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Abstract: Lower extremity kinematic alterations associated with sport-related knee injuries may
contribute to an unsuccessful return to sport or early-onset post-traumatic osteoarthritis. Also,
without access to sophisticated motion-capture systems, temporospatial monitoring of horizontal hop
tests during clinical assessments is limited. By applying an alternative measurement system of two
inertial measurement units (IMUs) per limb, we obtained and validated flying/landing times and
hop distances of triple single-leg hop (TSLH) test against motion-capture cameras, assessed these
temporospatial parameters amongst injured and uninjured groups, and investigated their association
with the Knee Injury and Osteoarthritis Outcome Score (KOOS). Using kinematic features of IMU
recordings, strap-down integration, and velocity correction techniques, temporospatial parameters
were validated for 10 able-bodied participants and compared between 22 youth with sport-related
knee injuries and 10 uninjured youth. With median (interquartile range) errors less than 10(16) ms for
flying/landing times, and less than 4.4(5.6)% and 2.4(3.0)% of reference values for individual hops and
total TSLH progression, differences between hopping biomechanics of study groups were highlighted.
For injured participants, second flying time and all hop distances demonstrated moderate to strong
correlations with KOOS Symptom and Function in Daily Living scores. Detailed temporospatial
monitoring of hop tests is feasible using the proposed IMUs system.

Keywords: knee assessment; inertial measurement unit; ambulatory monitoring; criterion-related
validation; construct validation; functional test; return-to-sport testing; triple single-leg hop test;
temporal events; hopped distance

1. Introduction

Sport-related knee injuries, such as anterior cruciate ligament (ACL) tears, can have a significant
impact on an athlete’s life. In the short-term, these injuries can lead to missed sport participation,
reduced muscle strength, and increased risk of re-injury, while in the long-term, they are associated
with increased adiposity, cartilage morbidity, and premature radiographic osteoarthritis [1–3].
Approximately 35% of athletes fail to resume previous activity levels by two years following an
ACL reconstruction, and this number grows to 50% at five years post-surgery [1,4]. According to Xergia
et al. [5,6], kinematic and kinetic deficiencies of the lower limbs may continue even after return to sport
(RTS) and symmetrical restoration of muscular strength. These deficiencies can alter knee joint loading,
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which is associated with early radiographic knee osteoarthritis and cartilage degeneration [2,7]. Close
monitoring of lower limb biomechanics during functional activities may assist clinical decision making
related to RTS and prevention of osteoarthritis.

Functional tests, such as vertical and horizontal bilateral or unilateral jumping tests, demand
muscle strength and neuromuscular coordination for dynamic joint stability, which deteriorates
with a knee injury [5,8,9]. The triple single-leg hop (TSLH) test requires controlled and consecutive
unilateral hops to move the body center of mass in horizontal and vertical directions without pauses,
and simulates functional challenges consistent with sport maneuvers. In distance-based hop tests,
the Limb Symmetry Index (LSI) of total distance hopped is a common outcome to inform RTS and
rehabilitation program [10], and is defined as the ratio of distance hopped on the injured leg to the
distance hopped on the uninjured leg, expressed as a percentage. In contrast, for timed hop tests,
the inverse of this ratio is used to define LSI based on the time required to complete the task (i.e.,
uninjured leg hopping time over injured leg hopping time) [3]. Commonly, an LSI cut-off value of
85% [11–13] is used as a milestone for RTS clearance. Despite this standard, it is important to highlight
that symmetry in total hop time or distance does not guarantee unimpaired or symmetrical hopping
biomechanics [14,15].

Temporospatial parameters of functional tests have been extensively assessed in laboratories
using motion-capture cameras, force platforms, and contact mattresses [16,17] to better understand the
biomechanical alterations after knee injuries. These assessments are not feasible in clinical or sport
training environments, given the sophisticated equipment, specialized operators, and time-consuming
calibration/preparation and data post-processing required. Inertial measurement units (IMUs) have
been used to obtain stride length [18–20] and temporal events of gait [21–24] with relatively high
accuracy and precision for injured and uninjured participants. Recently, the IMUs have also been
recognized as promising tools for temporospatial analyses of various vertical jumping tests [25–27].
These studies used kinematic features of IMU signals for temporal estimations and obtained the jump
height based on ballistic equations, which were proposed merely for vertical jumping. To the best of
our knowledge, IMUs have not been used to detect temporal events or measure forward progression
during horizontal hop tests.

Therefore, in this exploratory study, we aimed to assess whether a wearable system of IMUs
can estimate the TSLH temporospatial parameters with sufficient accuracy and precision to highlight
the trend of differences in hopping kinematics of injured and uninjured leg groups during TSLH.
Furthermore, it was explored whether the estimated temporospatial parameters are associated
with clinically relevant patient-reported outcome scores. To these ends, a wearable system of two
IMUs per limb is presented to estimate TSLH temporospatial parameters (i.e., foot–ground Initial
Contact (IC) instants, foot–ground Terminal Contact (TC) instants, flying/landing times, and foot
forward progression distances). First, the criterion-related validity of these IMU-based temporospatial
parameters was assessed against reference values obtained with motion-capture cameras. Specifically,
we compared the accuracy and precision of the IMU-based temporospatial parameters of a TSLH
test to the criterion-standard motion-capture cameras to determine whether the IMU-based system
is a feasible substitute. Second, the construct validity of the IMU-based system was assessed by
comparing TSLH kinematics between youth who had experienced a sport-related intra-articular knee
injury, and likely to demonstrate kinematic alterations and uninjured active youth who are not likely
to demonstrate kinematic alterations. This involved comparing intra-participant (side-to-side) and
inter-participant (injured versus uninjured group) temporospatial parameters and corresponding LSIs.
IMU-based estimates of total and LSI TSLH progression were further validated by comparing them
to results obtained with a measuring tape (clinical standard) and assessing their association with
self-reported knee-related symptoms and function (Knee Injury and Osteoarthritis Outcome Score
subscales; KOOS) in injured participants.
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2. Materials and Methods

The proposed procedure for detecting TSLH temporospatial parameters using IMUs is shown
in Figure 1. The wearable system is described in Section 2.1, the temporal event detection algorithm
is detailed in Section 2.4.2, and the forward progression estimation is described in Section 2.5.2.
The criterion-related validation of TSLH temporospatial parameters measured by the proposed
wearable system, and construct validation in patients compared to controls is described in Sections 2.3.1
and 2.3.2, respectively.
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Figure 1. The flowchart of the proposed procedure for detecting triple single-leg hop (TSLH)
temporospatial parameters using inertial measurement units (IMUs). Each step is described in
detail in the sections distinguished with dashed lines. The box labelled as “Delay” brings the newly
calculated foot-sensor orientation at the current time instant back to the strap-down integration box to
estimate the foot-sensor orientation in the next time instant.

2.1. Wearable Measurement System

To investigate the criterion-related validity of the proposed temporospatial measurements,
two IMU modules (Physilog BFSr-3, Gait Up, Lausanne, Switzerland, weight: 36 grams) were affixed
with single- and double-sided hypoallergenic tapes to the dominant lower extremity of participants
at forefoot and upper shank regions (Figure 2). These modules wirelessly recorded 3D acceleration
(range: ±11 g) and 3D angular velocity (range: ±1200 ◦/s) with the sampling frequency of 500 Hz.

To investigate the construct validity of the outcome measures, four modules of lighter,
recently released IMUs (Physilog 5, Gait Up, Lausanne, Switzerland, weight: 11 grams) were
bilaterally attached with Velcro straps to the feet and shanks of participants at regions consistent with
the criterion-related validation study. These modules were set to record 3D acceleration (range: ±16 g)
and 3D angular velocity (range: ±2000 ◦/s) with the sampling frequency of 256 Hz.
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Figure 2. Illustration of the criterion-related validation set-up: Anatomical (applied to bony landmarks)
and technical (applied to sensors boxes) markers, as well as the two IMUs, affixed on the right foot (along
the second metatarsal) and leg (medial upper shank) of the participant, are represented. Among the
anatomical markers, only the second and fifth metatarsal, and calcaneal tuberosity markers were used
for this study. No marker was present for the construct validation study.

2.2. The Reference System

The positions of two sets of anatomical and technical reflective markers, as shown in Figure 2,
were tracked with 8 motion-capture cameras (Motion Analysis Corporation, Santa Rosa, CA, USA)
and used as the reference to detect temporal events and foot forward progression during TSLH trials.
Anatomical markers in Figure 2 were placed on the second and fifth metatarsal heads, and calcaneal
tuberosity through palpation, following the well-known protocol in [28] for foot segment position and
orientation tracking. Three technical markers (see Figure 2) were attached to each of the IMU boxes and
were used for reconstruction of anatomical markers, where they were absent. Marker positions were
originally recorded at 100 Hz synchronously with the IMU recordings and up-sampled (using linear
interpolation) to 500 Hz during the analyses for comparison with the IMU-based system. The power
spectral density graph of the raw marker data showed that almost all of the frequency contents of the
time-series for 3D coordinates of all three technical markers’ trajectories were in the range of 0 to 5 Hz.
Therefore, up-sampling these data, using linear interpolation, did not affect the analyses.

2.3. Experimental Protocol

2.3.1. Criterion-Related Validation Experiments

Through advertising on the University of Alberta campus, ten able-bodied men with no history
of severe knee injuries or musculoskeletal disease volunteered to participate in the study. With the
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application of both IMU-based and reference systems, the participants were asked to stand motionlessly
in their natural posture for 1 minute while the cameras recorded the position of both technical and
anatomical markers indicated in Figure 2. To avoid marker-falling during the highly dynamic hop
trials, the anatomical markers were then removed. These markers were later reconstructed as virtual
markers based on the technical markers of the foot-sensor. In the few instances when one of the
technical markers was missing for a few frames, it was reconstructed using “pattern fill” and based on
the position of another technical marker on the same IMU. To reduce the effect of soft-tissue artifact on
IMU data and technical markers, the IMU modules were tightly secured to the body segments using
both single- and double-sided hypoallergenic tapes. The main TSLH trials started and ended with
10-second periods of standing still, and participants were asked to perform two successful TSLH trials
on their dominant leg.

2.3.2. Construct Validation Experiments

From an ongoing prospective cohort of 11–19-year-old youth, a convenience subsample of 22
participants with a sport-related knee injury (group GI), and 10 uninjured participants (group GUI)
were outfitted with IMUs (See Section 2.1). Knee injury was defined as a clinical diagnosis of knee
ligament, meniscal, or other intra-articular tibiofemoral or patellofemoral injury that needed both
medical consultation and disruption in regular sports participation. While the GI group had sustained
a unilateral knee injury within 15 months prior to the testing date, the GUI participants had no
history of lower limb injuries. Prior to testing, participants’ age, bare feet standing height, body
mass, and dominant leg (preferred kicking leg) were recorded. Participants also underwent a clinical
physiotherapy knee examination and completed the KOOS questionnaire. The KOOS is a self-report
measure designed to evaluate symptoms and function related to the knee injury and osteoarthritis
in active young patients. It consists of 42 items in five subscales (Symptom, Pain, Function in Daily
Living (ADL), Function in Sports and Recreation (Sport/Rec), and Knee Related Quality of Life (QoL))
which are scored on a 5-point Likert scale. Subscale scores are transformed to a 0–100 scale with higher
scores indicating better function [29].

Individuals were eligible to participate in the study if they had full knee range-of-motion, no knee
effusion, and no pain and difficulty with twisting/pivoting/jumping. Participants performed two
successful TSLH trials with each leg, initiated and ending with 5-seconds of upright motionless posture.
A successful TSLH trial was defined as a trial in which the three hops were performed consecutively
with a controlled landing after the last hop in which no extra hops or considerable ankle twists were
involved. For each successful TSLH trial, the total forward progression was recorded with a measuring
tape [9]. The ethics board of the University of Alberta approved both studies (Pro00065804 and
Pro00063773), and the participants and/or their guardian provided informed written consent and/or
assent prior to participation.

2.4. Temporal Events Detection

2.4.1. Reference Temporal Events

Unlike gait, where heel-strike precedes toe-strike, in the TSLH, any foot region can be the site of
initial contact (IC) and terminal contact (TC). Therefore, all anatomical foot markers shown in Figure 2
were reconstructed as virtual markers, assuming that the foot moves as a rigid body [30]. Before any
data processing, signals of the reconstructed foot markers were low-pass filtered using a zero-phase
4th-order digital Butterworth filter with a cut-off frequency of 20 Hz. The average height of each
reconstructed marker during the starting motionless period was considered as a reference level. Time
frames of intersections between the recorded marker heights and their corresponding reference levels
were defined as IC and TC events [31–33]. Due to abrupt changes of marker heights close to IC instants,
resulting from sensor wobbling at the time of foot–ground impact, the IC detection method was further
refined by shifting the previously detected approximate ICs forward, to the next minimum of marker
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height recordings. In addition to ICs and TCs, we defined three flying times (the period where the foot
was not in contact with the ground) as the time interval between each IC and the last TC, and two
landing times (the period where at least one region of the foot was in contact with the ground) as the
time interval between each TC and the last IC.

2.4.2. IMU-based Temporal Events

Peak detection algorithms for foot and shank angular velocity and acceleration signals were
introduced similar to [21–23] and compared to the reference temporal instants. Methods provided
by [21,22] for gait temporal events detection were modified and adapted to hopping kinematics.
Likewise, all gait temporal features investigated by [23] were assessed for recordings of both foot
and shank IMUs, during TSLH. Additionally, due to their relevance to hopping events and their
independence to the IMUs orientation on the foot or shank, the absolute values of time-derivative of
acceleration norm signal for foot and shank (|‖AF‖

′
| and |‖AS‖

′
|) were assessed.

The global peak of shank pitch angular velocity (ΩP
S) at each hop cycle was used as a robust

feature to detect mid-flying instants [22,23] and to split each hop cycle into pre-flying and post-flying
time windows for TC and IC detection (Figure 3). We found the best IC-related feature to be the first
peak of |‖AS‖

′
|, having an amplitude greater than 7 m/s3 and occurring no later than 250 ms after the

mid-flying instant of each hop cycle. Searching the pre-flying window of length 250 ms, we found the
best TC-related feature based on the time-derivative of foot angular velocity norm, (‖ΩF‖

′), at the time
when its amplitude falls below −0.6 rad/s2.
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Figure 3. Terminal Contact (TC) and Initial Contact (IC) instants of a typical TSLH trial, detected using
IMUs. (a): Mid-flying instants (solid vertical lines) are estimated based on shank pitch angular velocity
signal (ΩP

S). Pre-flying (dotted vertical lines) and post-flying (dashed vertical lines) phases are defined
250 ms prior and after the mid-flying instants, respectively. (b): TC instants (shown with squares)
are marked on the time-derivative of foot angular velocity norm time-series (‖ΩF‖

′). (c): IC instants
(shown with circles) are marked on the absolute value of time-derivative of shank acceleration norm
time-series (|‖AS‖

′
|).
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2.5. Forward Progression Estimation

2.5.1. Reference Forward Progression

The unfiltered data of the reference motion-capture system were used for forward trajectory
measurement. The average trajectory of the foot IMU markers in Figure 2 was considered representative
of the foot trajectory. Forward progression at each hop cycle was defined as the foot frontal progression
between mqsn−1 and mqsn, where mqsn marks the middle of the quasi-stance phase after the nth hop
cycle. The quasi-stance phases were considered as the largest interval between ICs and the next
consecutive TCs, where the norm of the foot angular velocity was always less than 4 rad/s.

2.5.2. IMU-based Forward Progression

To obtain the forward progression during TSLH, the gravity-free acceleration of the foot in the lab
global frame was double integrated, and a corrective function was defined at each hop cycle to remove
the foot velocity drift caused by integration [18,19]. The gravity-free foot acceleration was calculated
as in Equation (1):

A(i)G
g_ f ree, f oot = R0

G
T gT

−R(i)G
T A(i)T

raw, f oot, (1)

where A(i)G
g_ f ree, f oot and A(i)T

raw, f oot denote the gravity-free acceleration of foot in the lab global frame
and the foot-accelerometer readout in its technical frame at each time sample (i), respectively. R0

G
T

represents the rotation matrix between the foot-sensor technical frame and the lab global frame during
the static stance period prior to the hopping and can be calculated based on the position of foot-sensor
technical markers in Figure 2. In the construct validation study, where the markers were not present,
R0

G
T was obtained using the accelerometer readout [34]. gT shows the median of foot-accelerometer

readout in sensor technical frame during the static stance, with the assumption that it is caused solely
by gravity. R(i)G

T denotes the rotation matrix between the foot-sensor technical frame and the lab
global frame at each time sample, (i), and is calculated based on the strap-down integration of the
de-drifted foot angular velocity signal, as described in [18,19,35].

A corrective piecewise cubic Hermite interpolating polynomial (p-chip function) was subtracted
from the forward component of trapezoidal integration of A(i)G

g_ f ree, f oot to derive foot forward velocity.
This sigmoid-like corrective function was defined over [mqsn−1, mqsn], with the axillary point aqsn at
75% of this interval, as in Equation (2):

fc(n) := pchip(
{
mqsn−1, aqsn, mqsn

}
,
{
VF(mqsn−1), min(VF(mqsn−1), VF(mqsn)), VF(mqsn)

}
), (2)

where fc(n) and VF denote the defined corrective function and the non-corrected foot forward velocity,
respectively. Finally, foot forward progression was derived from the integration of corrected foot
forward velocity.

2.6. Data Analysis and Statistical Tests

For criterion-related validation, 60 hop cycles (10 participants × 2 trials × 3 hops at each trial) were
investigated, and the temporospatial parameters obtained by IMUs were compared to those obtained
by the reference system. Medians and interquartile ranges of errors were considered as accuracies and
precisions of the IMU-based temporospatial parameters. For construct validation, 132 hop cycles (22
participants × 2 trials × 3 hops) and 60 hop cycles (10 participants × 2 trials × 3 hops) were investigated
for each leg of GI and GUI, respectively. For all participants, three hopping forward distances, total
TSLH forward progression, three flying and two landing times, and corresponding LSIs were calculated
based on IMU signals. The averaged temporospatial parameters over the two trials recorded from each
leg, were considered for statistical analysis. As the normality of the samples was rejected for a number
of investigated parameters using Jarque–Bera test, Wilcoxon signed-rank test and Wilcoxon rank-sum
test were used for intra-participant (side-to-side) and inter-participant (injured/uninjured legs of GI
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compared to dominant/non-dominant/both legs of GUI) comparisons, respectively (α = 0.05). Clinical
relevance of the obtained temporospatial parameters and LSIs was further explored by calculating
their Spearman’s correlation with GI’s KOOS subscale scores. Correlation coefficients were interpreted
as very weak (0 ≤ |r| ≤ 0.19), weak (0.2 ≤ |r| ≤ 0.39), moderate (0.4 ≤ |r| ≤ 0.59), strong (0.6 ≤ |r| ≤ 0.79),
and very strong (0.8 ≤ |r| ≤ 1) [36].

3. Results

3.1. Estimations of Temporospatial Parameters: IMU Versus Reference Systems

For the criterion-related validation trials (see Table 1 for participant characteristics), the proposed
kinematic features of IMU signals estimated the IC and TC instants with median (interquartile range:
IQR) errors of 2 (22) and 12 (24) ms, respectively, compared to the reference system. These errors
in IC and TC detection were equal to 0(2) and 1(2) time samples of the reference system recordings,
respectively. Flying (60 flying phases) and landing (40 landing phases) times were estimated with
median (IQR) differences of −4(18) and 6(18) ms from the reference values (i.e., 0(2) and 1(2) time
sample of the reference system recordings). It should be noted that both IMUs and motion-capture
systems’ data were analyzed with a sampling frequency of 500 Hz; thus, the resolution for presenting
errors in temporal events detection is 2 ms. Also, following the common representation of errors
for temporal events detection similar to gait studies, we used both positive and negative errors to
demonstrate the direction of the bias in the IMU system with respect to the reference motion-capture
system [23,32,33]. Individual hop distances (60 hops) were estimated with 4.4%(5.6%) relative error
while the total TSLH progression (20 TSLH trials) were estimated with 2.4%(3.0%) relative error
compared to the reference system (Table 2). In the construct validation study, comparison of the
IMU-based total TSLH forward progression with the values obtained with a measuring tape showed
median (IQR) relative errors of 2.9%(3.5%) and 3.2%(2.9%) (LSIs absolute errors of 4.8%(3.0%) and
3.9%(2.1%)) for GI and GUI, respectively.

Table 1. Characteristics of the participants enrolled in the criterion-related validation and construct
validation studies. For the participants of the construct validation study, self-reported Knee Injury and
Osteoarthritis Outcome Score (KOOS) scores are also presented. The abbreviations used in the table are
as follows: n: Number of participants; W: Woman; M: Man; R: Right; L: Left; ADL: KOOS subscale for
Function in Daily Living; Sport/Rec: KOOS subscale for Function in Sports and Recreation; and QoL:
KOOS subscale for Knee Related Quality of Life.

Characteristics
Criterion-Related Validation (n = 10) Construct Validation (n = 32)

Injured (n = 0) Uninjured (n = 10) Injured 1 (n = 22) Uninjured 1 (n = 10)

Sex (W/M) - 0W/10M 17W/5M 9W/1M
Age 2 (years) - 23 ± 3 16 ± 1 17 ± 2
Height 2 (cm) - 177 ± 10 167 ± 12 171 ± 9

Body Mass 2 (kg) - 68 ± 8 60 ± 14 65 ± 10
Dominant Leg (R/L) - 10R/0L 19R/3L 10R/0L

Injured Leg (R/L) - - 12R/10L -
KOOS Symptom 2 - - 84 ± 16 95 ± 6

KOOS ADL 2 - - 99 ± 4 100 ± 0
KOOS Pain 2 - - 90 ± 14 100 ± 0

KOOS Sport/Rec 2 - - 85 ± 20 100 ± 0
KOOS QoL 2 - - 50 ± 30 100 ± 5

1 Injured and uninjured groups of participants of the construct validation study are referred to as GI and GUI,
respectively, within the body of this article. 2 Age, height, body mass, and self-reported KOOS scores are presented
as median ± interquartile range among the participants.
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Table 2. Errors of the proposed IMU system in the estimation of temporospatial parameters of TSLH
against the motion-capture system. Results are expressed as 25%, 50%, and 75% percentiles of error,
calculated for all 60 individual hops (20 TSLH trials, 3 hops each) performed by the 10 able-bodied
participants. The values in parentheses for the temporal parameters express errors in terms of the time
sample of the motion-capture system (10 ms).

Validated Parameter
Error 1

(25% 50% 75%) (25% 50% 75%)

Temporal Parameters Error 1

(ms and sample)
Absolute Error 1

(ms and sample)

Initial Contact Instants [−10(−1) 2(0) 12(1)] [4(0) 12(1) 20(2)]

Terminal Contact Instants [−8(−1) 12(1) 16(2)] [10(1) 14(1) 20(2)]

Flying Times [−12(−1) −4(0) 6(1)] [6(1) 10(1) 18(2)]

Landing Times [−4(0) 6(1) 14(1)] [4(0) 10(1) 20(2)]

Forward Progression
Distances Relative Error (%) 1 Absolute Error (cm) 1

First Hops [3.62 5.50 6.31] [4.46 6.11 7.17]

Second Hops [1.71 3.05 6.52] [1.90 3.82 7.54]

Third Hops [2.15 5.64 8.65] [2.39 7.39 10.78]

All Individual Hops 2 [2.08 4.44 7.69] [2.42 5.41 9.77]

Total TSLH Progression 2 [1.03 2.40 4.01] [3.83 9.35 14.12]
1 Error, Absolute Error, and Relative Error are calculated by subtracting the IMU-based temporospatial values from
their corresponding motion-capture values (including the sign), taking the absolute value of the aforementioned
differences, and dividing these absolute values by the motion-capture values and expressing them in the form of
percentages, respectively. 2 Individual Hops refer to each of the three distances of hop cycles during a TSLH trial,
while Total TSLH Progression indicates the total distance hopped during a TSLH trial.

3.2. Comparison of Temporospatial Results among Injured and Uninjured Youth

No significant between-group differences were observed for height and body mass (see Table 1 for
participant characteristics); however, GI was significantly younger than GUI (p = 0.007). No significant
differences (α= 0.05) were observed in any of the inter- and intra-participant comparisons of IMU-based
temporospatial parameters and LSIs, except for the first landing time (p = 0.049 between the non-injured
side of GI and both sides of GUI). Total TSLH progression measured with a measuring tape showed a
significant difference (p = 0.028) for the intra-participant comparison of the GI. No other statistically
significant differences were found between the compared temporospatial parameters or LSI values.

Non-statistically significant differences of temporospatial parameters of the injured/non-injured
sides of GI, and dominant/non-dominant/both sides of GUI were observed (Figure 4). Specifically,
the non-injured side of GI had the greatest median individual and total hop distance values among
all the leg sub-groups, while the injured side had the lowest median distance value, except for the
second hop. Additionally, the injured side of GI had the longest median landing and shortest median
flying time values of all leg sub-groups, except for the first flying time. Finally, the dominant side
of GUI had the shortest median landing and longest median flying time values of all leg sub-groups,
except for the first flying. However, none of the three sets of comparisons mentioned above were
statistically significant.
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Figure 4. Comparison of temporospatial parameters among all different leg sub-groups of injured
(GI) and uninjured (GUI) participants. Temporospatial parameters were estimated with IMUs or
measured with a measuring tape (shown as Total TSLH Ref. Distance). Box-plots on the left and
right sides represent time- and distance-related parameters, respectively. (Leg sub-groups are shown
with GI-I: GI’s Injured Leg, GI-NI: GI’s Non-Injured Leg, GUI-D: GUI’s Dominant Leg, GUI-ND: GUI’s
Non-Dominant Leg and GUI-B: GUI’s Both Legs.).

3.3. Correlations between the KOOS and Temporospatial Parameters in Injured Youth

Based on both measuring systems (IMU and measuring tape), all individual and total hop
distances of the GI’s injured side were moderately correlated with the KOOS Symptom subscale
score (0.403 < r < 0.502) (Table 3). All individual and total hop distances of GI’s injured side except
for the third hop distance also were moderately correlated with the KOOS Function in Daily Living
(ADL) subscale score (0.407 < r < 0.429). The KOOS Symptom and ADL scores also were moderately
correlated with LSI values of total TSLH distance measured with tape (r = 0.414) and IMU-based
second hop distance LSI (r = −0.407), respectively. Among the temporal parameters, the second
flying time showed strong (r = 0.660) and moderate (r = 0.448) correlation with the KOOS Symptom
and ADL subscale scores, respectively. No moderate or strong correlation was observed between
temporal LSIs and KOOS scores, except for the LSI calculated based on second flying time and KOOS
Symptom score (r = −0.536). Generally, the correlations of both KOOS Symptom and ADL scores were
considerably stronger with flying times than landing times (Table 3). Nearing the end of TSLH trials,
correlations increased between the distance hopped and the KOOS Symptom subscale, while the
opposite trend was observed for KOOS ADL subscale. All other KOOS subscale scores had a very weak
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or weak correlation with the calculated temporospatial parameters and LSIs except for a correlation
between second flying time and KOOS Function in Sports and Recreation subscale score (r = 0.401),
and correlations of second hop distance LSI with KOOS Pain subscale (r = −0.402) and KOOS Quality
of Life subscale scores (r = −0.545).

Table 3. Spearman’s correlation coefficients between KOOS subscale scores and temporospatial
parameters obtained with IMUs or measuring tape for the injured leg of the injured participants (GI)
during all TSLH phases. Significant correlations are marked with bold numbers. The abbreviations used
in the table are as follows: ADL: KOOS Function in Daily Living subscale; Sport/Rec: KOOS Function
in Sports and Recreation subscale; and QoL: KOOS Knee Related Quality of Life subscale. Correlation
strength was interpreted very weak (0–0.19), weak (0.2–0.39), moderate (0.4–0.59), strong (0.6–0.79),
and very strong (0.8–1) [36].

KOOS Subscale
Time Time Asymmetry 1

Fly 1 Land 1 Fly 2 Land 2 Fly 3 Fly 1 Land 1 Fly 2 Land 2 Fly 3

Symptom 0.166 0.003 0.660 0.055 0.381 −0.117 0.049 −0.536 0.245 0.016
ADL 0.390 −0.027 0.448 0.085 0.157 −0.225 0.254 −0.366 0.291 0.044
Pain 0.126 0.052 0.253 0.095 −0.056 −0.054 −0.014 −0.148 0.082 0.317
Sport/Rec 0.117 −0.035 0.401 −0.075 0.067 −0.070 0.109 −0.363 0.357 0.108
QoL 0.001 −0.150 −0.062 −0.005 −0.158 −0.249 0.338 −0.137 0.328 −0.121

KOOS Subscale

Distance Distance Asymmetry 2

Hop 1 Hop 2 Hop 3 TSLH
Total

TSLH Total
(Ref.) 3 Hop 1 Hop 2 Hop 3 TSLH

Total
TSLH Total

(Ref.) 3

Symptom 0.403 0.485 0.502 0.494 0.502 0.259 −0.201 0.312 0.177 0.414
ADL 0.429 0.414 0.327 0.407 0.422 0.178 −0.407 0.181 0.024 0.324
Pain 0.245 0.175 0.206 0.222 0.253 0.115 −0.402 0.137 −0.044 0.170
Sport/Rec 0.308 0.259 0.157 0.273 0.263 0.168 −0.363 0.087 −0.039 0.231
QoL 0.119 0.203 0.222 0.151 0.239 −0.041 −0.545 0.071 −0.156 0.059

1 Time-based LSIs (in percentage) were calculated for each hop phase as the ratio of the time that the participants
needed to hop on their non-injured leg over the time that they needed to hop on their injured leg. 2 Distance-based
LSIs (in percentage) were calculated as the ratio of distance that participants have hopped with their injured leg over
the distance they have achieved with their non-injured leg. 3 TSLH Total (Ref.): Reference values of total hopped
distance, measured with a measuring tape.

4. Discussion

In this study, IMUs were used for the first time to calculate the forward progression and
flying/landing periods during each phase of the TSLH test, and the results were validated against a
reference system of motion-capture cameras. The efficacy of the introduced temporospatial measuring
system was then explored in a clinical research environment for intra-participant and inter-participant
comparisons between groups of uninjured and injured youth. Such a system can be used to break
down the horizontal hop tests into their sub-phases and measure the temporospatial parameters along
the multiple horizontal hops. To the authors’ knowledge, it is the first time that the jumping/hopping
distance during the functional tests has been calculated directly based on the acceleration of body
segments rather than the flying time.

Our proposed algorithm was able to detect IC and TC instants of the TSLH tests with median
errors of less than 12 ms (i.e., one time sample of the reference system recordings). As expected,
the error of TC detection was slightly higher than IC, as TCs are smoother temporal events, and unlike
ICs, they are not associated with abrupt changes and peaks in IMU recordings. These errors were
comparable to those of [21–23] obtained for temporal parameters of gait. However, notably larger
errors are expected in the detection of temporal parameters due to the jerky motion of the foot in
the TSLH test, accompanied by severe IMUs wobbles. Compared to vertical jumping studies [25,27],
we obtained similar accuracy and precision in temporal parameters detection. However, those studies
had removed the constant erroneous offsets of IC and TC estimation from their results.

The accuracy and precision of our estimated forward progression during TSLH were comparable
to those reported in [19] for stride length estimation. While we estimated individual hop distances with
a median error of 5.41 cm, [18] reported root-mean-square error of about 18 cm for gait progression
estimation. Additionally, as shown in Table 2, the error of forward progression estimation does not
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increase along the test, which was to be expected according to [37] for a short test such as TSLH
(duration less than 30 seconds). Therefore, removing the gyroscopes’ static drift at the beginning of the
TSLH trial effectively eliminated gyroscope-based errors, and further correction for these errors was
not required.

The moderate to strong correlations of several IMU-based temporospatial parameters with KOOS
Symptom and ADL subscales emphasize the relevance and importance of monitoring each hop in detail
during the TSLH test to interpret those scores during functionally challenging activities, rather than
merely recording the total distance. The validity, responsivity, and reliability of KOOS for populations
with various knee injuries have been reported by several studies [3,38,39]. Our results suggest that
differences due to knee injury symptoms may be more apparent towards the end of a TSLH trial when
the activity becomes more challenging, while differences associated with decreases in ADL are apparent
at the time of activity initiation. As the IMU-based system can provide instantaneous temporospatial
information during the TSLH test, the interpretation of KOOS subscale scores in association with
temporospatial parameters would be feasible for clinical scientists. Furthermore, the consistent trend
of correlations of temporospatial parameters with KOOS Symptom and ADL scores from the first to
the third hop makes them reliable outcomes for clinical interpretations.

Although no significant difference was observed for IMU-based temporospatial parameters among
injured and uninjured youth (possibly due to the heterogeneity of injury, variability in time since
injury, and small sample size), the proposed measuring system showed consistent results with previous
studies [12,17] on shorter distances hopped on GI’s injured leg. Although the total TSLH progression
measured by tape showed a significant intra-participant difference for GI (p = 0.028), it is not clear
how the process of eyeballing the tape numbers in clinics would affect the accuracy of this method.
The proposed IMU-based system was validated with the gold standard of motion-capture with a
median error of 2.4% for total TSLH progression and resulted in p = 0.088 for GI’s intra-participant
comparison, for which median LSI of total hop progression was 94.3%.

The proposed IMU-based system is expected to measure temporospatial parameters accurately
for similar horizontal hop tests. The development of the algorithm for 3D foot trajectory estimation
can provide further details for the tests such as crossover horizontal hops, where the lateral trajectory
of the foot can also be of interest. Furthermore, verbally encouraging the participants to perform
consecutive hops during TSLH and rejection of trials with longer pauses between the hops might
conceal the tendency to longer landing times in injured participants. These longer pauses might be
due to more time that injured participants need to re-coordinate their joints for the next hop and can be
a result of stiff landing strategies [5,12]. As our proposed system can accurately estimate landing times,
there is no need for the further implication of such standards as “hopping without pauses,” and the
participants can hop at their comfortable pace. Therefore, enhancement and comparison of the existing
hop tests will be feasible in the future, in order to introduce a test which can address knee deficits
more comprehensively.

Limitations and Future Directions

A number of limiting factors must be noted. First, we used a more recently released generation of
IMUs in the construct validation study, with which we expected to obtain more accurate results than
those used for the criterion-related validation. Despite this discrepancy, the median relative error of
the estimated total hopped distance and the absolute error of its corresponding LSI were below 5%
(compared to those measured by tape as a secondary reference system). This further confirmed the
accuracy of the IMU system used in the construct validation study. Second, we used the technical
markers to reconstruct the anatomical ones during the TSLH. This can lead to errors in the position of
the reconstructed anatomical markers due to soft tissue artifact, which we tried to eliminate by tightly
securing the IMU modules to the body segments. Also, to avoid violating the rigid body assumption
for the foot, we only used the motion of the second and fifth metatarsal heads and calcaneal tuberosity
and did not use the toe motion. In general, the higher dynamics of the hopping compared to gait can be
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the source of many errors such as deformation of body segments, vibrations of the soft tissue on which
IMUs are attached, and increased gyroscopes’ drift due to the complicated and dynamic movements.

Third, the number of participants in the construct validation study, especially within the uninjured
group, was limited. Thus, the application of the proposed wearable system must be further investigated
with more participants before making any conclusion about the clinical significance of the evaluated
parameters. Notably, the objective of the construct validation study was to compare individuals that
are likely to demonstrate altered kinematics due to an injury and individuals that are less likely to
demonstrate alterations. Given this objective, the limited sample size, between-group differences in
age, and a greater number of women participants, this study should be treated as an exploratory study
and no clinical conclusions should be made based on the findings. Fourth, for clinical use, further
investigation should be performed on healthcare professionals’ and patients’ acceptance rate of this
system and the simplicity of using this system by the personnel who are unfamiliar with the wearable
systems. Fifth, force plates were not used as the gold standard of temporal events detection during
criterion-related validation. This is an inherent limitation of TSLH tests in which the position of force
plates cannot be predicted for each hop performed by every individual, without affecting the dynamics
of hopping. To minimize the effect of this limitation, well-known validated methods were applied to
motion-capture data to find the temporal events.

5. Conclusions

We presented a system of two IMUs fixed on shank and foot, capable of estimating foot–ground
IC and TC instants, and forward progression along the horizontal hop tests such as TSLH,
and demonstrated its accuracy and precision. This system can help clinician-scientists to study
the detailed biomechanical parameters of hopping during rehabilitation programs, as relevant variables
to clinically meaningful scores and decide about RTS onset with more confidence.
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