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Aging is characterized by physiological changes within the heart leading to fibrosis and dysfunction even in individuals without
underlying pathologies. Gender has been shown to influence the characteristics of cardiac aging; however, gender-dependent
cardiac fibrosis occurring with age remains largely not elucidated. Thus, broadening our understanding of this phenomenon
proves necessary in order to develop novel anti-fibrotic strategies in the elderly. In this study, we aim to characterize cardiac
fibrosis and cardiac fibroblast (CF) populations in aged male and female mice. Echocardiography revealed eccentric hypertrophy
with left ventricular dilatation in the aged male versus concentric hypertrophy with left posterior wall thickening in the female,
with preserved cardiac function in both groups. Reactive fibrosis was evidenced in the myocardium and epicardium of the aged
female mice hearts whereas perivascular and replacement ones where present in the male heart. Collagen I was predominant in
the aged male heart whereas collagen III was the main component in the female heart. CFs in the aged male heart were mainly
recruited from resident PDGFRa" populations but not derived from epicardium as evidenced by the absence of epicardial
progenitor transcription factors Tcf21, Tbx18 and Wtl. Our results present a paradigm for gender-dependent cardiac fibrosis
and the origins of CFs with age. This sets forth to revisit cardiac anti-fibrotic management according to the gender in the elderly

and to explore novel therapeutic targets.

1. Introduction

Aging is an important risk factor for cardiovascular-related
morbidity and mortality. Aged heart exhibits myocardial
remodelling that includes among others increased apoptosis
and oxidative stress, hemodynamic changes, cardiomyocyte
senescence and collagen deposition leading to cardiac fibrosis
[1, 2]. Notably, aging-related cardiac fibrosis has been dem-
onstrated in animals [3, 4] and humans [1, 5-7] even in the
absence of underlying pathologies. Fibrotic tissue is stiffer
and less compliant [8], resulting in subsequent cardiac dys-
function and heart failure but with normal or nearly normal
ejection fraction. This is known as heart failure with pre-
served ejection fraction (HFpEF), the most common type of
heart failure in the elderly [1, 2, 9].

Gender has been shown, clinically and in experimental
models to influence the characteristics of cardiac remodelling
in disease. This was associated in men with greater expres-

sion of fibrotic markers such as collagen genes that further
contribute to cardiac dysfunction [10, 11]. Besides, cardiac
imaging revealed distinct profiles of cardiac fibrosis in elder
men and women [5, 7, 12]. Till date, there is no direct evi-
dence whether age-related cardiac fibrosis is differential
between the male and female.

CFs are the main actors responsible of cardiac fibrosis
[13, 14]. Upon acute or chronic stress on the heart, CFs dif-
ferentiate into a-smooth muscle actin (a-SMA) expressing
myofibroblasts that remodel the cardiac extracellular matrix
leading to cardiac fibrosis [15-17]. These differentiated
fibroblasts have been also shown to originate mainly from
epithelial-to-mesenchymal transition [18] or endothelial-
to-mesenchymal transition [19]. More recently, studies
demonstrated that resident fibroblasts of epicardial origin,
expressing among other progenitor transcription factors,
platelet derived growth factor receptor alpha (PDGFRa),
transcription factor 21 (Tcf21), T-box transcription factor
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18 (Tbx18) and Wilms tumour 1 (Wtl), give rise to myofi-
broblasts in the diseased heart [20-23]. Nevertheless, studies
exploring CF implication in gender-dependent cardiac
fibrosis with age are still largely lacking.

The objective of this study is to characterize, in a murine
aging model of both genders, the patterns of cardiac fibrosis
and CF phenotypes. This could lead to reconsider the man-
agement of cardiac fibrosis in humans in these conditions
and to identify novel therapeutics.

2. Materials and Methods

2.1. Animals and Study Groups. The present study was
approved by the Ethical Committee of Saint Joseph Univer-
sity. Protocols were designed according to the Guiding Prin-
ciples in the Care and Use of Animals approved by the
Council of the American Physiological Society and were in
adherence to the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health
(NIH Publication no. 85-23, revised 1996) and according to
the European Parliament Directive 2010/63 EU. Animals
were housed in s controlled environment at a stable temper-
ature (25°C) and humidity (50 £ 5%) and were exposed to a
12: 12h light-dark cycle. They were fed ordinary rodent
chow, had free access to tap water and were acclimatized
for at least one week under these conditions before the start
of the study.

The study was conducted in C57BL6/] mice of both sexes;
young mice were two months old and aged mice were twenty
months old. Mice were randomly divided into 4 groups with
a total of 32 animals (n=8 in each group): young male,
young female, aged male and aged female.

2.2. Transthoracic Echocardiography. Transthoracic echocar-
diography was conducted using the SonoScape S2V high-
resolution color Doppler ultrasound system equipped with
a 9MHz C611 transducer (SonoScape Co., Shenzhen, China)
which is specifically designed for mice and rats. Just before
sacrifice, mice were anesthetized with isoflurane where 3%
was used for induction and 1.5% for maintenance, at a flow
of 1 L/min using an EZ-SA800 Anesthesia Single Animal Sys-
tem (E-Z Systems, Pennsylvania, USA). Left ventricular (LV)
parasternal long-axis 2D view in M-mode was performed at
the level of papillary muscle to assess LV wall thicknesses
and internal diameters, allowing the calculation of the
fractional shortening (FS) and ejection fraction (EF) by the
Teicholz method. EF (%) was calculated using the following
formula: EF=(EDV —ESV)/EDV x100; EDV: end-diastolic
volume and ESV: end-systolic volume. FS (%) was calculated
based on the diameters of the left ventricle: FS=(LVIDd —
LVIDs)/LVIDd x 100; LVIDd: end diastolic left ventricular
internal diameter and LVIDs: end systolic left ventricular
internal diameter. Experiments were done by two indepen-
dent operators blinded to the conditions.

2.3. Histology and Immunofluorescence. Mice were sedated by
intraperitoneal injection containing a mixture of ketamine
(Ilium, Australia; 75 mg/kg) and xylazine (Interchemie, Hol-
land; 10 mg/kg). Pedal withdrawal reflex was performed to
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make sure of adequate depth of anesthesia. When animals
were completely non-responsive to toe pinching, their hearts
were removed, rinsed and perfused with ice-cold Ringer’s
solution until all blood was removed. Major blood vessels
and connective tissue as well as the fat surrounding the heart
were discarded, then the heart, with only atria and ventricles,
was blotted dry and weighed. Then, it was cut into half
through a mid-sagittal plane with one half kept in 10%
neutral buffered formalin (4% formaldehyde) and the other
embedded in Optimal Cutting Temperature OCT com-
pound. Tibia was cut and removed at the end.

Neutral buffered formalin was used with a pH of 7.0 sta-
bilized by the addition of sodium dihydrogen phosphate
monohydrate (NaH,PO,.H,0) and disodium hydrogen
phosphate anhydrous (Na,HPO,). Fixed cardiac tissue was
then embedded in paraffin, cut in sections of 4 ym then
stained with Masson’s Trichrome Masson’s trichrome
(Sigma-Aldrich, Missouri, USA) for histopathological evalu-
ation. After staining, sections were rinsed in distilled water,
dehydrated in ethanol/water baths with decreasing water
content, and finally rinsed in xylene before being mounted
with a permanent mounting medium. Histological studies
were performed by two different pathologists and a scoring
system was used to evaluate fibrosis. Representative pictures
were at last taken using a VanGuard High-Definition Digital
Camera (VEE GEE Scientific, Illinois, USA). Coronary thick-
ness was calculated using Image] software. Two sections and
two view fields were analyzed in each condition in animals.

Cardiac tissue that was embedded in OCT was sub-
merged and frozen in isopentane (Sigma-Aldrich, Missouri,
USA) incubated with dry ice. Cryosections of 4 ym thickness
were cut in the same heart location and depth, allowing for a
delicate analysis of cardiac fibroblast populations. They were
then fixed with the neutral buffer formalin solution for 20
minutes at 4 degrees and antigen retrieval was done by incu-
bating the sections with 2N HCI for 20 minutes at room
temperature. Sections were then incubated for 20 minutes
at room temperature with 0.3M glycine that binds free
aldehyde groups that would otherwise bind the primary
and secondary antibodies, leading to high background. Per-
meabilization was achieved with Triton X-100 for 20 minutes
at room temperature. Blocking was performed with 10% goat
serum and 1% bovine serum albumin diluted in phosphate
buffer saline for 1 hour at 37 degrees. Incubation with pri-
mary antibodies was done overnight at 4 degrees in blocking
buffer; antibodies were: Col I (ab34710; 1/100), Col III
(ab7778; 1/100), PDGFRa (abl124392; 1/100), a-SMA
(ab32575; 1/100), Tcf21 (ab32981; 1/100), Wtl (ab89901;
1/250) (Abcam, Cambridge, USA) and Tbx18 (SAB2102382;
1/100) (Sigma-Aldrich, Missouri, USA). The following day,
sections were washed with phosphate buffer saline then incu-
bated with the secondary antibodies for 30 minutes at 37
degrees; antibodies were: Goat anti-rabbit I[gG H&L Alexa
Fluor 488 and goat anti-rabbit IgG H&L Alexa Fluor 594.
The secondary antibodies used were initially pre-adsorbed
by passing them through a column matrix containing immo-
bilized serum proteins from the same species the tissue sam-
ples originated from ie. mouse. This extra purification
process reduces background by lowering the risk of cross-
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FIGURE 1: Left ventricular remodeling with age is differentially regulated within genders. (a-i): Representative histograms of heart and
echocardiographic parameters in the young and aged mice groups of both sexes. HW: heart weight, BW: body weight, TL: tibia length,
IVSTd: end diastolic interventricular septal thickness, LVIDd: end diastolic left ventricular internal diameter, LVPWd: end diastolic left
ventricular posterior wall thickness, SV: stroke volume, EF: ejection fraction, FS: fractional shortening. n = 8 animals per group. *p < 0.05,
**p <0.01 and ***p < 0.001 vs young male and female, *p < 0.05, *p < 0.01 and **p < 0.001 vs aged female or male.

reactivity between the secondary antibodies and endogenous
proteins and immunoglobulins. Finally, sections were
mounted with Fluoroshield Mounting Medium containing
4',6—diamidino—Z—phenylindole (DAPI) (Abcam, Cambridge,
UK) and pictures were taken using an Axioskop 2 immuno-
fluorescence microscope (Carl Zeiss Microscopy GmbH,
Jena, Germany) equipped with a CoolCube 1 CCD camera
(MetaSystems, Newton, Massachusetts, USA). Image analy-
sis and quantifications were done using Image]. WGA,
Col I and Col III quantifications were done by threshold-
ing the acquired pictures, then creating selections of the
fluorescent areas. Two sections were analyzed in each con-
dition in animals.

2.4. Statistical Analysis. Statistical analysis was performed
with the SigmaPlot v11.0 software. All quantitative data are
reported as mean + SEM. Normal distribution of the values
was checked by the Kolmogorov-Smirnov test and equal var-
iance was checked by the Levene Median test. Two-way
ANOVA tests were performed for the two independent vari-
ables, age and sex. To identify which group differences
accounted for significant overall ANOVA results, the
Holm-Sidak test was used for multiple pairwise comparisons.
Significance was set below 0.05 for all analysis.

3. Results and Discussion

Cardiac hypertrophy was present in aged animals of both
sexes but was more pronounced in male as evidenced by
the increase in heart weights as well as heart weight/body
weight and heart weight/tibia length ratios (Figures 1(a)-
1(c), respectively). The use of tibia length for normalization
has been previously demonstrated to be more reliable than
those based on body weight [2]. Therefore, in conditions in
which body weight differences may occur, the heart size can
be more accurately quantified by relating the heart weight
to tibial length. Since body weight represents sexual dimor-
phism with age in rodent such as in the C57BL6/] mice
[24], this might explain the discrepancy seen in the signifi-
cance levels between heart weight/body weight and heart
weight/tibia length ratios. Nevertheless, both ratios demon-
strated the same patterns of cardiac mass between the sexes.
This cardiac hypertrophy was eccentric with stable septal
thickness and increase in left ventricular internal diameter
(Figures 1(d) and 1(e)) as opposed to the female mice that
developed the concentric type with thicker left posterior wall
(Figure 1(f)). Stroke volume reflected chamber dilatation
observed only in the male mice hearts (Figure 1(g)). Cardiac
hypertrophy has been described in elderly patients to develop
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FIGURE 2: Gender-dependent patterns of cardiac fibrosis with age. (a): Perivascular coronary, epicardial and myocardial histological sections
stained in Masson’s trichrome obtained from young and aged mice of both sexes, as well as quantifications of interstitial reactive, replacement
and epicardial fibrosis, and coronary adventitial thickness. The green stains represent the fibrotic areas. (b): Representative images and
quantifications of immunofluorescence staining (594 nm) for whecat germ agglutinin (WGA) in the hearts from young and aged mice
of both sexes. Nuclei are stained blue with DAPI. Scale bars: 100 ym in (a) and 50 ym in (b). Magnifications: x100 in (a) and x200 in
(b). n=8 animals per group, n=3 fields of view per condition. *p <0.05 and ***p <0.001 vs young male and female, “p < 0.05,

*p <0.01 and "*p < 0.001 vs aged female or male.

differently in women and men; in general, women develop a
more concentric form than men with smaller ventricular
diameters and less ventricular dilatation [25]. Several studies
have demonstrated that with age, male hearts exhibit myo-
cyte loss and appearance of replacement fibrosis. However,
this is accompanied by cardiac hypertrophy and increased
heart weight since the remaining myocytes undergo volume
increase. Female hearts also undergo hypertrophy with less
myocyte loss and replacement fibrosis [26]. However, at all
ages, the male hearts remain bigger [27]. At a more advanced

age, other studies showed that cardiac remodeling in the male
progresses toward eccentric hypertrophy which might lead to
heart failure, whereas concentric cardiac hypertrophy and
preserved function remain in the female [28-30]. Whereas
cross-sectional studies have shown both increases and
decreases in cardiac mass with age, a longitudinal observa-
tion of a large cohort of asymptomatic individuals who were
free of clinical cardiovascular disease at baseline, showed a
longitudinal increase in cardiac mass with age in men [31].
In our murine model, the males had larger left ventricular
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Ficure 3: Cardiac collagen displays gender-dependent profiles with age. (a, b): Perivascular coronary, epicardial and myocardial
immunofluorescence staining (594 nm) for collagen I (Col I) and collagen III (Col III) of histological sections obtained from young and aged
mice of both sexes, as well as quantifications of the respective stained zones. Nuclei are stained blue with DAPI. White asterisks indicate
coronary vessels. Scale bars: 50 ym. Magnifications: x200. n = 8 animals per group, n =3 fields of view per condition. *p < 0.05, **p < 0.01
and ***p < 0.001 vs young male and female, “p < 0.05, *p < 0.01 and ***p < 0.001 vs aged female or male.

cavities than the females, whereas the latter had thicker pos-
terior walls; but, the bigger and most importantly the heavier
male hearts show compensatory hypertrophy that explains
the higher stroke volume. Yet again, their hypertrophy may
be at a higher risk of decompensation as shown in literature
and as demonstrated by the important presence of replace-
ment fibrosis in our model.

Cardiac function evaluation i.e. ejection fraction (EF) and
fractional shortening (FS) remained stable with age
(Figures 1(h) and 1(i)). These features are similar to some of
the attributes of HFpEF in humans [32-35]. Geroscience has

undoubtedly shown that HFpEF constitutes the most com-
mon type of heart failure in the elderly and mainly in the
female [1, 2, 9]. The heart of HFpEF patients exhibits struc-
tural alterations including cardiac hypertrophy, interstitial
fibrosis and coronary capillary rarefaction. These alterations
may modify heart dynamics such as increase in left ventricular
passive stiffness, impairment in relaxation, elevation in left
ventricular end-diastolic pressure and enlargement of left
atrium due to increased filling pressures [36]. In our murine
aging model, the lack of left ventricular dynamics assessment
was a limitation for further substantiating HFpEF installation.
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Ficurk 4: Differential gender-dependent distribution of fibroblast populations in the young and aged hearts. (a) Perivascular coronary,
epicardial and myocardial immunofluorescence staining (488 nm) for PDGFR« of histological sections obtained from young and aged
mice of both sexes, as well as quantifications of the respective stained zones. Dark blue arrows indicate cardiomyocytes nuclei stained with
DAPI, whereas light blue arrows indicate co-localization of DAPI and PDGFRw in cardiac fibroblasts. White asterisks indicate coronary
vessels. (b) Immunofluorescence staining (594 nm) for a-SMA of histological sections obtained from young and aged mice hearts of both
sexes, as well as quantifications of the respective stained zones. Nuclei are stained blue with DAPI. Scale bars: 50 ym. Magnifications: x200.
n =8 animals per group, n = 3 fields of view per condition. *p < 0.05, **p < 0.01 and ***p < 0.001 vs young male and female, **p < 0.001 vs

aged female or male.

A thorough histological analysis of cardiac sections
stained with Masson’s trichrome was conducted to study
the location and extent of cardiac fibrosis. Perivascular,
sub-epicardial and interstitial regions of the left ventricle
were examined for total collagen deposition; perivascular
fibrosis was defined as collagen accumulation in the adventi-
tia of coronary arteries. Young mice hearts of both sexes
presented no signs of epicardial or interstitial fibrosis and
had coronary vessels with thin adventitia (Figure 2(a)). With
age, male and female mice showed distinct patterns of cardiac
fibrosis. Interstitial reactive and epicardial fibrosis were

prominent in the female heart whereas thicker adventitia
with scattered myocardial necrotic regions, filled with
replacement fibrosis, were features of the male heart
(Figure 2(a)). These results were further confirmed by wheat
germ agglutinin staining that revealed an important expan-
sion of the cardiac interstitium in the aged female hearts
(Figure 2(b)). According to the literature, only cardiac imag-
ing have shown that age is an important independent predic-
tor of cardiac extracellular volume [5, 7, 12]. Also, aged male
rat hearts were shown to be larger, thinner and more fibrotic
than the female’s [37]. Conversely, reactive interstitial
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per group, n =3 fields of view per condition. *p < 0.05 vs young male and female, p < 0.05 vs aged female or male.

fibrosis was associated with left ventricular hypertrophy
more commonly in women in imaging studies [7, 38]. This
might arise from the fact that the male heart is more prone
to undergo extended myocyte apoptosis with age compared

to the female’s [39]. Our study is the first to demonstrate in
mice, on a cellular level, the presence of differential age-
related cardiac fibrosis patterns between the male and the
female.
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in the aged male heart over reactive myocardial one in the female. Collagen I is predominant in the aged male hearts whereas collagen III
is the main component in the female’s. CFs in the aged male heart were mainly recruited from resident PDGFRa" populations. CF:
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Distribution of the main collagen isoforms within the
heart displayed age and gender dependencies. Collagen I
and IIT were present at low levels in the young mice hearts
of both sexes and drastically increased with age
(Figures 3(a) and 3(b)). Epicardial and myocardial collagen
I staining were higher in the aged male heart as compared
to the female’s (Figure 3(a)). Oppositely, epicardial and myo-
cardial collagen III staining were higher in the aged female
heart (Figure 3(b)). No dissimilarities were seen on coronary
staining for both collagen isoforms between the two groups
of mice (Figures 3(a) and 3(b)). During disease in humans,
such as in aortic stenosis, the male heart has been shown to
undergo changes in collagen architecture with higher colla-
gen I and III compared to women’s that might account for
the depressed cardiac function [11, 40]. Moreover, it has been
reported that increased cardiac content of collagen I pro-
duces maladaptive remodeling due to pressure overload,
whereas increased levels of collagen IIT leads to improved
cardiac function [41, 42]. When it comes to cardiac aging,
collagen has been known to increase in the human heart
through an imbalance in its turnover [3] along with a change
in its characteristics [43] leading to left ventricular stiffness,
impaired relaxation and increase in filling cardiac cavities
pressure, hallmarks of HFpEF. Whereas some studies
described the increase in cardiac collagen I, others reported
the increase in collagen IIT [8, 44, 45]. These discrepancies
might rise from the heterogeneous studied subjects with no
distinction between the sexes. Here, we give a clearer evi-
dence of the distinct collagen phenotypes in the aged male
and female mice hearts. This can be explained by distinct reg-
ulations of collagen I and III by female hormones [46].

The implication of CFs, as the main contributors to car-
diac fibrosis, was finally studied by analyzing CFs lineage
and distribution in the different mice groups. A significant

age-related increase in PDGFR« expression was seen in all
of the studied heart regions (Figure 4(a)). These PDGFRa"
cells were predominantly present in the epicardial and myo-
cardial regions of the male heart as compared to the female’s
(Figure 4(a)). This large expansion of PDGFRa+ CFs in the
male heart states that resident CFs could play a major role
in gender-related cardiac fibrosis with age, since PDGFR«
has been shown as a selective marker of resident CFs through
development and in the adult’s heart [47, 48]. The myofibro-
blast marker a-SMA was only present around coronary ves-
sels with higher expression in the aged hearts (Figure 4(b)).
Nonetheless, epicardial progenitor transcription factors,
Tcf21, Tbx18 and Wtl were all undetectable in the young
and aged mice hearts of both sexes (Figures 5(a)-5(c),
respectively). Age-associated cardiac fibrosis has been linked
to the dysregulation of resident mesenchymal fibroblasts in
the myocardium [49-52]. Intriguingly, this total absence of
epicardial markers in these resident CFs might be explained
by the fact that cell markers differ according to the category
of resident CFs and their degree of differentiation [21, 53,
54] and that distinct fibrogenic mechanisms exist depending
on the underlying pathology [55]. Besides, in a previous
study, we showed the absence of these markers in the young
mice hearts and their appearance only after the induction of
disease i.e. cardiac hypertrophy and fibrosis [56]. To our
knowledge, this is the first study to demonstrate that pat-
terns and phenotypes of CFs in the aged mice hearts are
gender-dependent.

Cardiac fibrosis observed in male and female mice with
age did not lead to significant declines in heart function. In
our study, this might be related to our model whereby old
animals had twenty months. However, based on the presence
of replacement fibrosis along with the rigid collagen I and the
higher number of PDGFRa" CFs in these old male hearts,
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one might postulate that at a more advanced age, i.e. very
old, this could lead to the establishment of functional diver-
gences between the sexes with a decline in cardiac function
in the male.

4. Conclusions

Our results show that gender-related cardiac fibrosis and CF
populations in mice display particular and different patterns
with age (Figure 6). These findings constitute a step forward
to better understanding and management of cardiac fibrosis
in the elderly in humans and can help paving a way toward
novel therapeutic targets.
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