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THE BIGGER PICTURE Scientists are keen to understand how cells, the building blocks of life, grow and
form complex tissues and organs. They use two methods to do this: single-cell trajectory mapping, which
traces the journey of individual cells, and spatial reconstruction, which creates a detailed blueprint of tissue
formation. Together, they provide away to track each cell’s path and to understand how they come together
to build the grand structure of life. However, the effectiveness of these techniques relies heavily on the
analytical tools used to process the vast amounts of data they generate. Existing tools often overlook
the biological characteristics of each cell and lead to suboptimal results. We have developed a method
that considers the cell features in terms of their similarity with other cells and significantly improves accu-
racy and speed. This advancement not only enables more efficient and reliable exploration of cellular
complexity but also paves the way for new discoveries in life sciences.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Single-cell trajectory mapping and spatial reconstruction are two important developments in life science and
provide a unique means to decode heterogeneous tissue formation, cellular dynamics, and tissue develop-
mental processes. The success of these techniques depends critically on the performance of analytical tools
used for high-dimensional (HD) gene expression data processing. Existing methods discern the patterns of
the datawithout explicitly considering the underlying biological characteristics of the system, often leading to
suboptimal solutions. Here, we present a cell-cell similarity-driven framework of genomic data analysis for
high-fidelity spatial and temporal cellular mappings. The approach exploits the similarity features of the cells
to discover discriminative patterns of the data. We show that for a wide variety of datasets, the proposed
approach drastically improves the accuracies of spatial and temporal mapping analyses compared with
state-of-the-art techniques.
INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) offers an effective

means of quantifying the state of individual cells and provides

unique opportunities to understand the heterogeneous cell

types, cellular dynamics, tissue developmental processes, and

the regulatory mechanism controlling the cell functions.1,2 To

comprehend the roles of single cells in multi-cellular functions,

decoding the spatial context and temporal evolution of cells

from scRNA-seq data is a prerequisite. In reality, separating
This is an open access article under the CC BY-N
the cells according to their spatial context is a very challenging

task, as single-cell genomics does not encode the spatial loca-

tions when the gene expression levels are measured.3 Cellular

trajectory mapping is also challenging because of its high

susceptibility to measurement noise.4

For trajectory inference, a number of methods, such as mono-

cle,5 discriminative dimensionality-reduction tree (DDRTree),6

Slingshot,7 SCORPIUS,8 and diffusion pseudo-time (DPT),9

have been proposed. Commonly used techniques for spatial

reconstruction include principal-component analysis (PCA),10
Patterns 4, 100840, October 13, 2023 ª 2023 The Author(s). 1
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Figure 1. Workflow of the CCSF approach

(1) The cell-cell similarity metric that results in maximum separation of the cell classes in low dimension is learned.

(2) P centroids are located by minimizing the distance between them and all the data points.

(3) The cell-centroid similarity is then computed.

(4) The cell-cell similarity matrix is obtained by computing the gram matrix of the cell-centroid similarity.

(5) A class-discriminative optimization is performed on the similarity matrix to reduce the data dimensionality.
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Seurat,11 spatial backmapping12 and novoSpaRc.3 Other than

novoSpaRc, all of these methods require the use of marker

genes or a reference atlas, which adds another layer of

complexity and renders the approaches impractical, as refer-

ence datasets may not be available in many cases. The achiev-

able accuracy of markerless novoSpaRc in reconstructing

cellular spatial map is rather limited.3 Generally, the temporal

and spatial mappings are done by first projecting the high-

dimensional (HD) scRNA-seq data onto a low dimension and

then optimizing the temporal or spatial positions of the cells.

The dimensionality reduction in these algorithms is typically

done by using PCA13 or other similar methods.14–20 Unfortu-

nately, the embeddings resulting from these methods are often

suboptimal because of their inability to explicitly incorporate

the underlying biological characteristics of the data.

There are two major hurdles impeding our ability to carry out

high-fidelity temporal and spatial mappings: (1) the intrinsic

complexity of the scRNA-seq data structure caused by the inter-

twined relationships among the cells within the data and (2) the

humongous size and dimensionality of the data. To overcome

these challenges, here we propose a cell-cell similarity-driven

framework (CCSF) for genomic data analysis (Figure 1).21 Our

strategy is to transform the gene expression data into a low-

dimensional representation according to the cell-cell similarities

of the system.22–27 The proposed CCSF utilizes a data-driven

strategy to compute the similarity between expression profiles

of cells. In principle, one can compute the cell-cell similarity ma-

trix directly from the gene expression data. However, this may
2 Patterns 4, 100840, October 13, 2023
not provide us any information about the cell groups in the

data. Moreover, the calculation of the similarity matrix can be

computationally prohibitive because of the curse of data size

and dimensionality.19 CCSF first sorts the M cells into P groups

(where P is determined automatically using an unsupervised

method) according to the similarity of the cells as measured by

the learned similarity metric from the data. For efficient compu-

tation, we use the centroid expression of each group to repre-

sent the gene expressions of the cells in the group. The similarity

values of the cells to these centroids form an M3P matrix. The

Gram matrix28 of the cell-centroid similarity matrix yields the

cell-cell similarity matrix while avoiding potentially excessive

computational burdens. The symmetric Gram (i.e., kernel) matrix

makes it possible for us to extract the dominant components of

the cell-cell similarity and use the information to discover the

underlying discriminative patterns of the data via mathematical

operations like singular value decomposition (SVD).

CCSF contributes to genomic studies and biomedical data

science in multiple aspects. It introduces an effective framework

for leveraging the characteristics of cell-cell similarity for tempo-

ral and spatial mappings. CCSF enables us to effectively

describe a large HD genomic dataset by using only a limited

number of CCSF components. Mathematically, one may

consider CCSF a way of finding a set of more descriptive prin-

cipal components of the genomic system that are computed

based on cell-cell similarity (in place of variance in PCA). Compu-

tationally, the method is about 15 times faster than existing

methods such as PCA. Moreover, the CCSF alleviates the
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Figure 2. Spatial reconstruction of

Drosophila embryos from scRNA-seq data

(A) Ground-truth FISH data for six selected genes.

(B) Projection of the original expression data onto six

CCSF components.

(C) Reconstructed spatial maps of the selected

genes by CCSF-novoSpaRc using first six CCSF

components.

(D) Reconstructed expression data for the selected

genes by novoSpaRc without any marker gene.

(E) Reconstructed expression data for the selected

genes by novoSpaRc using six marker genes.

(F) Correlation coefficients between the re-

constructed spatial maps of the genes by different

techniques and the ground-truth FISH data (number

of marker genes in the case of novoSpaRc and the

component number in the case of CCSF-

novoSpaRc [cSpaRc] are shown on the x axis). Er-

ror bars represent the standard deviation of the

correlation coefficients for different locations and

different genes.
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bottleneck of the ‘‘curse of data dimensionality’’ often seen in

conventional analysis techniques and allows exploration of

gene expression data of large size and dimensionality.

RESULTS

In this section, we first demonstrate accurate spatial reconstruc-

tions from scRNA-seq data of Drosophila embryo and mouse

cerebellum. High-quality trajectory mapping of scRNA-seq

data of organoid-derived cells from CCSF components is then

presented.

De novo spatial reconstruction of gene expression with
CCSF yields accurate results
scRNA-seq datasets of Drosophila embryos, which consist of

expression levels of 84 transcription factors quantitatively

registered by fluorescence in situ hybridization (FISH),29 were

used in this study. We ran CCSF-novoSpaRc with different

numbers of CCSF components, along with benchmarking no-

voSpaRc reconstruction with different marker genes. In our

analysis, the first six CCSF components (Figure 2B) were em-
ployed to describe the data. It is inter-

esting to observe that the first CCSF

component is mainly localized in the mid-

dle of the genomic data space, suggest-

ing that this region has the highest differ-

ences in the gene expressions. From the

variance of these components (Figure S1),

we estimated that the first six components

explained more than 95% of the spatial

variance in the data, indicating the strong

ability of CCSF to capture the important

information of data with a small number

of components. The CCSF-novoSpaRc

results matched the ground-truth FISH

data very well (Figures 2A and 2C). Signif-

icant deviations from the ground-truth

spatial maps (obtained from the FISH
data) were observed in novoSpaRc reconstruction in the

absence of marker genes (Figure 2D). The construction little

resembled the ground truth (as also indicated by the poor cor-

relation value of � 0:09). Only when 6 marker genes were

included did the spatial maps obtained by novoSpaRc become

similar to the ground-truth FISH data (Figure 2E). Remarkably,

the CCSF-novoSpaRc approach achieved a perfect correlation

with the ground truth when two or more CCSF components

were incorporated (Table S1). Even with only a single compo-

nent, we found that the method could yield a correlation of

0.91, which is much better than that of novoSpaRc with one

marker gene (Figure 2F).

The dependence of CCSF-novoSpaRc reconstruction quality

on the number of CCSF components was even more pro-

nounced in the second series of experiments with mouse cere-

bellum data.3 Here, we use data of mouse cerebellum slices

from a recently developed spatial transcriptomics technology

named slide-seq.30 The dataset of sagittal sections contained

46,293 locations, pertaining to one or multiple cells. We first

coarse grained the data to 3,900 locations and then performed

spatial mapping using different methods as shown in Figure 3.
Patterns 4, 100840, October 13, 2023 3
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Figure 3. Spatial reconstruction of mouse

cerebellum tissue

(A and B) Slide-seq data (A) and novoSpaRc

(B) reconstruction without any marker genes.

(C and D) novoSpaRc reconstruction with 64 marker

genes (C) and projection of the data onto the first six

CCSF components (D).

(E) Reconstructed spatial maps using 64 CCSF

components as markers. Overall, novoSpaRc

without any marker gene provides spatial recon-

struction of almost no similarity to the ground truth,

whereas cSpaRc provides perfect reconstruction

without any marker gene information (see the cor-

relation values in Table S2).

(F) Correlation coefficients between the re-

constructed spatial maps of all the genes by

different techniques and ground-truth slide-seq

data. Error bars represent the standard deviation of

the correlation coefficients for different locations

and different genes.
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Again, the novoSpaceRc strongly relies on the availability of a

large number of markers. The correlation coefficient with the

ground truth was found to be nearly zero in the absence of

marker genes (Figure 3F). With the use of 4 or more marker

genes, the correlation coefficient increased monotonically from

0.26 to the highest level of 0.97 for 50 marker genes

(Table S2). Our approach, on the other hand, succeeded without

any marker genes and yielded a correlation coefficient of 0.90

with only 4 CCSF components. Remarkably, the correlation co-

efficients reached 0.99 and 1 for 16 and 32 CCSF components,

respectively (Table S2).

In summary, although CCSF-novoSpaRc is a de novo

reconstruction process, it always provides spatial reconstruc-

tion with very high accuracy, which is not achievable by

novoSpaRc alone with or without marker genes. Thus,

CCSF-novoSpaRc provides a new paradigm of spatial recon-

struction where no marker gene is required to achieve accu-

rate reconstruction. CCSF is expected to be a preferred tool

to understand the heterogeneous cell types and decode their

spatial functionality.
4 Patterns 4, 100840, October 13, 2023
CCSF yields highly accurate cellular
trajectories from scRNA-seq data
For cellular trajectory analysis, we used a

large dataset obtained by profiling a total

of 166,242 organoid-derived cells in two

different configurations.31 In the first

configuration, scRNA-seq profiling of

78,379 cells from 9 organoids from two

stem cell lines, PGP1 and HUES66, was

performed after 3 months of growth. In

the second configuration, scRNA-seq

profiling of 87,863 cells from 11 organoids

was performed. These organoids were

grown from PGP1, GM08330, and 11a

stem cell lines for 6 months. By comparing

the signatures of differentially expressed

genes with existing datasets of endoge-

nous cell types, all cells from 20 organoids
were classified into sixteen distinct cell types. We produced 2D

representations of the scRNA-seq data for organoids 1–3 by

using existing methods (Figure 4A) and CCSF (Figure 4B). In

the t-distributed stochastic neighbor embedding (t-SNE),32

uniform manifold approximation and projection (UMAP),33 and

PHATE34 visualizations, the cells at different stages were sepa-

rated to a certain extent (Figure 4A), but the stage-to-stage

transitions were not clear at all. CCSF-PHATE overcame these

limitations and clearly showed the cell transitions with 32

CCSF components (Figure 4B, left). In the CCSF-PHATE visual-

ization, for example, it is seen that the brown cells representing

radial glia (RGs) could branch into the following six different

paths (shown with black arrows): (1) immature projection neu-

rons (PNs) (dark blue); (2) immature callosal PNs (CPNs) (blue)

to mature CPNs (bright blue); (3) immature corticofugal PNs

(CFuPNs) (light blue) to mature CFuPNs (cyan blue); (4) induced

pluripotent stem cells (iPSCs) (cyan), immature interneurons

(cyan green), and ventral precursors (light green); (5) astroglia;

and 6) Cajal-Retzius (dark red) and cycling cells (light red). These

branches were biologically verified and discussed in detail by
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Figure 4. Brain organoids cultured for 3 and 6 months generate the cellular diversity of the human cerebral cortex

The visualization of cells from organoids 1–3 by (A) t-SNE, UMAP, and PHATE (from left to right) and (B) CCSF-PHATE with 32, 8, and 16 CCSF components (from

left to right). The black arrows indicate the cells branching into different paths. The components of CCSF-PHATE embedding are denoted by ‘‘cPHATE1’’ and

‘‘cPHATE2.’’
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Greig et al.35 It should be noted that these branches reported in

the original study31 by the pseudo-time and trajectory analysis

were not as obvious as those in the CCSF-PHATE visualization

(Figure 4B, left).

The CCSF-PHATE study of the data with 8 and 16 CCSF com-

ponents (Figure 4B, middle, right) revealed two interesting ob-

servations. First, the trend of cellular transition can be better

visualized in CCSF-PHATE with 8 CCSF components. All seven

main types of cells were clustered, and RG cells were located

around the middle regions. Other clusters representing the six

higher-order cell types were around the RG cell cluster and indi-

cated the probable transitions from RGs into these higher-order

cells. Fine details were not apparent in this case. However,

because of the smaller distances, the probable stage-to-stage

transitions were more clear here than that in the 16 and 32

CCSF component CCSF-PHATE visualizations. Second, with

the increase of CCSF components, increasingly fine details

were added, and branches became more evident (Figure 4B,

left, right). Thus, CCSF-PHATE visualizations with different

numbers of components provided a complete representation
of cell transitions and branches. Similarly, we studied the transi-

tions and branches of cells from seventeen other organoids and

found that CCSF-PHATE yielded superior results over the exist-

ing methods (Figures 5A–5F). Each row in Figure 5 shows visual-

izations from t-SNE, UMAP, PHATE, and CCSF-PHATE with 32

CCSF components (from left to right).

We applied SlingShot7 to infer the trajectory from CCSF-

PHATE and PHATE results and show the results in Figure 6

(1st column). We see that CCSF-PHATE outperforms PHATE

by at least 20% in terms of trajectory inference accuracy in

most cases. The clustering accuracies andmean inter-class dis-

tances for the studies above are shown in Figures 6A–6G. The

CCSF-PHATE approach achieved the highest accuracy (2nd col-

umn). To demonstrate the performance of CCSF-PHATE in

finding the correct trajectories, the geodesic distances among

the classes on the trajectories were computed, and the distance

matrices are presented in terms of heatmaps. As can be seen

from the 4th and 5th columns of Figure 6, the distance increases

in both CCSF-PHATE and PHATE visualizations as the number

of classes increases, but this tendency is more evident in
Patterns 4, 100840, October 13, 2023 5



Figure 5. Trajectory mapping of brain organoid scRNA-seq data

The cells from organoids 4–6 are shown in (A), the cells from organoids 7–9 are shown in (B), the cells from organoids 10–12 are shown in (C), the cells from

organoids 13–15 are shown in (D), the cells from organoids 16–18 are shown in (E), and the cells from organoids 19 and 20 are shown in (F). The cells are visualized

(legend continued on next page)
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CCSF-PHATE (5th column) than in PHATE (4th column). PCA, on

the other hand, could not preserve the distance among the clas-

ses on the trajectory (3rd column). We also compared the perfor-

mance of CCSF-PHATE with PCA-PHATE when different

number of highly variable genes are used in Figure S12. Again,

CCSF-PHATE outperforms PCA-PHATE by a substantial margin.

FollowingMoon et al.,34 we also have simulated 1,300 simulation

datasets using the Splatter simulator and compared the perfor-

mance of CCSF-PHATE and PHATE in terms of the DeMAP in-

dex.34 Again, as shown in Note S8, CCSF-PHATE outperforms

PHATE by >10% in most cases.

In summary, CCSF improves the data quality significantly and

finds clusters more accurately than the available methods. Thus,

the number and shape of lineages found by CCSF are more

accurate than traditional methods, which has been found both

visually and quantitatively in our analyses. CCSF would thus be a

useful tool tounderstand thecellulardynamicsand tissuedevelop-

mental processes in many single-cell applications.

Finally, two additional trajectory visualizations of zebrafish

embryogenesis and embryoid bodies byCCSF-PHATE are shown

in Figure S2 (Note S1) and Figure S3 (Note S2), respectively (see

also Note S8 for simulation studies and Figures S10, S16, and

S17). It is seen that, compared with PHATE alone, CCSF-PHATE

also improved trajectory mapping in these studies.

CCSF can also be used for high-performance clustering anal-

ysis of gene expression data. We have added CCSF-based clus-

ter analysis results in Figures S4 and S5 and Tables S3, S8, S9,

and Figures S13–S15 for both simulated and experimental data-

sets (Notes S3, S5, and S10–S12). We first compare the perfor-

mance of CCSF-UMAP (CCSF components as input to UMAP)

with PCA-UMAP for better visualization of the clusters for exper-

imental datasets (Tables S4 and S5 and Notes S10–S12). We

then use simulation datasets simulated by the Splatter36 simu-

lator to quantitatively show that CCSF improves the clustering

performance. The simulation parameters were selected by

following Moon et al.34 From Note S8, it is seen that CCSF im-

proves the clustering results by >10% in terms of the adjusted

Rand (AR) index37 when compared to PCA. We also have added

the benchmark results of our technique against the Leiden

method38 in terms of two cluster indices in Figure S11. It is

seen from Figure S11 that our approach provides an improve-

ment of clustering accuracy of at least 11% compared to this

technique.

The computational speed of CCSF was benchmarked for

different numbers of data points (Figure S6; Tables S6 and S7;

Note S6). We found that the CCSF was computationally much

more efficient than existing data analysis techniques. On a per-

sonal computer with a Core I9 processor and 64 RAM, for

instance, CCSF was found to be 16.7 times faster than PCA

(which is known to be the fastest dimensionality-reduction tech-

nique to date) for 10,000 cells with 20,000 genes. For the same

dataset, CCSF was 52, 29, and 20 times faster than PHATE,

t-SNE, and UMAP, respectively. The unprecedented enhance-

ment in computational efficiency is attributed to the fact that
with t-SNE, UMAP, PHATE, and CCSF-PHATE (with 32 CCSF components), and

components of CCSF-PHATE embedding are denoted by ‘‘cPHATE1’’ and ‘‘cPH

into different higher-order cells are clearly visible. Although t-SNE, UMAP, and PH

the transitions and branches.
CCSF uses a fast clustering operation to reduce the data dimen-

sionality into an intermediate number (P in Figure 1) before pro-

jecting to the actual desired number (Q in Figure 1).

DISCUSSION

In this work, CCSF is proposed to meet the ever-increasing

demand for accurate spatial and temporal mapping of the

genomic data. Superior performance of the technique has

been demonstrated by using a variety of datasets. The proposed

CCSF approach offers several unique advantages over the exist-

ing techniques, including (1) high-fidelity de novo cellular spatial

reconstruction; (2) highly accurate cell trajectory identification;

(3) significant enhancement in computational speed; and (4)

capability of analyzing large-sized genomic data without being

cursed by data size and dimensionality as commonly seen in

conventional approaches.13–20 In reality, accomplishing any of

the above features would represent a significant advance in

biomedical data science; however, all of them are intrinsic fea-

tures of the CCSF approach.

The emerging spatial transcriptomics technology promises to

provide insights into spatial context of cells and how multi-

cellular functions are orchestrated by individual cells.39,40 These

methods are generally divided into two main types: (1) experi-

mental approaches such as FISH,41 FISSEQ,42 seqFISH+,43

and TIVA44 and (2) computational approaches to estimate the

spatial locations of cells from scRNA-seq data. The former ap-

proaches, which sequence cellular RNA in situ, require highly

specialized experimental tools and do not yet offer widespread

applicability or molecular sensitivity.45 The latter approach is

also challenging, as tissues must be dissociated into single cells

before scRNA-seq can be performed. During this process, the

original spatial context and relationships between cells are

lost. Although new computational approaches for spatial recon-

struction have been proposed in recent years, they often require

an extensive reference database, which may not be available.

Thus, computational techniques capable of accurate spatial

reconstruction without any reference database (marker genes)

are urgently needed. The proposed CCSF promises to fill the

gap and lend a valuable tool for genomic data analysis. It is

remarkable that perfect spatial reconstructions are attainable

by CCSF, which has not even been possible by using marker

genes or reference atlases.

In CCSF, the centers of the cell groups are randomly initialized

using the k-means++ algorithm.46 Different initializations can be

employed as the cell-to-cell similarity remains unchanged

(Figures S7 and S8; Note S7). For quantitative evaluation, we

assessed the results of CCSF-PHATE analysis of zebrafish data

for 1,000 different CCSF initializations and observed little change

(<1%) in the resultant DEMaP (Figure S7). In the case of

Drosophila embryodata,we foundnochange in thespatial recon-

struction results for all 1,000 different initializations of CCSF.

In CCSF, a linear class-discriminative optimization is applied

on the cell-cell similarity matrix to maximize the separation of
the results for an organoid group are presented in the corresponding row. The

ATE2.’’ In CCSF-PHATE visualization, the transition and branching of RG cells

ATE are able to cluster the cells into different types, they completely fail to show

Patterns 4, 100840, October 13, 2023 7
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cell groups, primarily because the cell groups become linearly

separable after the computation of similarities (see Figure S9

and Note S9). A nonlinear technique such as quadratic

discriminant analysis (QDA)47 and generalized discriminant

analysis (GDA)48 would not be a good choice for linearly sepa-

rable data, as proven in the literature.47,49 For illustration, we

have tried to replace the class-discriminative optimization by

these techniques in CCSF and reported the performance com-

parison in Note S4. From the results, it is seen that the CCSF

with the linear class-discriminative optimization performs the

best. We also have included extensive ablation studies with

more than 1,300 simulated datasets and showed the effective-

ness of other steps of CCSF (Note S4). CCSF is very robust to

dropout effect. We have added simulation results with different

levels of dropout in Note S8 for simulation datasets. It is seen

that our method is highly robust and provides accurate results

for a large range of dropouts in the data.

Most of the traditional and state-of-the-art techniques7,8,50–56

perform the analysis of developmental and differentiation trajec-

tories by first finding the data clusters. In these analyses, the idea

is to first find the clusters, and then a minimum spanning tree is

constructed on the clusters to determine the number and rough

shape of lineages. Then, simultaneous principal curves or

orthogonal projections are used to obtain smooth representa-

tions of each lineage. The existing methods perform this in an

ad hoc step-by-step manner using different classical techniques

in different steps. As an example, in Slingshot,7 at first, the

dimension of the data is reduced usingUMAP/t-SNE, and a num-

ber of cluster centers are computed from the dimension-reduced

data. Next, the minimum spanning tree is computed from the

cluster centers, and principal graphs are used to infer the trajec-

tory. In CCSF, we developed a theoretical framework for the

dimensionality-reduction and clustering steps. In CCSF, (1) we

first find the factors that best discriminate between the clusters,

(2) the separation between clusters is rigidly encoded through

the block diagonal matrix omega, and (3) we maximize the ratio

of inter- and intra-cluster distances in low dimensions. In our

study, we used PHATE for the trajectory analysis from the

CCSF results. However, the minimum spanning tree can be

computed from the clusters from CCSF, and then principal

graphs can be used to infer the trajectory. We show one such

example result in Figure S10. Thus, CCSF uses the same work-

flow as the existing techniques for continuous data analysis.

However, unlike other methods, which are ad hoc, CCSF is

based on a solid theoretical foundation and provides a more

robust and accurate data analysis.

There are a number of data dimensionality-reduction tech-

niques in the literature based on similarity metric learning,

including SIMLR19 and FEM.57 However, the objective, focus,

approach, and algorithm here are quite different. Both SIMLR

and FEM are focused on reducing the data dimensionality to a
Figure 6. The Pearson coefficient between ground truth and estimated

beddings from PCA, PHATE (with PCA preprocessing), and CCSF-PHA

Pearson coefficient (1st column), clustering accuracy (2nd column), and mean

Figures 4 and 5 for organoids 1–3 (A), organoids 4–6 (B), organoids 7–9 (C), organo

20 (G). Distance heatmaps fromPCA, PHATE, and CCSF-PHATE (cPHATE) results

distance across the trajectory is more clear in the cPHATE heatmaps than in the P

bars represent the standard deviation of the indices for 1,000 different initializati
low value (2 or 3) for visualization and clustering purposes.

Because of the limited number of low-dimensional components,

the information provided by these models is insufficient for reli-

able trajectory analysis and spatial reconstruction. On the other

hand, the focus of CCSF is to create an optimum representation

of the data with an appropriate number of components (such as

32, 64, and 96) to meet the specific requirements of a down-

stream task (such as trajectory analysis and spatial reconstruc-

tion) (Figures 2, 3, 4, 5, and 6). Finally, gene expression data

represent a very special type of HD data, as their dimensionality

and size (M3 dimensionality, where M is the number of cells)

may curse any existing dimensionality-reduction algorithm,

including FEM and SIMLR methods. CCSF provides an effective

means to overcome this bottleneck.

Spatial reconstruction is a difficult optimization problem and

depends on the geometry of space and quality of the single-cell

data. In our results, we found that CCSF leads to perfect spatial

reconstruction in two representative problems. However, this

may not always be the casewhen the space geometry is complex

(suchas tissue cross-section) and theacquireddatacontain inac-

curate measurements of gene expression count. CCSF does

have some limitations; as CCSF is a method of dimensionality

reduction guided by the contrastive nature of cell classes, if there

is no contrast between the data points (i.e., the dataset contains

data points from only one class), CCSF works similarly to kernel

PCA. In such cases, computation of the distance from cluster

centers in the first step of CCSFworks as a data linearization pro-

cess, and the linear discriminant analysis step works similarly to

simple PCA. In these cases, data linearization and computational

speed are the only benefits of using CCSF over PCA.

In conclusion, we have presented a computational framework

for spatial reconstruction and trajectory mapping of genomic

data. The technique offers a number of unique features and

greatly enhances our ability to analyze large genomic datasets

with high speed and accuracy. We have shown that our de

novo calculation process can provide spatial maps and cell tra-

jectory with remarkable accuracies. The CCSF components can

also be used as input to many other data visualization and anal-

ysis techniques such UMAP and t-SNE for efficient data explora-

tion (see Note S3). The CCSF technique thus lays a technical

foundation for the analysis of genomic data of increasing scale

and complexity. Given its generality and effectiveness, the strat-

egy should also be useful to analyze and solve big data problems

from many other disciplines.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Lei Xing (lei@stanford.edu).
trajectory, clustering accuracy, and inter-class distances in the em-

TE

inter-class geodesic distances (3rd–5th columns) are for the data shown in

ids 10–12 (D), organoids 13–15 (E), organoids 16–18 (F), and organoids 19 and

are shown in the 3rd–5th columns, respectively. The increment of the geodesic

HATE heatmaps, which is also reflected in the Pearson coefficient values. Error

ons of k-means clustering.
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Table 1. Resource availability

Resource Source

Original codes https://doi.org/10.24433/

CO.4232425.v272

https://github.com/

xinglab-ai/ccsf

The Cancer Genome

Atlas (TCGA) dataset

https://portal.gdc.cancer.gov/

BDTNP dataset http://bdtnp.lbl.gov:8080/

Fly-Net/

Cerebellum slide-seq

dataset

https://portals.broadinstitute.org/

single_cell/study/slide-seq-study

Brain organoid dataset https://portals.broadinstitute.org/

single_cell/study/reproducible-

brain-organoids
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Materials availability

All data are available in the main text or the supplemental information.

Data and code availability

This article analyzes existing, publicly available data. These sources of the da-

tasets are listed in the resource availability table (Table 1). All original codes

have been deposited at Code Ocean and GitHub and are publicly available

as of the date of publication. DOIs are listed in Table 1. Any additional informa-

tion required to reanalyze the data reported in this paper is available from the

lead contact upon request.
Methods details

Computation of cell-centroid similarity

We use an unsupervised approach to learn the similarity metric for CCSF. For

this purpose, we sequentially examine the distance of all the data points to two

centroids for a number of commonly used similarity metrics (square Euclidean,

Chebyshev, correlation, and cityblock) with k-means algorithm.58 For each

chosen metric, this led to a distance matrix. The similarity metric resulting in

the best two cluster quality indices (Silhouette, Davies-Bouldin, Calinski-

Harabasz)57 computed from the distance matrix is chosen as the optimal

metric for subsequent calculations of CCSF. Here, an implicit assumption is

used that the best metric that describes the similarity among the cells would

result in the maximum separation of cell classes. The way of optimizing the

metric here is a well-established procedure.19,32–34,59 As examples, in t-SNE

and UMAP,32,33 the cluster separation is optimized in two dimensions to obtain

the best data visualization.

Next, we compute the similarity between the cells and the P numbers of cen-

ters of cell groups. Let us assume a data matrix X of size M3N (M cells and N

genes), which can be treated as M (1 3 N) expression vectors x1;x2;.::;xM.

The P numbers of group centers in CCSF60 are computed by optimizing the

following function:

JP =
XP
p = 1

X
i˛Cp

dðxi ;cpÞ; (Equation 1)

where cp =
P

i˛Cp
xi=np is the centroid of group Cp and np is the number of

cells in Cp. The distance (dðÞ) between a cell expression vector and the group

centroid in the above equation is the learned similarity metric from the first

step. The optimum matrix Dd ˛RM3P = dðX; coptÞ is obtained from the first

optimization in CCSF, which contains the distance (dissimilarity) of the cells

from the centroids. Rows of Dd are scaled from 0 to 1 and then subtracted

from 1 to obtain the cell-centroid similarity matrix (D). Here, copt denotes the

collection of P centroids obtained by minimizing Equation 1.

The objective function (Equation 1) is minimized using the following iterative

method.

(1) Choose P initial group centroids from the input data by k-means++ al-

gorithm.61.
10 Patterns 4, 100840, October 13, 2023
(2) Compute cell-to-centroid distances for all the cells to each centroid.

(3) Assign each cell to the group with the closest centroid based on

distance.

(4) Compute the average of the expression values of cells in each group to

obtain P new centroids.

(5) Repeat steps 2 through 4 until group assignments do not change or un-

til the maximum number of iterations is reached.

We note that the only major calculation for obtaining the cell-centroid simi-

larity in CCSF is the distance computation between the expression values of

the cells and centroids. The complexity of the distance calculation is OðNÞ,
i.e., the computational complexity increases linearly with the number of genes.

Moreover, the data dimensionality reduces to a small number P after this step.

Thus, this step and the remaining CCSF’s computations are not cursed by the

data dimensionality. On the other hand, for PCA, for example, the computa-

tional complexity of eigen decomposition is OðN3Þ, which increases nonli-

nearly with the number of genes.

Computation of cell-cell similarity

The computed cell-centroid similarity matrix D from the last step consists ofM

data points ofP dimension. Let us denote the centeredmatrix computed from it

by D = ½Dð1Þ;/;DðPÞ�. Here, the centered matrix is computed by subtracting

the mean of each column from the data of that column. The cell-cell similarity

matrix can now be obtained by computing the Grammatrix of D as St = DDT .

Computationally, the Grammatrix computes all possible dot products (similar-

ity) of the gene expression vector in the cell-centroid similarity matrix, which in

turn computes the cell-to-cell similarity (denoting similarity) matrix. Here, we

used the fact that if two cells are similar to a centroid, they are also similar them-

selves. Let us now assume that d
ðiÞ
k = d

ðiÞ
k � m (m is the column-wise mean vec-

tor of D of size 13 P) denotes the k-th centered cell-centroid similarity data

point of the i-th class (i = 1;.; P) and that DðiÞ = ½dðiÞ
1 ;/;d

ðiÞ
Mi
� denotes the

centered data matrix of i-th class. Here, Mi is the number of data points in

the i-th class. We can express the between-class cell similarity matrix as

Sb =
XP
i = 1

Mi

�
mðiÞ � m

��
mðiÞ � m

�T

=
XP
i = 1

Mi

 
1

Mi

XMi

j = 1

�
d
ðiÞ
j � m

�! 1

Mi

XMi

j = 1

�
d
ðiÞ
j � m

�!T

=
XP
i = 1

1

Mi

 XMi

j = 1

d
ðiÞ
j

XMi

j = 1

�
d
ðiÞ
j

�T!

=
XP
i = 1

DðiÞUðiÞ
�
DðiÞ
�T

;

where mðiÞ is the mean vector of i-th class and UðiÞ is aMi3Mi matrix with all the

elements equal to 1=Mi.

Let us denote a M3M matrix U as

U =

2
664
Uð1Þ 0 / 0
0 Uð2Þ / 0
« « 1 «
0 0 / UðPÞ

3
775:

We can write

Sb =
XP
i = 1

DðiÞUðiÞ
�
DðiÞ
�T

= DUDT :

We can now express the within-class cell-cell similarity matrix as62

Sw = St � Sb = DðI � UÞDT = DLDT ;

where I is an identity matrix and L = I � U is called the ‘‘graph Laplacian.’’63

Class-discriminative optimization

The goal of class-discriminative optimization is to find a projection matrix

W ˛RP3Q such that in the projected datasets, the points with the same cell

type remain close to each other and the points of different classes remain

distant. To maximize the separation between the cell classes in the data, we

optimize the cost function

https://doi.org/10.24433/CO.4232425.v2
https://doi.org/10.24433/CO.4232425.v2
https://github.com/xinglab-ai/ccsf
https://github.com/xinglab-ai/ccsf
https://portal.gdc.cancer.gov/
http://bdtnp.lbl.gov:8080/Fly-Net/
http://bdtnp.lbl.gov:8080/Fly-Net/
https://portals.broadinstitute.org/single_cell/study/slide-seq-study
https://portals.broadinstitute.org/single_cell/study/slide-seq-study
https://portals.broadinstitute.org/single_cell/study/reproducible-brain-organoids
https://portals.broadinstitute.org/single_cell/study/reproducible-brain-organoids
https://portals.broadinstitute.org/single_cell/study/reproducible-brain-organoids
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W� = argmax
W

tr
�
WTSbW

�
tr
�
WTSwW

� ; (Equation 2)

which is equivalent to optimizing

W� = argmax
W

tr
�
WTSbW

�
tr
�
WTStW

� : (Equation 3)

Here, trðFÞ denotes the trace of the matrix F andW� denotes the optimum pro-

jection matrix. The above equation can also be written as

W� = argmax
W

tr
��

WTStW
�� 1�

WTSbW
��

: (Equation 4)

The optimization problem of Equation 4 can be solved by performing the

following generalized eigenvalue decomposition64,65:

SbW = kStW; (Equation 5)

where k is a diagonal matrix containing the eigen values and each column of A

contains one eigen vector. For invertibleSt, Equation 5 can be furtherwritten as

S� 1
t SbW = kW; (Equation 6)

which is a standard eigen decomposition of S� 1
t Sb but is computationally pro-

hibitive for large datasets.65 We solve this problem efficiently using two SVDs

as detailed below.

The SVD of D can be written as

D = USVT ; (Equation 7)

where S = diagðs1;/; srÞ and s1 R s2 R/R sr > 0 are the singular values of

D; U = ½u1;/; ur �˛RN3r and uis are the left singular vectors; and V =

½v1;/; vr �˛RM3r and vis are the right singular vectors. Here, rankðDÞ = r.

Replacing D in Equation 3, we obtain

W� = argmax
W

tr
�
WTUSVTUVSUTW

�
tr
�
WTUSVTVSUTW

� : (Equation 8)

If we now modify the variable such that B = SUTW, we get66

B� = argmax
B

tr
�
BTVTWVB

�
tr
�
BTB

� ; (Equation 9)

and B� is the matrix containing the eigenvectors of VTWV . From the optimum

matrix B�, we can compute W� by solving a set of linear equations SUTA =

B�.66 We note that for U and B�, we can obtain infinitely many solutions of A

that satisfy the systems of equation. However,

W� = US� 1B� (Equation 10)

is obviously one of the solutions and can be considered as the optimum vector

thatmaximizes theclass separation of thedata. Theproof thatobtainedcompo-

nents are indeedorthogonal to eachother is given inCai et al.66Wenote that the

obtained components can be regarded as uncorrelated discriminant compo-

nents, which are different from the classical linear discriminant components.47

From the above analysis, we conclude that the projection matrixW in Equa-

tion 6 can be computed efficiently through the following steps: (1) computing

the SVD ofD to getU;V, andS, (2) computingB, the eigenvectors of VTUV , and

(3) computing W = US� 1B. In the end, Y = DW;Y ˛RM3Q contains the Q

CCSF components.

Implementation and parameter settings

Both Python and MATLAB 2019a (MathWorks, Natick, MA, USA) implementa-

tions of CCSF were performed. UMAP and PHATE implementations by the

original authors have been used to produce the respective results. If the num-

ber of data points in the analyzed dataset is more than 2,000, then 2,000

randomly selected data points were used for learning the similarity metric in

the first step of CCSF. P is the number of data groups in the k-means++-based

clustering (first optimization) step of CCSF, which is automatically determined
by the Leiden algorithm with a resolution of 138 for spatial reconstruction and

clustering applications. For trajectory analysis, P was kept fixed at 33. Q was

always set to P � 1.

Spatial reconstruction

novoSpaRc with default parameters was used to reconstruct all the spatial

maps.3 In the case of marker-based reconstruction, marker genes were cho-

sen randomly following the original work.3 For CCSF-novoSpaRc, the CCSF

components were used as the marker genes.

Computation of clustering accuracy, cluster quality indices,

and DEMaP

For calculation of clustering accuracy and cluster quality indices, we at first

cluster the data into Ng classes (Ng is the number of classes in ground-truth

label) by k-means clustering technique. We then find the best map of cluster

labels in comparison to the ground-truth labels. These cluster labels are

then used to compute the indices. Accuracy is the number of correctly found

class labels divided by the total number of class labels. The silhouette value67

is a measure of how similar a data point is to its own cluster compared with the

other clusters. The silhouette ranges from �1 to +1, where a high value indi-

cates that the data are well clustered. Calinski-Harabasz and Davies-

Bouldin indices were computed using the formulations proposed in Cali�nski

and Harabasz68 and Davies and Bouldin.69 The AR index is computed

following Hubert and Arabie.37 DEMaP is an index recently proposed in

Moon et al.34 for evaluating the low-dimensional representation from a

dimensionality-reduction technique. To compute DEMaP, at first, the geodesic

distance70 among the data points is computed from the HD data, and the

Euclidean distance among the data points is computed from the low-dimen-

sional representation. DEMaP is defined as the Spearman correlation

coefficient between the geodesic distances and Euclidean distances.

Computation of Pearson correlation coefficient

Let us assume that Rf and Re are the gene expressions from FISH/slide-seq

and are estimated using novoSpaRc/CCSF-novoSpaRc. At first, Rf and Re

were rescaled from 0 to 1. Let us assume that A is the FISH/slide-seq gene

expression vector at N different locations from Rf , whereas B is the estimated

gene expression vector at the same locations from Re. Then, the Pearson

correlation coefficient between A and B is defined as

rðA;BÞ =
1

N � 1

XN
i = 1

�
Ai � mA

sA

��
Bi � mB

sB

�
; (Equation 11)

where mA and sA are the mean and standard deviation of A, respectively, and

mB and sB are the mean and standard deviation of B.

Ablation study

An ablation study was performed on all the datasets simulated using Splatter36

for comparing the performance of different configurations of CCSF (see Note

S4). In CCSF, the k-means++-based clustering technique was replaced by

Fuzzy c-means and partition around medoids (PAM)71 by keeping class-

discriminative optimization. On other condition, k-means++-based clustering

was kept fixed, and the class-discriminative optimization was replaced with

GDA with Gaussian and polynomial kernels, QDA, MDS, and PCA.

Description of datasets

scRNA-seq data were acquired from 17,774 cells from brain organoids 1–3;

27,646 cells from brain organoids 4–6; 32,959 cells from organoids 7–9; 25,618

cells from organoids 10–12, 15,256 cells from organoids 13–15; 21,213 cells

fromorganoids 16–18; and 14,754 cells fromorganoids 19 and 20. The numbers

of cells in the analyzed BDTNP and cerebellum datasets were 3,039 and 7,704,

respectively. The number of genes in the cerebellum dataset was 19,782.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100840.
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