It can be formulated as a minimisation/
maximisation problem (e.g. minimising inhibition constant), or
with respect to a reference. A solution of the inversion is screened
against a ligand library (first screening) based on Euclidean dis-
tance of molecular descriptors and ranked for synthesis/evalu-
ation. This can be done using search algorithms such as genetic
algorithm when the library is large11. It is followed by a second
screening using molecular docking.

Molecular docking and dynamics (MD) simulations are used to
elucidate the interactions of the candidate ligands with the
molecular target. After synthesis, biophysical experiments are per-
formed to complement them, and vice-versa. Finally, the drug
properties of the candidate drugs are experimentally determined.
Thereby, the viability of candidate drugs for further testing is eval-
uated. If they are deemed not viable, they become new initial
ligands, and the process is repeated.

Since synthesis can be time-consuming, and thereby out of the
scope of our work, as a proof-of-concept we have focussed on the

Figure 1. Flowchart of the proposed drug discovery methodology.
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development of a drug property prediction model and its inver-
sion, strengthened with computational and experimental struc-
tural studies: The model was inverted with respect to a reference
value, with an aim to obtain a molecular structure of an ideal can-
didate drug. Carbonic anhydrase IX (CA IX) has been selected as a
molecular target.

Regardless of the numerous experimental studies available on
CA IX and its complexes, there is still only a few systematic MD
models and simulations12–15. From a computational point of view,
drug design methodologies combined with rigid-body docking
and MD simulation are promising to investigate binding site(s),
binding affinity and enzyme-ligand interactions16–18. Therefore, in
this work, molecular docking studies were performed to addition-
ally rank the ligands and validate the inverse QSPR. MD simula-
tions were performed to evaluate the stability of the docked
structures and elucidate non-covalent interactions between the
ligands and the active site of CA IX. Biophysical experiments (SDS-
PAGE, MALDI-TOF/TOF-MS, FTIR) were performed to complement
the simulations.

2. Materials and methods

CA IX in complex with 45 sulphonamide-based inhibitors of previ-
ously determined purity19,20 (Table 1, Table S1) was used as a
model system. Activity towards CA IX (expressed as logKi, pKi) and
lipophilicity (expressed as logkw

21) of the inhibitors were used as
dependent variables to develop quantitative structure-activity-
lipophilicity (drug property) relationships (QSPRs)22. Although not
as popular in drug discovery as protein kinases,23–26 cancer-associ-
ated CA IX is still an interesting target due to its correlation with
tumor cells proliferation27–29 In fact, a sulphonamide derivative
selective to CA IX and CA XII developed in 2011 (SLC-0111) has
recently entered phase II clinical trials for treatment of metastatic
solid tumors30.

Both biophysical and computational experiments were
performed on eight test ligands (Table 1) to elucidate the
differences in ligands’ binding and in turn their activity towards
CA IX. In all experiments, except to determine the inhibitory activ-
ity, recombinant CA IX was used (Sigma Aldrich, St. Louis,
MO, USA).

2.1. Reversed-phase liquid chromatography (RP-LC)
measurements

Stock solutions of the 45 ligands were prepared in 10mM con-
centrations by dissolving them in dimethyl sulfoxide (Sigma
Aldrich, St. Louis, MO, USA). Subsequently, they were diluted to
10lM in a water: acetonitrile mixture (50:50% v/v). The aceto-
nitrile used was MS-grade obtained from Merck (Darmstadt,
Germany), while water was passed through the 18MX Direct-Q
3 UV-R system (Merck, Darmstadt, Germany). Formic acid was
purchased from Sigma Aldrich (St. Louis, MO, USA). RP-LC/MS
experiments were performed using an Agilent 1260 system
equipped with a UV-VIS spectrophotometric detector (Agilent
Technologies, Santa Clara, CA, USA), an auto-sampler and a col-
umn thermostat. Optimal separation of the investigated sulpho-
namides was achieved using a Luna RP-C18 (4.60� 150mm,
3 mm, Phenomenex Inc., Torrance, CA, USA) column in linear
gradient elution mode starting from 5% of phase A (water
modified with 0.1% formic acid) to 95% of phase B (acetonitrile
modified with 0.1% formic acid) with an injection volume of
10lL. Two pairs of gradient chromatographic runs were per-
formed: 0–30, and 0–60min for less, as well as 0–40 to

0–60min for more lipophilic ligands. Measurements were per-
formed at 30 �C with an eluent flow rate of 0.3ml min�1. Peak
apex retention times obtained at these conditions were used to
compute lipophilicity (expressed as logkw)

21 using DryLab 2000
Plus software (LC Resources, Walnut Creek, CA, USA). To do so,
the following equation was employed:

log k ¼ log kw þ Su (2)

where k represents the retention factor, S the linear slope, while u
represents the volume fraction of the organic modifier. Column,
mobile phase, instrument conditions, and the elution program
were taken into account to determine the parameters and coeffi-
cients of Equation (2).

2.2. Stopped-flow spectrophotometry

Stopped-flow spectrophotometry (Applied Photophysics (Oxford,
UK) stopped-flow instrument) was used to assay the CA-catalysed
CO2 hydration activity31. Phenol red in a concentration of 0.2mM
has been used as an indicator, at the absorbance maximum of
557 nm, with 10mM Hepes (at pH 7.5) as buffer, and 0.1M Na2SO4

(for constant ionic strength). The CA-catalysed CO2 hydration reac-
tion was carried out in a period of 10–100 s. Concentrations of
CO2 ranged from 1.7 to 17mM for the determination of kinetic

Table 1. Testing set ligands used for QSPR modeling and structural studies.

ID Structure log kw logK i

AZM
N N

SH
N

O

S
NH2

O

O

0.955 1.398

N

R1

SO2NH2

ID R1 R2 R3 log kw logK i

C75 NN R2 n.a. 3.010 2.093

C76
Cl

n.a. 4.530 2.130

C84 n.a. 1.270 1.654

C89
N N

R2 R3

R2 Me Me 2.090 1.364

C93 N N

NH2N
SMe

n.a. n.a. 1.680 1.394

Cl

Me S

S
H
N

O O

R1

NH

HN
X

ID R1 X log kw logKi
C101

CF3

SO2NH2
4.470 1.204

C105 CF3 SO2NH2 4.550 1.431

C106 CF3

SO2NH2

4.540 1.415

C113 HN SO2NH2 3.830 1.255

C119
NHO

SO2NH2 3.850 2.491

C123 O

OCl

SO2NH2 3.850 2.413
Ligands used for biophysical experiments are denoted in bold. Training ligands
are shown in Table S1.
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parameters and inhibition constants. Stock solutions of the inhibi-
tors in a concentration of 1mM were prepared in distilled-deion-
ized water with 10–20% (v/v) of DMSO not inhibitory at these
concentrations. The solutions were subsequently diluted up to
0.1 nM in distilled-deionized water. Inhibitor and enzyme solutions
were pre-incubated together for 15min at room temperature prior
to the assay, to allow for the formation of the E–I complexes.
Inhibition constants were obtained by non-linear least-squares fit-
ting using PRISM 3 software (GraphPad Software Inc., La Jolla, CA,
USA) as per refs.32,33 and represent the mean from three different
determinations.

2.3. QSPR model development

Molecular structures of the 45 sulphonamides were drawn in
ACD/Labs ChemSketch (Advanced Chemistry Development, Inc.,
Toronto, Ontario, Canada). First, a semi-empirical method AM134

was used to pre-optimize the ligands, while Density Functional
Theory (DFT)35,36 with the B3LYP37 functional at the 6–31þG(d,p)
level38 was used to refine the final geometries.

After that, an initial matrix of 4872 molecular descriptors was
computed using Dragon 6.0 (Talete, Milano, Italy). Using three
statistical pre-selection criteria: (i) critical relative standard devi-
ation value (RSD) of 5%, (ii) critical pairwise correlation value of
0.8 (a descriptor with the lower correlation with the Y-variables
was removed), and (iii) removal of all the descriptors with zero
values, except binary and integer descriptors, it was reduced to
303 molecular descriptors. This 45� 303 matrix was used as
X-space (predictors), while experimentally-determined logkw and
logKi were used as Y-space (dependent variables) for fur-
ther modeling.

Subsequently, Kennard and Stone algorithm39 was used to
uniformly separate the 45 samples into 33 training, and 12 val-
idation set samples. Genetic algorithm coupled with Partial
Least Squares (GA-PLS) as superior for variable selection40,41

was used in order to select a subset of molecular descriptors
yielding the best QSPR model. This was achieved by minimising
a multi-objective fitness function encompassing both root mean
square error of estimation (RMSEE), and root mean square error
of prediction (RMSEP):

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g12 þ g22

p
(3)

where g1 and g2 represent:

g1; g2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT � nS � 1ð ÞRMSEE12 þ nPRMSEP12

nT þ nP � nS � 1

s
(4)

for logkw and logKi predictions, while nT, nP, and nS represent the
number of training samples, number of validation samples, and
number of selected variables, respectively. Subscripts one and two
represent logkw and logKi, respectively. RMSEE and RMSEP are
expressed using:

RMSEE; RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

y predð Þ � y obsdð Þ� �2
n

vuuut
(5)

Hyper-parameters and functions of GA were optimised as fol-
lows: cross-over fraction and mutation rate in [0.2:0.2:0.8], number
of selected variables in [5:1:20], uniform, roulette and tournament
selection functions, as well as scattered, single-point and two-
point cross-over functions were tested. An optimal number of PLS
latent variables was determined through 7-fold cross-validation.

The final GA-PLS model was validated through a validation set
of ligands, and its applicability domain was defined. Cross-valid-
ation-analysis of variance (CV-ANOVA)42 was used for testing the
model’s significance. RMSEP and mean relative error (MRE) values
were reported for both drug properties:

MRE ¼
Pn
i¼1

jy pred:ð Þ� y obsd:ð Þj
y obsd:ð Þ

n
(6)

2.4. Library of CA IX inhibitors

The ChEMBL43 and BindingDB44 databases were screened for CA
IX inhibitors and 4531 ligands were identified. Due to limited
time, their structures were optimised using the AM1 semi-empir-
ical only without DFT refinement. After geometry optimisation,
seven molecular descriptors were calculated and out of 4531
ligands, only those that are structurally similar to the ligands used
for training the QSPR model were selected for building our library
(3497 including our own compounds, Table S3). Structural similar-
ity was determined by computing the leverage values (h) of the
ligands and removing all those with a value higher than the lever-
age threshold h�.

2.5. Inverse QSPR

In order to obtain an optimal molecular structure of a candidate
drug, methodology of Jaeckle and MacGregor45 was re-designed.
Generally, through inversion45 of a latent variable (e.g. PLS46)
model, the optimal structure can be obtained by either minimis-
ing or maximising the desired drug property. However, this
requires synthesising the ligands, which could be time-consuming,
and is, thereby out of the scope of this work. Therefore, as a
proof-of-concept, the inverse QSPR solution was obtained relative
to reference values of drug properties (logkw of 4.470 and logKi of
1.204). Optimisation formulation of PLS inversion has then the fol-
lowing form:

x� ¼ arg min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log k̂w � log kw;ref

� �2
þ log K̂ i � log Ki;ref
� �2

r
s:t: log k̂w; log K̂ i

� �
¼ Ct̂ ; t̂ ¼ Px�;

t̂
T
St�1t � c1; kPt̂ � x�k2 � c2

(7)

where x� represents the optimal solution (i.e. optimal values of
molecular descriptors), t represents X-space PLS scores, P repre-
sents X-space PLS loadings, C represents Y-space PLS loadings, S
represents the sample covariance matrix of t, while c1–2 are con-
straint constants.

GA47 was used to solve the mixed integer nonlinear program-
ming problem (Equation (7)), and the obtained solution was
screened against the test samples including the reference ligand,
as well as the ligands from the built library of CA IX inhibitors,
based on Euclidean distances.

Computational time required for the database screening after
inverse QSPR was measured using in-built MATLAB function cpu-
time for up to three million simulated ligands (descriptors simu-
lated using a random number generator).

Most of the computations were performed in MATLAB 2017a
(Mathworks, Sherborn, MA, USA), whereas the CV-ANOVA analysis
was performed using Simca 14.1 (MKS Data Analytics,
Umeå, Sweden).
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2.5. Molecular dynamics (MD) and docking studies

In the context of TBDD, molecular docking is an in silico technique
to predict the best binding mode (pose) of a small-molecule lig-
and to a target protein (receptor) of interest, given the three-
dimensional structures of both. The revealed binding interactions
could then explain the inhibitory or agonist functions of the lig-
and with respect to the receptor. In other words, docking predicts
the structure of the resulting protein-ligand intermolecular, binary
complex given the constituting structures, known binding site(s),
and searching and scoring algorithms. In this way, essential inter-
actions for binding could be identified, thus guiding subsequent
drug design processes. This technique was particularly interesting
because of the low computational cost it requires.

To begin with rigid-body docking study, the ligands (Table 1)
were built in Maestro 11.1 (Schr€odinger, LLC, New York, NY, 2017),
followed by minimization and conformational search (systematic
torsional sampling method) using OPLS3 force field using
Macromodel 11.5 in Maestro suite. The protonation states of the
ligands were corrected for the physiological pH using LigPrep
module. Subsequently, the protein retrieved from RCSB PDB (PDB
ID: 5FL448) was first pre-processed using Protein Preparation
Wizard in Maestro, including addition of hydrogens at given
physiological pH. The grid of the active site of receptor was gener-
ated for rigid-body docking. All crystal waters were also removed.

The resulting docking poses were then examined further via
Induced-Fit Docking (IFD) procedure in Maestro, where possible,
to refine the result by allowing the sidechains within the active
site to alter their positions. To further investigate the validity of
these docking poses, MD experiments were performed, using the
following procedures. The fully bonded model was used to pre-
serve the tetrahedral geometry of the metal site centre of CA IX
in which bond terms (i.e. bond stretching, angle bending, tor-
sional) were parametrized49. Although several enhancements are
available such as including polarisable bonds, orbital hybridisation,
and ligand field stabilisation energy, these are not readily available
for routine use in modelling of metalloprotein-ligand complexes50.
Practically, overly sophisticated models can even lead to worse or
invalid results51. The bonded model, therefore, provides a balance
between performance and accuracy.

Standard Induced Fit Docking (IFD) procedure was used, utilis-
ing the IFDScore metric defined as:

IFDScore ¼ 1:0� GlideScoreþ 0:05� Prime Energy (8)

where GlideScore approximates binding affinity of the ligand to
the receptor, while Prime Energy approximates the energy of the
receptor after being induced to fit the tested ligand.

X-Ray crystal structure of CA IX obtained from the RCSB
Protein Data Bank (PDB) database with PDB ID: 5FL448 was used
as a basis for the MD model. It comprises 257 amino-acid residues,
and it was determined using X-Ray crystallography at a resolution
of 0.182 nm.

GROMACS 5.0.452 software with the AMBER force field53 was
used for MD simulations under periodic boundary conditions.
Parameters of the Amber99SB�-ILDN54 were used for all atoms.

The ligands were parametrised using the generalised AMBER
(GAFF) force field55, while the metal site center was parametrised
using the workflow developed by Li and Merz Jr.56 All the parame-
ters were derived based on QM calculations using DFT35,36 with
the CAM-B3LYP57 functional at the 6–31þþG(d,p) level38 of the-
ory. Prior to the parameterisation procedure, the originally opti-
mised geometries used for QSPR were all deprotonated since
sulphonamides bind to CA IX as anions58, while hydrogens were
added to the protein structure using the Hþþ server59.

For the MD simulations, eight CA IX-ligand complexes were
modelled. Ligands were placed into the active site based on the
experimental coordination of 5–(1-naphthalen-1-yl-1,2,3-triazol-4-
yl)thiophene-2-sulfonamide (9FK) within CA IX48. First, the ligands
were superimposed to the structure of 9FK using the S-N atom
pair of the sulphonamide group. Subsequently, the ligands were
rotated around the N-C bond of 9FK to resolve any possible
clashes with the protein. The rotation angle differed case-by-case
with respect to the ligands’ bulkiness.

Next, the complexes were solvated with TIP3P60 water mole-
cules in a cubic box and electrostatically neutralised with either
Naþ or Cl– ions. Bad contacts and structural clashes were removed
with 5000 steps of energy minimisation, after which the systems
were heated to 298.15 K at a constant volume for 60 ps. Density
was equilibrated by subjecting the complexes to constant pres-
sure (1 bar) and temperature (298.15 K) conditions for 1.0 ns.

Positions of heavy atoms (except water and ions) were
restrained with a harmonic constant of 1000 KJ mol�1nm�2 during
energy minimisation, heating and equilibration. Production MD
simulations were performed for 1ms without any restraints.
Non-bonded interactions were truncated with a 1 nm cutoff. Long-
range electrostatic interactions were treated with the particle-mesh
Ewald method61. Potential-shift62 was applied for modification of
van der Waals interactions. Finally, trajectories of all simulations
were saved every 10ps for visualisation and analysis using Maestro
and GROMACS tools. MD simulations were validated by comparing
the simulated flexibility profiles with standardised crystallographic
temperature factors (B-factors)63 computed from experimental
data, as well as computing the radius of gyration.

2.6. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE)

Stock solutions of protein and inhibitors were prepared by dissolv-
ing appropriate amount in ultrapure water and DMSO, respect-
ively. The dissolving of protein was followed by sonication,
vortexing and, centrifugation. Protein and solutions of each inhibi-
tor were mixed at different molar ratios as follows: 1:0.25; 1:0.5;
1:0.75; 1:1 and 1:1.25. 4 mL of protein stock solution, relevant vol-
ume of inhibitor stock solution corresponding to each ratio and
water were mixed in 2-ml Eppendorf tube. 10mL of lithium
dodecyl sulfate (4X Bolt, Thermo Fisher Scientific, USA) sample
buffer, 4 mL of reducing agent (10X Bolt) and 26 mL of previously
prepared sample were thoroughly mixed in 2-ml Eppendorf tube,
centrifuged for 1min at 10,621� g and incubated for 10min at
70 �C. Gel electrophoresis procedure was finished after 30min, the
gel was opened and stained in the dye for 1 h using an orbital
shaker, placed into ultrapure Milli-Q water for destaining for 24 h.

2.7. Matrix-assisted laser desorption ionisation-time-of-flight-
mass spectrometry (MALDI-TOF/TOF-MS)

0.5 mL of the mixture prepared for SDS-PAGE measurements for
each inhibitor was spotted to ground steel target (Bruker
Daltonics, Germany) with saturated solution of a-Cyano-4-hydroxy-
cinnamic acid as a matrix using dried droplet technique. Mass
spectra were obtained using MALDI-TOF/TOF-MS (Bruker
Daltonics, Bremen, Germany) equipped with a modified neodym-
ium-doped yttrium aluminum garnet (Nd: YAG) laser operating at
the wavelength of 355 nm and frequency of 2 kHz. Results were
obtained in linear positive mode with the mass range of
15,000–60,000 (m/z) with a laser power of 60% and global
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attenuator offset of 50%. Recorded spectra were smoothed using
weighted adjacent-averaging with periodic boundary condition.

2.8. Fourier-transform infra-red spectroscopic (FTIR)

To register new vibrations that could correspond to a formation
of binding between potential inhibitors and protein, mixture of
protein and each inhibitor stock was prepared with total volume
of 40 mL. Stock solution of CA IX in a quantity of 20 mL, while the
volume of inhibitor stock varied according to the molar ratios and
water was added till the final volume. Prepared samples (2 mL)
were spotted to assay free-membrane card, let to dry and inserted
to Direct Detect Infra-red Spectrometer (Millipore Sigma, USA).

3. Results and discussion

3.1. Reversed-phase liquid chromatography (RP-LC)
measurements

RP-LC was used to obtain (chromatographic) lipophilicity values of
45 sulphonamide ligands. This was achieved by performing two
gradient chromatographic runs: 0–30, and 0–60min for less, as
well as 0–40 to 0–60min for more lipophilic compounds.
Representative chromatographic mixtures of five sulphonamides
separated using RP-LC with short and long gradients are depicted
in Figure 2 and Figure 3. Determined lipophilicity values (referred
to as logKw, as defined in Equation (2)) ranged from 0.9 (weakly
lipophilic) to more than 5 (strongly lipophilic ligands, Table S1).
The results showed that the mixtures were well separated with
good resolution in no more than 32 and 48min for the case of
short and long gradients. The elution order for both cases was as
follows: AZM>C88>C92>C97>C78. These results are, thereby,
within our expectation because AZM has relatively more polar
groups than nonpolar ones. Compound C78, on the other hand, is
much more lipophilic due to the presence of fluorophenyl group.

3.2. Stopped-flow spectrophotometry

A library of 47 ligands tested with the CA-catalysed CO2 activity
assay that have shown an excellent inhibition profile of CA IX
have been utilized in this study. Most of them strongly inhibited
the activity of this isozyme (Ki within the range of 2.8–651.6 nM;
Table S1). It should be pointed out that 21 of the ligands exhib-
ited higher or comparable activity compared to that of acetazola-
mide (Ki¼ 25 nM), one of the most effective CA IX inhibitors
approved for clinical use64. Despite its bulkiness, compound C99
was reported to be the most potent (Ki¼ 4.70 nM), about six times
more potent than AZM. On the other hand, compound C80 was
the least potent (Ki¼ 651.6 nM), being 26 times less potent than
AZM. There was, however, no direct linear correlation between
the reported logKi and logKw values, which is within our expect-
ation. The significant features of this novel library leading to
superior potency to that of AZM were, thereby, elucidated in the
following sections.

3.3. QSPR model development

Upon optimisation of GA hyper-parameters, the model which gave
the best ratio between model complexity and predictive ability
was selected. Said model was comprised of seven molecular
descriptors, and 4 latent variables. As such, it explained 87.30%
variance of X-, and 77.12% of variance of Y-variables. Their respect-
ive testing set MRE values were 10.221 and 7.068% (Figure 4).

Figure 2. Representative mixture of five sulphonamides separated using RP-LC
and a linear gradient from 0 to 95% acetonitrile in the mobile phase in a time
of 0–40min.

Figure 3. Representative mixture of five sulphonamides separated using RP-LC
and a linear gradient from 0 to 95% acetonitrile in the mobile phase in a time
of 0–60min.

Figure 4. Predictive ability of the GA-PLS QSRR model for the training and test-
ing set ligands. Empty hexagons denote log Ki, while empty circles denote logKw.
MRE denoted in the graph represents the sample mean value of MRE for training
and testing ligands. (n¼ 45� 2¼ 90).
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Model has also shown to be statistically significant (Table S2) with
p-values below the significance level of 0.05 for both y-variables.

The QSPR model was further tested using a library of 3497 CA
IX inhibitors for AM1-optimised structures. The library was built
from extensive screening of ChEMBL43 and BindingDB44 databases,
and the CA IX inhibitors were screened based on structural simi-
larity (Figure S1), with leverage values lower than the threshold 0.
727 being retained. The large MRE (of �80%) arises from three
main reasons: (i) the use of the semi-empirical AM1 method for
optimisation instead of the DFT used in building the model, (ii)
inherent empirical nature of the QSPR model, and (iii) several out-
liers (ligands for which the model is not trained for, i.e., not
sulphonamides).

Besides the use of a validation set, its applicability domain was
also defined with three standard deviations of standardised resid-
uals and critical leverage value of 0.727 as warning limits. Most of
the ligands are within the applicability domain (Figure 5) for both
Y-variables. Although there are several structurally distant ligands,
their corresponding logkw and logKi values are very well predicted.
This points to the fact that the developed GA-PLS model can
accurately extrapolate logkw and logKi outside of the applicabil-
ity domain.

Hotelling T2 graph65 (Figure S2) confirms there are no outlying
ligands. Although the graph depicts one possible outlier (outside
of the critical T2 value at the 99% confidence limit), it is expected
that one out of 100 samples will be over it.

Therefore, the model is deemed robust, stable and validated.
As such it was used for numerical inversion. The model consisted
of seven molecular descriptors: (i) IF-80, (ii) B05[O-S], (iii)
SpMin2,Bh(i), (iv) IVDE, (v) G2e, (vi) H6e, (vii) B05[N-Cl].

Multivariate correlation between these X-, and Y-variables was
analyzed using the PLS loading plot (Figure 6) as in the work of
�Zuvela et al.66. Two lines were plotted to go through logkw and
(0,0), as well as logKi and (0,0). The points representing X-variables
were projected onto them. IF-80 is a binary Ghose-Viswanadhan-
Wendoloski anti-inflammatory drug-like index67. It corresponds to
presence or absence of the ligand within a qualifying range (cov-
ering �80% of anti-inflammatory drugs): lipophilicity (expressed as
ALOGP68) in a range of 1.4–4.5, molar refractivity in 59–119,
molecular weight in 212–447 g mol�1, and number of atoms in
24–59. Apart from an obvious relation to lipophilicity, this descrip-
tor is also associated with inhibitory activity of CA IX.

Hypoxia is entangled with inflammation on a cellular and
molecular level wherein it can augment it69. It is not surprising
then that some inhibitors of a hypoxia-inducible enzyme such as
CA IX are classified as anti-inflammatory drugs, and that this
descriptor explains part of the variance of Y-variables. This is evi-
dent from its strong positive correlation with lipophilicity, as it is
far from the origin and in the same quadrant as logkw. (Figure 6).
On the other hand, its strong positive correlation with logKi points
to a decrease in inhibitory activity towards CA IX with the true
value of IF-80.

B05[O-S] and B05[N-Cl] are topological binary descriptors that
correspond to presence or absence of O-S, and N-Cl atom pairs at
every five bonds, respectively. These two descriptors exhibit inter-
mediate positive correlation with logKi, pointing to a decrease in
inhibitory activity with their true value. From a chemical point of
view, placing electronegative substituents, particularly halogen
atoms in the immediate vicinity of each other, leads to a decrease
in binding affinity towards CA IX.

SpMin2,Bh(i) represents the second smallest eigenvalue in the
Burden matrix weighted by ionisation potential. The Burden
matrix70 is a weighted adjacency matrix with rows corresponding

to atoms. The diagonal values of the matrix are atomic properties
(e.g. ionisation potential), while the off-diagonal elements repre-
sent two bonded atoms (values range from 0.1, 0.2, 0.3 to 0.15 for
single, double, triple, and aromatic bonds, respectively; 0.001 val-
ues if the atoms are not bound). Burden70 has observed a strong
positive correlation between the eigenvalues of this matrix with
lipophilicity expressed as logP. This is in accordance with the
strong positive correlation of logkw with SpMin2,Bh(i), observed on
Figure 6 as it is far from the origin and in the same quadrant.
There is no correlation with logKi.

IVDE is a topological descriptor derived from graph theory
based on the partition of vertices according to degree equality71,
and as such is a measure of molecular complexity. IVDE has exhib-
ited a strong negative correlation to logKi, because its projection
on the logKi-(0,0) line is in the opposite quadrant. Increase in IVDE
values results in an increase of inhibitory activity towards CA IX
(decrease of logKi). This points to an observation that more struc-
turally homogenous and less bulky drug candidates more strongly
inhibit CA IX.

Figure 5. Applicability domain of the GA-PLS QSPR model for logKi. Empty hexa-
gons denote logKi, while empty circles denote logkw. (n¼ 45� 2¼ 90).

Figure 6. PLS loading plot. Empty squares denote X-, while empty circle and
hexagon denote Y-variables. Projections to logKw and logKi lines are denoted
using pink and light blue pentagons, respectively.
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G2e (second eigenvalue of the weighted covariance matrix
weighted by Sanderson electronegativity) is a three-dimensional
descriptor belonging to a family of Weighted Holistic Invariant
Molecular descriptors (WHIM) descriptors72. It is a descriptor that
encodes the symmetric spatial distribution of electronegativity
with respect to invariant reference frames. It exhibited a medium
negative correlation with lipophilicity. This means that symmetric
distribution of electronegative atoms within the structure of the
inhibitors leads to a decrease in their lipophilicity.

H6e represents the H-autocorrelation at a distance of six bonds
weighted by Sanderson electronegativity73. It is based on con-
structing a leverage matrix (H) from three-dimensional molecular
geometry for i-j atom pairs at a defined topological distance.
Within the H-matrix, only atoms j at a distance of dij bonds have a
chance to interact with the i-th atom73. Its elements are multiplied
by electronegativity values of individual atoms. This descriptor,
thereby, encodes similar structural information as B05[N-Cl], and
B05[O-S] descriptors, and it exhibits almost identical multivariate
correlation towards logKi and logkw, only of a slightly
higher magnitude.

3.4. Inverse QSPR

The developed and validated GA-PLS QSPR model was inverted
through numerical optimisation using GA to minimise Equation
(7). Since three molecular descriptors were binary/integer varia-
bles, mixed integer version of GA was used. Such GA has limita-
tions on functions and hyper-parameters, so binary tournament
selection function, adaptive feasible mutation function with a rate
of 0.2, and a scattered cross-over function with a fraction of 0.8
were used. Critical DModX (a¼ 0.05) for the first constraint was
1.996, while critical Hotelling T2 (a¼ 0.05) value for the second
constraint was 11.923.

Inversion of the QSPR model resulted in values of molecular
descriptors quite close to the reference values (Table 1).

The calculated value of Euclidean distance between the solu-
tion and the reference ligand was 0.044 (Table 2). The ligands
were ranked based on Euclidean distance from the solution
(Table 3), and molecular docking was used for validation. The dis-
crepancy between the ranking obtained through docking and the
ranking obtained through inverse QSPR is reasonable, even
though the compound C101 is not #1 in the final ranking. The dis-
crepancy can be attributed to the empirical nature of both the
developed QSPR model and the scoring function used for docking.
Employing molecular docking for analysis of protein-ligand inter-
actions accounts only for binding, and strong binding may not
necessarily correspond to strong inhibitory activity. The trend in
the final ranking is retained when compared to the inverse
QSPR one.

Based on simulated ligands using randomly generated molecu-
lar descriptors, it was found that the first round of screening for
up to three million ligands is performed in real-time (Figure S3).

3.5. Sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE)

SDS-PAGE allows for the observation of molecular masses of CA IX
and its complexes. Two bands are present for the control sample
(recombinant CA IX) in the electropherograms (Figure S3). The first
band appears at the range of 44–45 kDa and the second at the
range of 88–90 kDa. This is a consequence of the dimerisation pro-
cess of CA IX in solution. Both the recombinant and the native
form of CA IX exist as a mixture of monomeric and dimeric spe-
cies in solution74. In electrophoretic analysis of CA IX-sulphona-
mide complexes, two bands were also observed for each
concentration of inhibitors. However, with SDS-PAGE we were
unable to able to obtain validated differences between points
which represent different inhibitor concentrations.

3.6. Matrix-assisted laser desorption ionisation-time-of-flight-
mass spectrometry (MALDI-TOF/TOF-MS)

For precise determination of molecular mass of CA IX and CA
IX–inhibitor complexes, MALDI-TOF/TOF-MS was used. The meas-
ured molecular masses of recombinant CA IX (control) were
44482 ± 1Da. Single-ionised [M-H]þ and double ionised [M-H]2þ

CA IX and CA IX-inhibitor signals were registered confirming the
dimerisation process. Unfortunately, we were unable to register
resolved MALDI spectra for CA IX-C101, -C105, -C106, and -AZM,
due to suppression of CA IX with sorbed inhibitors. MALDI analysis

Table 2. Solution of the PLS inversion and its distance to the molecular descrip-
tor values of the reference ligand.

IF-80 B05[O-S] SpMin2,Bh(i) IVDE G2e H6e B05[N–Cl] Dist(X)

X 0 0 2.069 1.841 0.151 0.977 0 n.a.
X* 0 0 2.082 1.811 0.173 0.997 0 0.044
DX 0 0 0.013 0.030 0.022 0.020 0 n.a.

The solution of the PLS inversion is denoted by X*. All the abbreviations
explained in the main text and/or Supporting Information.

Table 3. Final ranking after validation through molecular docking.

Ligand ID Dist(X) Inverse QSPR rankinga IFD Score/kcal mol–1 Validation ranking Final rankingb

C101 0.044 1 –504.11 6 4
C108 0.044 2 –503.69 7 5
A1279 0.081 3 –495.03 12 8
A0504 0.097 4 –496.64 9 7
C102 0.099 5 –505.78 1 3
A0277 0.100 6 –503.22 8 7
C97 0.110 7 –504.76 4 6
A0337 0.115 8 –493.14 14 11
A0456 0.115 9 –504.90 3 6
C106 0.149 11 (26) –505.40 2 7
C105 0.340 12 (233) –504.29 5 9
C75 0.429 13 (315) –493.66 13 13
C89 0.982 14 (541) –495.48 11 13
aThe number in parentheses represents ranking if all the library ligands with h* < 0.727 are considered, h*
refers to critical leverage. (Table S4).
bFinal ranking represents the average between the inverse QSPR ranking and ranking obtained through
molecular docking.
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allowed for the differentiation of molecular masses between
recombinant CA IX and its complexes. For instance, MALDI spectra
point to the binding of one molecule of inhibitor C75, while two
molecules of C84 inhibitor bind to CA IX (Figure S4). In case of
the CA IX-C75 complex, one molecule binds to the active site of
CA IX according to a well-known stoichiometric mechanism75. For
the CA IX-C84 complex, one molecule of inhibitor is bound to the
active site, while the second to a new binding site within the
enzyme due to structure relaxation because of the sorption pro-
cess taking place in solution.

In turn, it was shown that the structure of the inhibitors also
has influence on the binding process. The influence of the sec-
ondary binding site on the inhibitory activity of the ligands has
yet to be explored. Furthermore, due to the nature of the MALDI
process (i.e., it is induced by laser), only strong molecular binding
of inhibitors to the protein is registered76. The appearance of a
second binding site could be an artefact of the analysis, due to
the laser-induced binding mechanism. Weak hydrophilic/hydro-
phobic interactions can be observed using spectroscopic methods.

On the other hand, the drastic decrease in intensity for CA IX-
inhibitor complexes when compared to the control points to sig-
nal suppression caused by sorption of the inhibitors themselves
onto the enzyme, as in the case of C101, C105, C106, and AZM.
Moreover, from the MALDI spectra (Figure S4) it can be observed
that with the increase of protein-inhibitor molecular ratio, the
maximum masses were reached mostly at the ratio 1:0.5. This phe-
nomenon is a consequence of protein surface saturation by inhibi-
tor molecules and establishment of the CA IX–inhibitors diffusion
equilibrium77. It is also worth to point out that the larger ratios
inhibitor: CA IX caused unstable bio-colloid systems76. Contrary to
inhibitors 75 and 76, differences in masses of CA IX-inhibitor 80
complexes and control sample were too small to be considered
validated. This was due to possible creation of sodium and/or
water adducts.

3.7. Fourier-transform infra-red spectroscopic (FTIR)

The spectroscopic analysis in the infra-red range has confirmed
interactions of all the inhibitors with the protein molecules.
Changes in bands originating from amide I and II occur in case of
all inhibitors (Figure S5) and indicate sorption processes onto the
protein in solution. This sorption was caused by interactions of dif-
ferent nature between active functional groups of CA IX and
inhibitors. Consequently, the protein molecules underwent
relaxation processes that resulted in shifting and intensity change
of amide bands. For complexes with acetazolamide and C106
(Figure S5), FTIR spectra exhibit shifting from 1443 to 1441 and
1442 cm�1, 1545 to 1542 and 1543 cm�1, 1660 to 1658 and
1659 cm�1. However, for concentrations 1 and 2, for the second
vibration shifting from 1443 to 1444 cm�1 has been observed.
New vibrations have been detected for all concentrations at 1631,
1632, 1633 and 1634 cm�1 (due to C¼O and C¼N stretching for
Amide I band, Arginine residue)78.

In case of CA IX-76 complex (Figure S5), there is shifting of
wavenumbers: 1374 to 1375, 1441 to 1442 cm�1 as well as shifting
to lower frequencies from 1545 to 1543, 1660 to 1659 for all 5
inhibitor concentrations, 1738 to 1737 for only the second and
fifth. In other words, for the second vibration (CN/CH group of
Proline)78 the shifting to higher frequency was characteristic for all
concentrations, while the opposite trend was observed for vibra-
tion second (N-H of Amide II band) and fifth (C¼O of Amide
I band).

Shifting to lower frequencies only for some concentrations
(2, 5) was observed for the sixth vibration (pointing to C¼O of
Asparagine or Glutamine)78. These phenomena can be explained
by hydrogen bonding, since the strength of original O-H bond is
weakened when it becomes part of an O-H-N bond, as a result of
interaction with functional groups of inhibitor 76. Moreover, spe-
cific shifting of band from 1545 to 1542 cm�1 (N-H of Amide II
band) (e.g. CA IX – inhibitor 101, Figure 7) has shown hydrogen
interaction between the amine and hydroxyl group of protein and
inhibitors.78 For inhibitor 101, interactions with Arginine which
resulted in C¼N stretching of the Amide I band were a conse-
quence of binding and relaxation processes.

Analysis of the FTIR spectra points to the fact that sorption of
all inhibitors (for particular concentrations) on the surface of pro-
tein was caused by hydrogen bonding between amine and
hydroxyl groups of CA IX and inhibitors as well as hydrophobic
interactions between non-polar groups of inhibitor and aromatic
amino acids of CA IX.

3.8. Molecular docking and MD simulations

Molecular docking studies resulted in an (alternative) ranking to
validate the inverse QSPR. For that purpose, standard Induced Fit
Docking (IFD) procedure was used, utilising the IFDScore metric.
Interaction analysis of the test ligands was performed for the top
docking poses (Figure 8). For ligands C75, C76, C84, C105, and
C106, one of the oxygen atoms of the sulphonamide moiety
formed hydrogen bonds with backbone nitrogen atoms of
THR200 and THR201, which could be perceived as oxyanion hole.
The benzene ring of the benzene-sulphonamide moiety for the
first three ligands, upon superposition, was retained faithfully.

For ligand C89, the hydrogen bond between oxygen atom of
sulphonamide moiety and backbone nitrogen atom of THR200
was also predicted, but the hydrogen bond with THR201 was
formed with the nitrogen of pyridine ring of C89. For ligand C101,
the sulphonamide whose nitrogen was bound to zinc formed
hydrogen bond with backbone nitrogen atom of THR200, and the
secondary sulphonamide formed hydrogen bond with amido moi-
ety of GLN71 sidechain. For ligand C105, halogen bond between
the chlorine atom of the ligand and the nitrogen backbone atom
of VAL130 was observed. For ligand C106, the secondary sul-
phonamide moiety formed hydrogen bond with amido moiety
GLN92 sidechain. Upon docking, a final ranking was obtained

Figure 7. FTIR spectra of recombinant CA IX (control) and its complexes with the
ligand C101 in 5 different concentrations.
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(Table 3). Although there are discrepancies between the two rank-
ings, they can be attributed to the error in the QSPR model, and
the error of the scoring function used for molecular docking.

Large-scale molecular dynamics simulations were performed in
order to confirm the stability of the docked structures. In this
study, 1 ls long simulations were performed on CA IX complexes
involving AZM, C75, C76, C89, and C101 ligands.

Figure 9 depicts an energy minimised, equilibrated structure of
CA IX-C101 complex after 500 ns of production MD simulation. It
can be observed that the tetrahedral coordination between
the zinc, three histidine residues and the ligand is conserved.
Root mean square deviation (RMSD) was used as a measure of
protein(-ligand) stability and convergence, with reference to C-a
atoms of the respective energy-minimized protein-ligand structure
It was observed that the RMSD values of C-a atoms in CA IX pro-
tein, in complex with AZM, C75, and C101 ligands, varied within
range of 0.10–0.15 nm, whereas that with respect to CA IX-C76
complex varied within range of 0.15–0.20 nm.

Similar trend was also observed in CA IX-C89 complex with
RMSD range of 0.15–0.20 nm for the first 500 ns of the simulation,
then the value went up to a range of 0.35–0.40 nm for the rest of

the simulation. To further examine the stability of the zinc pros-
thetic group in the active site, the RMSD values of this group
upon least square fit of the C-a atoms were calculated as well.

The RMSD values varied within 0.10–0.15 nm for complexes
involving AZM and C75 ligands, whereas for CA IX-C76 and C101
complexes, the RMSD value ranges were 0.20–0.25 nm and
0.35–0.40 nm, respectively. Similar trend to that in RMSD values of
C-a atoms in CA IX-C89 complex was observed in RMSD values of
the prosthetic group, where the values of the RMSD of the latter
fell within range of 0.10–0.15 nm for the first 500 ns, then
increased to 0.20–0.25 nm for the rest of the simulation. Thus,
these results confirmed the stability of the simulations.

The simulations were further validated by comparing the root
mean square fluctuation (RMSF), thereby standard deviation, trend
to the experimental crystallographic temperature factor profile
(B-values). It was found that the RMSF trend from the simulations

Figure 8. Superposition of binding poses of C75 (orange), C76 (faded teal), and C84 (salmon pink) against CA IX receptor (purple). Yellow dashed lines represent
hydrogen bonds.

Figure 9. Representative snapshot of the structure of carbonic anhydrase IX
(5FL4) in complex with C101 after 500 ns of MD simulation. Protein: green ribbon,
zinc: silver sphere, C101: blue carbons, and 3 histidine residues: grey carbons.
Magenta dashed lines represent the Zn-N covalent coordination bonds. Yellow
dashed bonds represent hydrogen bonds.

Figure 10. Root mean square fluctuations (RMSF) of studied CA IX complexes
with AZM, C75, C76, C89, and C01 ligands. The reference values were calculated
based on the crystallographic temperature factor (B-values)63 of PDB structure
5FL4.48 The light blue, pink, and white regions demarcated by the dashed blue
and pink vertical lines correspond to b-sheet, a-helix, and loop secondary struc-
tures, respectively. The solid blue vertical lines correspond to the residues consti-
tuting the zinc prosthetic group: His 94, 96, and 119.
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follows the experimental one quite well (Figure 10). Further treat-
ment of average structure examination, however, was taken for
the case of CA IX – C101 and CA IX – C89 complex. Observing the
dynamics of prosthetic group of the latter complex with respect
to the average structure instead, the RMSD values were stable at
around 0.10 nm upon fitting of C-a atoms.

For the former complex, the RMSD values of the zinc prosthetic
group after fitting with respect to the C-a atoms and the average
structure were stable at around 0.40 nm and 0.05–0.10 nm,
respectively. This implies that the ligand was stable throughout
the 1 ls long simulation, but it differed from the energy-
minimized structure.

Furthermore, the hydrogen bond patterns formed between the
protein active site and the studied ligands were examined, as
shown in Table 4. In this paper, the hydrogen bond is defined as
short-range contact between -OH/-NH donor moieties and O/N
acceptor atoms where the distance cutoff between the two elec-
tronegative atoms is 0.35 nm, and the hydrogen-donor-acceptor
angle cutoff is 30�. These distance and angle plots pertaining to
the hydrogen bond can be found in Supporting Information.

From Table 4, two kinds of relatively prominent hydrogen bonds
in commonwere observed to engage THR200 (N or OG1) and THR201
(N). This agreed with the fact that THR200 acts as “doorkeeper resi-
due”79, and this also agreed with the docking results mentioned ear-
lier. In addition, hydrogen bond engaging GLN71 in CA IX – C101
complexwhichwas predicted by docking results was also reproduced
in theMD analysis (59% occurrence, Table 4).

4. Conclusions

In conclusion, a novel synergistic target-based approach for drug
discovery combining experiments and high-throughput computing
in silico techniques has been presented. The methodology is flex-
ible, as it can be used for minimisation, and maximisation of the
desired property, or with respect to a structure of an ideal drug
candidate. The process begins by (i) performing experiments to
determine the desired drug properties. It is followed by (ii) con-
struction of a multivariate QSPR model. The developed model is
(iii) inverted through mathematical optimisation and the solution
is screened against a database of drug candidates (1st screening).
In the meantime, (iv) molecular docking is performed to rank the
compounds according to their binding energies (2nd screening). To
test the stability of the structures of potential drug candidates, (v)
molecular dynamics (MD) simulations are performed complemented
with biophysical experiments. Finally, (vi) their respective drug prop-
erties are measured and if a compound is deemed acceptable, it pro-
ceeds to further testing. Otherwise, it becomes a new initial
compound for QSPRmodelling and the process repeats.

Since synthesising the candidate ligands is time-consuming, as
a proof-of-concept the methodology was tested with respect to
reference drug property values (those of ligand C101) with a

strong inhibitory activity towards CA IX, as well as high
lipophilicity.

A solution of the QSPR model inversion had values very close
to the molecular descriptor values of C101. Based on the inverse
QSPR results the ligands were ranked, which was validated
through molecular docking. The first round of screening (after
inverse QSPR) was performed in real-time (<1 s). Further testing of
the QSPR model was realized using an external set with 3497 CA
IX inhibitors. Furthermore, the developed QSPR model itself can
also be used as a rapid and accurate tool for prediction of
sulphonamides’ lipophilicity and activity towards CA IX.

To test the stability of the docked structures, MD simulations
were performed. The MD study agreed with the claim that hydro-
gen bond formation with THR200 is essential towards binding
affinity of the small-molecule inhibitors. Results of MD simulations
were complemented with biophysical experiments.

Use of the fully bonded model for large-scale MD simulations
has shown to be useful for qualitative and fragment-based semi-
quantitative analysis of non-covalent interactions between sul-
phonamide inhibitors and CA IX. As such, it can be applied to
other CA isozymes and their complexes which is particularly prom-
ising for the development of selective inhibitors.
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