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Mechanical ventilation is extensively adopted in general anesthesia and respiratory failure
management, but it can also induce ventilator-induced lung injury (VILI). Therefore, it is of
great urgency to explore the mechanisms involved in the VILI pathogenesis, which might
contribute to its future prevention and treatment. Four microarray datasets from the GEO
database were selected in our investigation, and were subjected to the Weighted Gene
Co-Expression Network Analysis (WGCNA) to identify the VILI-correlated gene modules.
The limma package in R software was used to identify the differentially expressed genes
(DEGs) between the VILI and control groups. WGCNA was constructed by merging the
GSE9314, GSE9368, GSE11434 and GSE11662 datasets. A total of 49 co-expression net-
work modules were determined as associated with VILI. The intersected genes between hub
genes screened from DEGs for VILI and those identified using WGCNA were as follows: Tlr2,
Hmox1, Serpine1, Mmp9, Il6, Il1b, Ptgs2, Fos and Atf3, which were determined to be key
genes for VILI. Those key genes were validated by GSE86229 and quantitative PCR (qPCR)
experiment to have significantly statistical difference in their expression between the VILI
and control groups. In a nutshell, nine key genes with expression differences in VILI were
screened by WGCNA by integrating multiple datasets.

Background
Mechanical ventilation is a therapeutic measure usually taken in dealing with general anesthesia and res-
piratory failure [1,2]. However, it has been increasingly manifested that using mechanical ventilation in
respiratory care has some tradeoffs [3]. Other than providing respiratory support, it could also induce
or aggravate lung injuries, known as Ventilator-Induced Lung Injury (VILI) [4]. Gajic et al. found that
within 3 days after being given at least 48-h mechanical ventilation, 25% of patients originally diagnosed
as having no acute lung injury (ALI) developed symptoms of ALI [5]; when mechanical ventilation lasted
for more than 2 weeks, nearly half of the patients showed pulmonary complications associated with me-
chanical ventilation [6]. Therefore, there is a pressing need to find means to effectively prevent and treat
VILI.

A further study on the mechanisms of VILI revealed that the main cause of VILI is mechanical injury
[4]. The current practice in the VILI prevention is the adoption of low tidal volume ventilation, whose
efficacy is limited and dubious [7]. Apart from being caused by mechanical impairment, there is another
type of lung injury induced by the massive release of inflammatory factors in the lung, known as biological
injury [8,9]. It is currently uncertain about the pathological mechanism of such injury, and its effective
intervening measures are wanting [10]. And if key genes involved in such injury are identified, it will
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greatly contribute to better understanding of molecular mechanism of VILI and help to take an early interference in
such injury.

The molecular and genetic basis of VILI has been investigated comprehensively by a large number of studies, and it
has been found that gene activation plays an important role in the pathophysiological process of VILI [11]. Bioinfor-
matics analysis, a new approach to studying gene function, has also been used to analyze the molecular mechanisms of
VILI, but mainly in terms of differentially expressed genes (DEGs). Dolinay et al. analyzed the gene expression profiles
in a VILI mouse model and validated five up-regulated genes [12]. Ma et al. investigated VILI-associated genes and
validated the expression of 15 randomly selected genes [13]. In another study, Xia et al. revealed that non-canonical
WNT signaling could participate in the VILI development [14]. Although the significance of such studies is obvious,
limitations imposed by factors such as sequencing costs lead to inclusion of small sample sizes in a single dataset in
those studies. Therefore, integrating the data already present in the GEO database and expanding the sample size for
analysis are necessary to make the best use of these resources. To our best knowledge, there has been no studies on
the VILI progression using the weighted gene co-expression network analysis (WGCNA) and hub genes associated
with VILI.

In the present study, we derived microarray data of gene expression profiles of mouse lung tissues from the GEO
database, and integrated four expression profiling datasets to construct expression network for WGCNA, to explore
the dynamic process of VILI pathogenesis and development. The patterns of expression profiles in the VILI and con-
trol groups and the differences between these profiles were comprehensively analyzed by using WGCNA and other
specialized bioinformatics analysis tools. The results concluded in the present study could be conducive to compre-
hensively understanding the VILI pathogenesis, pinpointing the molecular mechanism involved in the pathological
process and providing insights into novel treatment and therapeutic targets for drugs.

Materials and methods
Gene expression data acquisition
Gene Expression Omnibus (GEO) is currently the most comprehensive public gene expression database that incor-
porates high-throughput sequencing, gene expression microarray, and other genomics data. In the present study,
series matrix files of datasets, including GSE9314, GSE9368, GSE11434 and GSE11662, were exported from the
GEO database to construct WGCNA. These four datasets were all based on the GPL1261 platform (Array type:
[Mouse430 2] Affymetrix Mouse Genome 430 2.0 Array; Experiment type: expression profiling by array; organ-
ism: Mus musculus). GSE9314 included eight transcriptome datasets for the VILI (n=4) and control (n=4) groups;
GSE9368 included six transcriptome datasets for the VILI (n=3) and control (n=3) groups, GSE11434 included
ten transcriptome datasets for the VILI (n=5) and control (n=5) groups, while GSE11662 comprised six transcrip-
tome datasets for the VILI (n=3) and control (n=3) groups. GSE86229 was used to validate the result of WGCNA.
GSE86229 was based on GPL6246 platform (Array type: [MoGene-1 0-st] Affymetrix Mouse Genome 1.0 ST Ar-
ray; Experiment type: expression profiling by array; organism: Mus musculus). The downloaded microarrays were
converted into gene symbols through annotations in the platform annotation files.

WGCNA
The WGCNA package for R (ver. 3.6.2) was used to construct weighted gene co-expression network, identify the
co-expressed gene modules, explore the correlation between the gene network and biological traits, and investigate
hub genes in the network. At first, the combined matrix files were transposed to screen out genes whose expression
variance was within the first quartile, and the correlation matrix was constructed subsequently. The Pearson correla-
tion coefficient between genes was then calculated, and the filtering threshold was applied to determine whether the
genes had similar expression profiles. Then the weighted adjacency matrix was converted into topological overlap
matrix (TOM) to evaluate the network connectivity, and the hierarchical clustering method was used to construct
clustering dendrograms of TOM. Nodes of the dendrogram and colors stand for different corresponding gene mod-
ules. Based on the weighted correlation coefficient, genes were clustered into different modules according to their
expression patterns, i.e. genes with similar expression patterns were grouped into the same module. After genes were
clustered, heatmap was plotted to visualize and calculate the intermodule correlation. The correlation between mod-
ules and clinical traits was further evaluated to determine the modules associated with VILI for analysis.

Functional enrichment analysis of gene modules
The intramodular genes most significantly correlated with VILI from WGCNA results were loaded into the Metascape
database for enrichment analysis. Metascape is an effective tool designed to provide comprehensive gene annotations
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and analysis resources [15]. GO enrichment analysis and pathway enrichment analysis of the acquired genes were
performed with the screening condition set at P<0.01 for statistical significance, the min overlap set at 3 and the min
enrichment set at 1.5.

Identification of DEGs
Differential expression analysis was performed based on the merged expression profiling data, and DEGs were iden-
tified using the limma package for R, under the condition of adj P<0.05 and |log2FC|>1. The identified DEGs were
used for volcano plotting.

Protein–protein interaction analysis and hub gene identification
Genes at the center of the regulatory network are defined as hub genes. To identify the hub genes in the VILI-correlated
modules, we constructed a protein–protein interaction (PPI) network, which is a gene-relationship graph based on
the information of each intramodular gene. Then Cytoscape was used to visualize the network, and the cytohubba
plug-in was used to screen out hub genes. The value of each gene was computed using the five topological algorithms
(Betweenness, Closeness, Degree, MNC and Stress), and the top 20 genes were intersected to identify the hub genes
in DEGs. The MCODE plug-in was used to detect significant subnetworks in the PPI network.

Animal grouping and VILI model construction
A total of ten healthy male ICR mices were purchased from Shanghai JSJ-Lab, and randomized into two groups: the
VILI group and control group. Animal care and all experimental procedures were conducted in the Tongji University,
School of Medicine (Shanghai, China) and according to the guidelines for the care and use of experimental animals of
Tongji University (Shanghai, China). The animal protocols were approved by the Animal Ethics Committee of Tongji
University, School of Medicine (Shanghai, China). Mices were abstained from food 4 h before VILI model construc-
tion, and were anesthetized via intraperitoneal injection of 75 mg/kg sodium pentobarbital (MERCK, Germany).
Then mice were anesthetized and subjected to tracheal intubation. The mechanical ventilation parameters were set
at: tidal volume of 30 ml/kg, 65 breaths/min and fraction of inspired oxygen of 0.21. The ventilation process lasted
for 4 h. Nonmechanically ventilated mice were used as controls.

RNA extraction and quantitative PCR
At the end of the experiment, all animals were killed via sodium pentobarbital at a dose of 150 mg/kg and lung tissues
were isolated. TRIzol reagent (Takara, Japan) was used to extract the total RNA from mice lung tissues. cDNA was
reverse-transcribed from 1 μg equivalent RNA using Reverse Transcription Kit (Takara, Japan). The SYBR Green
method (Qiagen, Germany) was used to perform quantitative PCR (qPCR). Then the cDNA was used as templates to
perform PCR for 40 cycles under the following conditions: at 95◦C for 20 s of initial denaturation, at 95◦C for 1 s of de-
naturation and at 60◦C for 20 s of annealing. The following primers for cDNA sequences were used in PCR: GAPDH
forward, 5′-AGGTCGGTGTGAACGGATTTG-3′ and reverse, 5′-TGTAGACCATGTAGTTGAGGTCA-3′; Activat-
ing Transcription Factor 3 (ATF3) forward, 5′-GAGGATTTTGCTAACCTGACACC-3′ and reverse, 5′-TTGACG
GTAACTGACTCCAGC-3′; FOS forward, 5′-CGGGTTTCAACGCCGACTA-3′ and reverse, 5′-TTGGCACTAG
AGACGGACAGA-3′; Heme oxygenase 1 (HMOX1) forward, 5′- AAGCCGAGAATGCTGAGTTCA-3′ and reverse,
5′- GCCGTGTAGATATGGTACAAGGA-3′; IL-6 forward, 5′-TAGTCCTTCCTACCCCAATTTCC-3′ and reverse,
5′-TTGGTCCTTAGCCACTCCTTC-3′; IL-1B forward, 5′-GCAACTGTTCCTGAACTCAACT-3′ and reverse, 5′-
ATCTTTTGGGGTCCGTCAACT-3′; matrix metalloproteinase (MMP) 9 (MMP9) forward, 5′-CTGGACAGCC
AGACACTAAAG-3′ and reverse, 5′-CTCGCGGCAAGTCTTCAGAG-3′; prostaglandin-endoperoxide synthase 2
(PTGS2) forward, 5′-TTCAACACACTCTATCACTGGC-3′ and reverse, 5′-AGAAGCGTTTGCGGTACTCAT-3′;
SERPINE1 forward, 5′-TTCAGCCCTTGCTTGCCTC-3′ and reverse, 5′-ACACTTTTACTCCGAAGTCGGT-3′;
toll-like receptor (TLR) 2 (TLR2) forward, 5′-ATGGCATGGCTTACACCACC-3′ and reverse, 5′-GAGGCCAATT
TTGTCTCCACA-3′. The amplification procedures were conducted with a QuantStudio 7 flex real-time PCR system.
The normalized mRNA expressions were expressed as ratios of Tlr2, Hmox1, Serpine1, Mmp9, Il6, Il1b, Ptgs2, Fos
and Atf3 respectively against the reference gene Gapdh. The cycle threshold (CT) values were read through quantita-
tive fluorescence PCR to determine the fold change of expression of each target gene against the control.

Statistical analysis
R (version 3.6.2) was utilized for statistical analysis and plotting in the present study. All statistical tests were two-sided
and met the condition of P<0.05.
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Results
Data preprocessing before analysis
GSE datasets were downloaded, and probe IDs were converted into gene symbols in the PERL. Probes matching mul-
tiple genes were removed from the datasets. And in the cases of multiple probes for one gene, the average expression
value of probes was taken as the gene expression level. The expression microarray data from the four datasets were
merged in the PERL, and matrix files containing 20814 genes were obtained subsequently. When merging the data,
we only preserved the expressions of genes that were detected in all microarrays. If a gene was detected only in the
microarray platform where a particular dataset was located, but not present in others, then its data were excluded, and
no further analysis would be performed on it. ComBat function in the sva package was utilized in R to adjust for batch
effect. Final expression matrix was obtained after batch correction, which was composed of the mRNA expression
data, and was directly used in subsequent analyses.

Power law (β) selection and scale-free network construction
No outliers were detected in the expression matrix consisting of the expressions of 5203 genes, whose expression
variance fell within the first quartile, in samples of the control and VILI groups. Pearson correlation coefficient was
used to calculate the correlation coefficient of expression between genes to construct the correlation matrix. And
then the power value β was calculated and selected; that is, the probability p(k) of nodes with connectivity k was
fitted to lg(p(k)), and when the fitting index reached 0.9, the β value, which maximized the average connectivity (the
mean value of k), was selected to perform a power-law operation to convert the correlation matrix into adjacency
matrix. The β values were set between 1 and 20, respectively, to fit with the scale-free network, and to calculate the
corresponding fitting index and average connectivity for different β values, as shown in Figure 1A. When the β value
was at 8, the highest average connectivity in the network could be achieved with a fitting index > 0.9. As shown in
Figure 1B, the network met the patten of a scale-free network when the β value reached 8. Therefore, in the present
study, the β value of 8 was adopted in constructing the scale-free network, which was successfully constructed after
converting the correlation matrix into adjacency matrix.

Construction of TOM and identification of co-expression modules
The adjacency matrix was converted into TOM based on the topological overlap, and the clustering method was
used to cluster genes with high topological overlap to construct a clustering dendrogram, which was then pruned
using the dynamic tree cut method to further classify the modules, so that genes with high topological overlap were
clustered into the same module. The number of initially classified modules was relatively larger (Figure 2A), indicating
that some genes with high similarity were not clustered together. Considering excessive module number would be
difficult for subsequent analysis, the module eigengenes in each module were subjected to clustering analysis, and the
similarity threshold was set to 0.25 to cluster similar modules into one (Figure 2B).

Based on the co-expression correlation, the total 5203 genes were clustered into 49 gene co-expression modules,
which had different numbers of genes, with the largest one containing 701 genes and the smallest containing 33
genes (Figure 2C). It was shown from the result that the darkolivegreen module was the largest, including 701 genes,
which were represented as a large branch in the dendrogram; this module had small topological variations between
the intramodular genes (closer in distance between coordinates), but had much larger topological variations from the
genes of other modules on different branches; moreover, merged colors indicated that the darkolivegreen module had
great gene consistency, with few genes of other module mixed in it. Other modules were all of similar module size,
each branch had a clear outline, and modules with the same color showed excellent gene consistency, all suggesting
that construction of scale-free networks, construction of TOM and module classification results were all reliable. The
following section will further validate the effectiveness and reliability of the module construction.

Validation of module construction, module–trait association analysis and
trait-associated modules identification
The modules were constructed based on the topological overlap, and intramodular genes should have high correlation
with genes within the module and low correlation with other extramodular genes; however, given that a total of 5203
genes were classified, and soft-threshold power was selected to distinguish between modules instead of hard threshold,
it was likely that the intramodular genes were correlated with extramodular genes. The genes with the highest gene
significance (GS) and module membership (MM) in the module were defined as module eigengenes, and heatmap
of module eigengenes was plotted according to the significance of correlations between them defined by Pearson
correlation coefficient, as shown in Figure 3A. It can be seen in Figure 3A that the red blocks were mainly concentrated
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Figure 1. Scale-free network construction in the co-expression network

(A) Scale independence and mean connectivity analysis. (B) Analysis of connectivity distribution and scale-free topology when β

= 8.
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Figure 2. Module identification with WGCNA

(A) Primary results of clustering tree construction and module identification. (B) Merging of modules with similar expression profiles.

(C) Network dendrogram based on differential measurement and identified module colors. In the dendrogram of (A) and (C), each

node represents a gene, and the vertical axis denotes the degree of topological differences between genes, i.e. a larger distance

between vertical coordinates indicates a larger topological difference, meaning a weaker co-expression correlation; the horizontal

axes represent different modules, with each color denoting a module and the width of color bar indicating the gene number in the

module; Dynamic Tree Cut represents modules initially obtained through average-linkage hierarchical clustering. Merged colors

denote the reconstructed modules after merging similar modules.
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Figure 3. Correlation of module eigengenes and module–trait correlation

(A) Heatmap for module eigengenes. The correlation of module eigengenes increases gradually with color changing from blue to

red. (B) Heatmap for the correlation between modules and VILI traits. The horizontal axes represent different modules. The color

of each cell indicates the corresponding module–trait correlation, a deeper red color suggesting stronger positive correlation and

a deeper blue color suggesting stronger negative correlation. The value in each cell denotes the correlation score, and the value in

the bracket below denotes the significance (P-value). (C) Module significance associated with VILI.
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Figure 4. The analysis of the module most related to VILI

The heatmap and histogram of gene expression patterns in the darkolivegreen (A) and blue (B) modules. The scatter plot of module

eigengenes in the darkolivegreen (C) and blue (D) modules.

on the upper left and lower right diagonals, and the other regions were dominated by blue blocks, indicating that the
module eigengenes in different modules were not highly correlated with each other (i.e., the module eigengenes could
serve as representative of the profiles of the corresponding module genes) and there was no significant co-expression
correlation with the module eigengenes of other modules, reflecting strong independence between different modules.
It was revealed that the module classification was accurate and reliable, and could be used in further single module
analysis.

Based on the constructed modules, the correlation between the module and traits was analyzed and its significance
was calculated; the calculated results were used to plot the module–trait relationship heatmap (Figure 3B). As shown in
Figure 3B, the darkolivegreen and blue modules exhibited significant association with VILI traits, indicating their role
in the pathogenesis and progression of VILI. As shown in Figure 3C, the absolute values of GS in the darkolivegreen
and blue modules were the highest among all modules, further confirming the significant correlation between the
two modules and VILI.

Gene analysis in trait-associated modules
Heatmap for the darkolivegreen and blue modules is shown in Figure 4A–D. The darkolivegreen module contained
701 genes, and had a correlation coefficient of 0.87 with VILI traits, with a significance of less than 0.01; the blue
module included 505 genes, and had a correlation coefficient of −0.79 with VILI traits, with a significance of less
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Figure 5. Enrichment analysis of the module most related to VILI

Heatmap of enriched terms in the darkolivegreen (A) and blue (B) modules. Network of enriched terms colored by P-value in the

darkolivegreen (C) and blue (D) modules.

than 0.01. Based on the condition of GS > 0.2 and MM > 0.8, 223 hub genes and 219 hub genes were identified in
the darkolivegreen module and blue module, respectively.

Functional enrichment analysis of VILI-correlated modules
In order to determine the biological functions and signaling pathways for the two modules, the Metascape database
was used for annotation and visualization. The result showed that the darkolivegreen module was primarily enriched
for the inflammatory response and regulation of innate immune response (Figure 5A,B). The blue module was also
enriched for immune-related functions, suggesting that the immune response plays an important role in VILI pathol-
ogy (Figure 5C,D).

DEGs identification
By applying the eBayes function in the limma package, differential expression analysis was performed based on the
Bayes approach in R. The logFC was set at |log2 FC| > 1, and the significance threshold was set at adj P<0.05. A total
of 148 genes were up-regulated and 23 were down-regulated; the differential expression volcano plot of 171 genes was
constructed (Figure 6A).

PPI
The corresponding proteins for the 171 DEGs between the control and VILI groups were selected for PPI analysis,
using the STRING database and its relevant analysis tools. The interaction score threshold was set at 0.4 for this anal-
ysis, i.e. an overall score of less than 0.4 was considered as indicative of no interaction. Proteins meeting this scoring
criterion were selected and their interactions were visualized by Cytoscape. Proteins independent from the interac-
tion network were removed, and those, forming more and stronger interactions pairs with others, were preserved for
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Figure 6. The analysis of DEGs in VILI

(A) Volcano plot representing VILI-related DEGs. (B) PPI network of VILI-related DEGs. (C) Intersecting genes selected as hub genes

by using five algorithms in CytoHubba. (D) The most significant module among PPI network. (E) The second most significant module

among PPI network.
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plotting the PPI network graph, as shown in Figure 6B. The information such as the position of a certain protein in the
network, its interaction intensity with other proteins and number of interactions with other proteins can be obtained
from Figure 6B. Five algorithms, Betweenness, Closeness, Degree, MNC and Stress for CytoHubba were used to iden-
tify hub genes in the PPI network, and top 20 genes sorted by each algorithm were selected for interaction testing,
which yielded 11 hub genes: Serpine1, Fos, Itgam, Mmp9, Il6, Hmox1, Tlr2, Egr1, Atf3, Ptgs2 and Il1b (Figure 6C).
Based on the interaction pair number and interaction intensity, further clustering was performed using MCODE to
construct a subnetwork, as shown in Figure 6D,E.

Key genes for VILI
The hub genes in the darkolivegreen and blue modules and those screened out from DEGs were intersected and
yielded nine key genes: Tlr2, Hmox1, Serpine1, Mmp9, Il6, Il1b, Ptgs2, Fos and Atf3 (Figure 7A). The expression
of those nine genes were up-regulated in GSE86229 (Figure 7B). To confirm the expression levels of those nine key
genes, qPCR was conducted using the total RNA extracted from lung samples from VILI and controls. The qPCR
results showed that those nine key genes were all overexpressed in VILI lung tissues, which were consistent with the
prediction results (Figure 7C). The aberrant expressions of these nine genes could contribute to the VILI pathogenesis
and progression, and need to be further investigated.

Discussion
Mechanical ventilation is widely adopted in patients with ALI or respiratory distress syndrome, as well as in surgeries
involving general anesthesia [1]. However, a deeper exploration into the mechanical ventilation has revealed that
although mechanical ventilation significantly improves air exchange and oxygenation in patients, it may also cause
or even exacerbate lung injuries, thereby inducing VILI [16]. The pathophysiology of VILI involves the interaction of
multiple mechanisms and remains largely unknown. Despite various genes identified as being involved in VILI, the
gene network associated with the etiology of VILI has not been elucidated. In the present study, four datasets from the
same platform, involving 15 controls and 15 VILI mouse models, were included. WGCNA and DEGs analyses were
used to determine significantly up-regulated or down-regulated genes. Part of those genes were hub genes correlated
with VILI, but their molecular roles in VILI pathogenesis remain far from clear. The identified genes with detectable
expression could serve as potential therapeutic targets for VILI, and are worthy of further studies.

The molecular mechanism of inflammatory lung injury caused by mechanical ventilation is still a subject of de-
bates, and any single molecular process has not yet sufficed to elucidate the complex VILI pathology. Due to the
overlapping and idiosyncratic nature of the spectrum of VILI, and the sporadic nature of its genetic continuity, it is
difficult to thoroughly investigate the molecular mechanism of VILI pathogenesis [17]. Traditional biological meth-
ods can only detect a single independent molecular signaling pathway; however, by virtue of the gene microarray
technology, the transcriptome analysis can detect multiple molecular pathways involved in VILI. Recent studies have
manifested that genome analysis based on microarrays would substantially contribute to improving our understand-
ing of mechanisms of VILI [18,19]. Li et al. uncovered candidate genes associated with VILI by using Genome-Wide
Association Studies (GWASs). GWAS usually only identifies statistically significant SNP loci, therefore leaving out
those genes that are low in correlation effect and thus have higher P-values [20]. For complex diseases, susceptibil-
ity genes are often composed of various minor genes with low correlation effect, and such approaches are likely to
fail to detect important information. WGCNA is based on entire gene modules rather than focusing on individual
genes, and it uses soft thresholding instead of the standard hard thresholding to split modules. It, thus, provides a
better reflection of the actual biological network and can be used to pinpoint the highly correlated gene modules; by
identifying module eigengenes or hub genes, those co-expressed gene modules can be determined, and the modules
associated with phenotypic traits can be identified. Such an approach is more consistent with biological processes,
and could contribute in identifying therapeutic targets or candidate biomarkers. The clustering criteria of WGCNA
have biological significance, and have been widely used in exploring molecular mechanisms of various diseases [21];
but WGCNA has not yet been adopted in studying the biomarkers, therapeutic targets and pathogenesis of VILI.

In the present study, a total of 5204 VILI-associated genes, whose variance was within first quartile, were screened
from the combined datasets for WGCNA. Several pathogenic mechanisms associated with VILI were revealed
through functional enrichment analysis of these modules, among which the blue and darkgreen modules were the
most VILI-correlated and therefore, were considered to be the most significant modules. By the integration of hub
genes from the two modules and DEG analysis, the following key genes were identified: TLR2, HMOX1, SEPRINE1,
MMP9, IL6, IL1B, PTGS2, FOS, and ATF3.
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Figure 7. The identification and validation of final key genes of VILI

(A) Overlap of WGCNA hub genes and DEGs hub genes. (B) The validation of identified key genes in GSE86229. (C) The validation

of identified key genes by performing qPCR.
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As a member of the TLR family, TLR-2 is a transmembrane protein localized on the cell surface, and induces the
release of inflammatory factors by mediating cell signaling [22]. It plays an important role in initiating the inflamma-
tory and immune response, and maintaining innate immunity of the host [23]. The excessive inflammatory response
involving multiple cytokines, inflammatory mediators and effector cells in the lung is an important cause that in-
duces the occurrence and progression of VILI [24]. Therefore, the regulation of inflammatory signaling has become
one of concerns in the prevention and treatment of VILI. Using two different mechanical ventilation strategies, Vil-
lar et al. found that TLR-2/4 expression was significantly up-regulated and pro-inflammatory cytokine synthesis was
elevated in the lung tissue and plasma of mechanically ventilated mice with high tidal volume [25]. TLR-2 can form
a homodimer with its receptor, and be activated by MD-2, a secretory factor, resulting in NF-κB pathway activation
through recruiting IRAK by interacting with MYD88, and inducing the release of inflammatory factors [26]. Thus, it
is reasonable that TLR2 may play a crucial role in the immune inflammatory response observed in VILI.

HMOX1 is one of the major members of the heme oxygenase (HO) family [27]. HO serves as a rate-limiting en-
zyme in the heme degradation pathway in which it catalyzes the oxidation of heme into bilirubin, carbon monoxide
and free iron ions [28]. It comprises three subtypes: HMOX1 induced by oxidative stress, and constitutively expressed
HMOX2 and HMOX3 [29]. HMOX1 is also known as heat-shock protein 32 (HSP32), and plays important roles in
multiple stimuli and pathological conditions, such as heat, hypoxia, oxidative stress, apoptosis and mucosal damage
[30]. Present studies on HMOX1 are mainly focused on the oxidative stress and hypoxic injury, such as the research
by Synowiec et al., on the involvement of HMOX1 in the oxidative stress process in age-related macular degeneration
[31], and the investigation by Cordova et al. on the relationship between HMOX1 and systemic lupus erythematosus
in children [32]. The VILI pathogenesis largely involves biological hazard, but it has not yet been conclusively de-
termined whether HMOX1 plays a role in its pathogenesis. The inspired oxygen concentration may affect the VILI
development. Dunigan-Russell et al. exposed both the HMOX1 knockout (HO-1 KO) mice and adult wild-type con-
trols to a hyperoxic condition, and evaluated the degree of lung injury by detecting the ratio between the right lung
and body weight [33]. It revealed that the ratio increased significantly in HO-1 KO mice, compared with that in the
controls, suggesting that the HMOX1 has some protective effect in hyperoxic conditions and could be involved in the
VILI pathogenesis.

MMPs, known as stomatin, are zinc-dependent endopeptidases that degrade the components of extracellular ma-
trix (ECM), including laminin, collagen and fibronectin [34]. So far 26 members of the MMP family have been dis-
covered. MMP9 is one of the most important members, and can effectively degrade collagen IV in the endothelial
basement membrane, thus impairing the endothelial barrier function [35]. As a well-known gene for participating
in inflammatory response, MMP9 has been studied extensively on its correlation to VILI. Chen et al. reported that
MMP9 degrades gelatin and type IV collagen in basement membranes, disrupts alveolar–capillary integrity, and leads
to hyperpermeability of pulmonary edema [36]. The study by Doroszko et al., in which mechanically ventilated Wis-
tar rats were randomized into the doxycycline-administered group and placebo-administered group, revealed that
doxycycline could assuage VILI by suppressing MMP9 activity [37].

PTGS2, also known as COX2, is involved in the inflammatory process [38]. Back in 1991, Xie et al. [39] and Kujubu
et al. [40], respectively, discovered in their studies an mRNA encoding protein and a cDNA encoding protein, which
were proved later to be the same enzyme; it is highly expressed in inflammatory cells when activated, and is named
as COX-2, an isozyme of already known COX-1. Huang et al. used the COX-2 inhibitor celecoxib to intervene in
a mouse model of VILI, and detected the pulmonary vascular permeability and leakage, inflammatory leukocyte
infiltration and pulmonary oxygenation to assess the severity of VILI [41]. It revealed that the celecoxib-intervened
VILI mice model exhibited a significant decrease in the associated indices compared with the control [41]. In another
study, Meng et al. constructed a VILI mice model by injecting endotoxin to induce ARDS, followed by mechanical
ventilation [42]. The constructed model was intervened with parecoxib, a COX-2 inhibitor, to detect the ratio of
arterial oxygen partial pressure to the fraction of inspired oxygen (PaO2/FiO2), dry-to-wet weight ratio of lung tissue,
inflammatory factors in serum and bronchoalveolar lavage fluid (BALF), and histopathological indices of lung tissue.
It showed that the PaO2/FiO2 ratio was increased significantly in the parecoxib-intervened model; the dry-to-wet
weight ratio of lung tissue, the count of macrophages and neutrophils in BALF, the total protein and neutrophil elastase
levels, the tumor necrosis factor (TNF)-α and interleukin-1β levels in BALF and serum, and the prostaglandin E2
(PGE2) level were reduced substantially; the activity of myeloperoxidase (MPO) activity and levels of malonaldehyde,
Bax and COX-2 were decreased significantly; the survival rate of rats was improved. All these studies indicated that
VILI could be effectively alleviated by inhibiting COX-2 activity.

ATF3 is an important member of the ATF/CERB family of transcription factors, and is extensively involved in the
early stress response, apoptosis and tumorigenesis [43]. It also binds to the ATF/CRE site of macrophage inflammatory
protein 1β (MIP-1β/CCL4) promoter to inhibit the expression and secretion of CCL4 in macrophages and control
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the excessive inflammatory response [44]. The role played by AFT3 in VILI has been investigated in various studies.
By comparing the responses of ATF3-deficient and wild-type mice in an in vivo model of VILI; Akram et al. found
that ATF3 expression and nuclear translocation increased in the lungs of wild-type mice after mechanical ventilation,
whereas AFT3-deficient mice were more susceptible to mechanical ventilation with or without endotoxin inhalation,
as evidenced by the increase in cellular infiltration and pro-inflammatory cytokines in the BALF, and by the increased
extent of pulmonary edema and tissue damage [45]. Therefore, it can be inferred that ATF3 could balance and inhibit
the high tidal volume-induced inflammation, and suppress its adverse effect on lung tissue. Shan et al. found that
ATF3 protects against VILI by preventing inflammatory cell recruitment and barrier dysfunction in a cell-specific
manner [46].

IL-6 and IL-1β are biologically active cytokines produced by activated monocyte/macrophages, and exert biolog-
ical effects in inflammation and immunological diseases through multiple pathways [47]. Liu et al. reported that in
VILI-induced inflammation, phosphorylated NF-κB could promote the synthesis of NLRP3 inflammasome, increase
release of IL-1β, and aggravate lung inflammation by up-regulating NLRP3 expression [48].

Serpine1 is a component of the fibrinolytic system, and can directly act on endogenous plasminogen activator
(PA) to reduce its activity and inhibit fibrin degradation [49]. PA is usually inhibited by specific inhibitors, the most
common of which is PAI-1 [50]. Wolthuis et al. found that deficiency of PAI-1 gene reduces neutrophil’s entry into
the alveoli during mechanical ventilation, suggesting that PAI-1 plays a stimulatory role in cell migration into the
alveoli, and inhibition of PAI-1 may reduce the occurrence of VILI [51]. Considering the inhibitory effect of serpine1
on PA activity, we speculate that serpine1 could decrease the incidence of VILI and stem its progression.

FOS is a nuclear phosphoprotein encoded by mature mRNA transcribed from the c-fos gene [52]. It is an inherent
gene in human or mammal cells, also known as immediate early response gene. As a transcription factor, FOS protein
is an important regulator of cell growth, division, proliferation, differentiation and even programmed death [53].
FOS protein and c-fos have recently received lots of attention and been studied extensively. Fos protein can bind
to c-Jun protein to form a dimer, which is an active transcription factor, AP-1 [54]. Imai et al. reported that AP-1
activation leads to IL-8 transcription, which recruits neutrophils in the lung, a critical step towards VILI development
[55]. Therefore, we suggest that Fos protein can induce the production of large numbers of inflammatory factors by
activating AP-1, thus promoting the VILI development [55].

There are still several limitations in the present study: firstly, the sample size included is far from substantial, and
future studies are needed in which more ample samples are included to further confirm our results. Moreover, the
samples included are all exclusively collected from lung tissues. Given that mechanical ventilation modeling allows
inflammatory cells to flow into lung tissue, the exclusive use of samples derived from lung tissue in detection would
have an impact on the validity of the test results, and thus on our understanding of the cellular origin of the target
genes that regulate pathological changes. Data on samples from multiple sources including blood need to be included
in future studies to improve our understanding of VILI-induced gene changes.

Conclusion
In the present study, nine key genes with expression differences in VILI were screened by WGCNA by integrating
multiple datasets. Those nine key genes were analyzed to study their potential functions and unique effects in VILI,
in order to provides a reliable basis to relieve VILI.
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23 Mallet, J.F., Graham, É., Ritz, B.W., Homma, K. and Matar, C. (2016) Active Hexose Correlated Compound (AHCC) promotes an intestinal immune
response in BALB/c mice and in primary intestinal epithelial cell culture involving toll-like receptors TLR-2 and TLR-4. Eur. J. Nutr. 55, 139–146,
https://doi.org/10.1007/s00394-015-0832-2

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

15

https://doi.org/10.1016/j.chest.2019.06.007
https://doi.org/10.3389/fphys.2019.00803
https://doi.org/10.1186/s40635-017-0121-x
https://doi.org/10.1016/j.ccm.2016.07.004
https://doi.org/10.1097/01.CCM.0000133019.52531.30
https://doi.org/10.1186/1741-7015-11-85
https://doi.org/10.1213/ANE.0b013e3181cfc416
https://doi.org/10.4103/0366-6999.226840
https://doi.org/10.1016/j.chest.2016.07.019
https://doi.org/10.1186/cc10437
https://doi.org/10.1097/MCC.0b013e32834e7d00
https://doi.org/10.1152/physiolgenomics.00110.2005
https://doi.org/10.1152/ajplung.00109.2005
https://doi.org/10.3892/ijmm.2019.4067
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1097/ALN.0b013e318182aef1
https://doi.org/10.1513/pats.200501-005AC
https://doi.org/10.3892/mmr.2018.9034
https://doi.org/10.1002/jcb.28446
https://doi.org/10.1038/s41398-021-01231-y
https://doi.org/10.3389/fgene.2018.00453
https://doi.org/10.3390/ijms21249769
https://doi.org/10.1007/s00394-015-0832-2


Bioscience Reports (2021) 41 BSR20203235
https://doi.org/10.1042/BSR20203235

24 Bohrer, B., Silveira, R.C., Neto, E.C. and Procianoy, R.S. (2010) Mechanical ventilation of newborns infant changes in plasma pro- and anti-inflammatory
cytokines. J. Pediatr. 156, 16–19, https://doi.org/10.1016/j.jpeds.2009.07.027

25 Villar, J., Cabrera, N.E., Casula, M., Flores, C., Valladares, F., Dı́az-Flores, L. et al. (2010) Mechanical ventilation modulates TLR4 and IRAK-3 in a
non-infectious, ventilator-induced lung injury model. Respir. Res. 11, 27, https://doi.org/10.1186/1465-9921-11-27

26 Christiansen, D., Brekke, O.L., Stenvik, J., Lambris, J.D., Espevik, T. and Mollnes, T.E. (2012) Differential effect of inhibiting MD-2 and CD14 on LPS-
versus whole E. coli bacteria-induced cytokine responses in human blood. Adv. Exp. Med. Biol. 946, 237–251,
https://doi.org/10.1007/978-1-4614-0106-3˙14

27 Ryter, S.W. (2019) Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation. Arch. Biochem. Biophys. 678, 108186,
https://doi.org/10.1016/j.abb.2019.108186

28 Tenhunen, R., Marver, H.S. and Schmid, R. (1969) Microsomal heme oxygenase. Characterization of the enzyme. J. Biol. Chem. 244, 6388–6394,
https://doi.org/10.1016/S0021-9258(18)63477-5

29 Otterbein, L.E. and Choi, A.M. (2000) Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 279,
L1029–L1037, https://doi.org/10.1152/ajplung.2000.279.6.L1029

30 Li, L., Li, C.M., Wu, J., Huang, S. and Wang, G.L. (2014) Heat shock protein 32/heme oxygenase-1 protects mouse Sertoli cells from
hyperthermia-induced apoptosis by CO activation of sGC signalling pathways. Cell Biol. Int. 38, 64–71, https://doi.org/10.1002/cbin.10177

31 Synowiec, E., Szaflik, J., Chmielewska, M., Wozniak, K., Sklodowska, A., Waszczyk, M. et al. (2012) An association between polymorphism of the heme
oxygenase-1 and -2 genes and age-related macular degeneration. Mol. Biol. Rep. 39, 2081–2087, https://doi.org/10.1007/s11033-011-0955-3
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