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Chemokine C-X-C motif ligand-1 (CXCL1), principally expressed in neutrophils,

macrophages and epithelial cells, is a valid pro-inflammatory factor which performs an

important role in mediating the infiltration of neutrophils and monocytes/macrophages.

Elevated serum level of CXCL1 is considered a pro-inflammatory reaction by the

organism. CXCL1 is also related to diverse organs fibrosis according to relevant studies.

A growing body of evidence suggests that CXCL1 promotes the process of cardiac

remodeling and fibrosis. Here, we review structure and physiological functions of CXCL1

and recent progress on the effects and mechanisms of CXCL1 in cardiac fibrosis. In

addition, we explore the role of CXCL1 in the fibrosis of other organs. Besides, we probe

the possibility that CXCL1 can be a therapeutic target for the treatment of cardiac fibrosis

in cardiovascular diseases.
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HIGHLIGHTS

- In this review, we have retrospectively analyzed the role of CXCL1 in the pathological process of
cardiac fibrosis.

- CXCL1 may be a potential target for the treatment of cardiac fibrosis.

INTRODUCTION

The morbidity of heart failure (HF) is at a high level. Cardiac remodeling is a clinical process of HF,
and could finally evolve into cardiac fibrosis. Cardiac fibrosis usually appears when myocardium
is constantly at the stage of ischemia and hypoxia (1). It is proposed that chemokine C-X-C motif
ligand-1 (CXCL1) presents significant effect during HF and ischemic cardiomyopathy (2). CXCL1
is a member of chemokines family which mediates the directional immigration of inflammatory
cells, and is critical in recruiting neutrophils and monocytes/macrophages into the target position
such as injured myocardium and arterial wall in CVD (2). Previous studies show that the inhibition
of CXCL1 improves adverse cardiac remodeling and myocardial fibrosis thereby protects cardiac
function (2, 3). Therefore, novel therapeutic method could be applied based on interference of
CXCL1 to improve cardiac fibrosis. CXCL1 is also active in inflammation in other organs as a
major neutrophil chemoattractant to mediate tissue injury (4, 5). However, the regulation and the
mechanism of CXCL1 remain complex and obscure. More research is demanded to clarify CXCL1
and its function in CVD.
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Structure and Physiological Functions
of CXCL1
CXCL1 is widely known as a strong neutrophil chemoattractant
which participates in inflammation of multiple tissues (2, 6–
8). It is a member of CXC superfamily which is one category
of chemokines (2, 9). Chemokines are small chemoattractant
molecules which recruit and activate leukocytes via specific
seven-transmembrane receptors (7). They are classified into four
categories according to the sequence of aminoacids related to
the first 2 cysteine residues, namely CC, CXC, C, and CX3C
families (7, 9, 10). The CXC family is further divided based
on presence or absence of Glu-Leu-Arg sequence (ELR motif)
adjacent to CXC motif (9, 11). CXCL1 is about 8 kDa (12,
13), also called growth-regulated oncogene-α (GRO-α) and
keratinocyte-derived chemokine (KC) (Figure 1) (7, 11), and
usually expressed in neutrophils, macrophages, and epithelial
cells. CXCL1 produces its effect via its receptor CXCR2 which is
mainly expressed on neutrophils and other types of cells (2).

CXCL1 exists in various tissues and produces multiple effects.
As a pro-inflammatory chemokine, CXCL1 mediates acute and
chronic inflammation in diverse organs thereby promotes the
progress of fibrosis. The major physiology function of CXCL1
is mediating leukocyte recruitment and activation to promote
inflammation and aggravate tissue injury. ELR-chemokines are
valid neutrophil chemoattractants acting on G protein-coupled
receptors (11). CXCL1 processes the Glu-Leu-Arg sequence and
attracts neutrophils when inflammation occurs (14). Excluding
inflammation, CXCL1 is also active in angiogenesis, wound
healing as well as tumorogenesis depending on interaction with
leukocytes, endothelial cells, and fibroblasts (7, 15). CXCL1 is
related to angiogenesis during tissue remodeling (9, 16, 17).
Interestingly, ELR-chemokines such as CXCL1 and CXCL2
promote vascular remodeling, whereas non-ELR CXC ligand
such as CXCL4 and CXCL9 serve opposite effect (9). Besides,
numerous studies indicate CXCL1 is important in tumorogenesis
and progress of tumor, and CXCL1 is a promoter in evolvement
of some kinds of tumor. In addition, CXCL1 widely participates
in wound healing, mitosis and ischemia-reperfusion injury
(18, 19).

The Role of CXCL1 in the Development
of Cardiac Fibrosis
It is believed that the main pathological characteristics of CVD
are cardiac inflammation and fibrosis (20). The pathological
characteristics of cardiac fibrosis could be concluded as increased
interstitial fibrosis, myocyte death, and cardiac contractile
dysfunction (21). Current study indicates that HF could be
improved with the depression of cardiac inflammation tends to
be closely relevant to the dysfunction of heart. As previously
described, CXCL1 is active in mediating the infiltration of
neutrophils and monocytes/ macrophages into the impaired
tissues including injured myocardium and arteries. It is indicated

Abbreviations: CVD, cardiovascular disease; HF, heart failure; Ang, angiotensin;

IL, Interleukin; HSCs, hepatic stellate cells; IHD, ischemic heart disease; RAAS,

renin-angiotensin-aldosterone system; MMP-12, matrix metallopeptidase 12; LPS,

lipopolysaccharide; CCL, C-C Motif Chemokine Ligand.

that CXCL1 may aggravate cardiac fibrosis via pro-inflammatory
effect (22). It is found that CXCL1 inhibition protects heart
from Ang II-induced inflammation, hypertrophy and fibrosis
(2). Mice treated with CXCL1 neutralizing antibody tend to
have better cardiac function, lower level of brain natriuretic
peptide and less degree of hypertrophy compared with control
group. Similarly, cardiac remodeling and fibrosis are apparently
alleviated through application of CXCR2 specific inhibitor. In HF
patients with hypertension, the serum level of CXCL1 is obviously
increased in patient with cardiac remodeling and fibrosis (2, 23).
It could be concluded that CXCL1 promotes the inflammation in
heart thereby accelerates the process of cardiac remodeling and
myocardial fibrosis.

Atrial fibrosis is the basis of atrial fibrillation (AF). Current
study indicates CXCR-2 knockout mice had significantly
attenuated atrial fibrillation inducibility, atrial diameter, fibrosis,
and infiltration of macrophages compared with saline-treated
wild-type mice (24). Moreover, circulating blood CXCL-1 levels
were higher and associated with AF in human patients compared
with sinus rhythm controls (24). Besides, CXCL1 is also
considered to mediate the irradiated rat cardiac fibrosis by miR-
21 (25).

In sum, CXCL1 may aggravate cardiac fibrosis induced by
hypertension, atrial fibrillation, post-irradiation and so on.

Mechanisms of CXCL1 in Cardiac Fibrosis
CXCL1 Mediates Leukocyte Recruitment
There is growing evidence to support an important role of
inflammatory cells especially monocytes/macrophages in the
pathophysiology of HF (26). CXCL1 has been reported to exert a
critical role in HF by regulating the recruitment of neutrophils,
T lymphocytes and monocytes, especially regulating CXCR2+

monocytes into the heart tissues leading to cardiac remodeling
and initiating and developing AF (2, 24). CXCL1 produces
its effect via its receptor CXCR2 which is mainly expressed
on neutrophils. CXCR2 activation plays critical roles in the
recruitment of leucocytes and neutrophils, which are involved
in the pathogenesis of atherosclerosis and cardiac fibrosis. In
cardiovascular diseases, it is cognized that CXCL1 is vital
in enlisting neutrophils and monocytes/macrophages into the
impaired myocardium and artery to mediate atherosclerosis and
cardiac remodeling (2). Obvious neutrophil influx mediated by
CXCL1 is discovered in inflammatory sites (27).

CXCL1 Mediates Inflammation
The inflammation in plasma and tissue is accompanied with
risen level of CXCL1 in relevant studies (28). Some researches
demonstrated that the CXCL1-CXCR2 axis mediates the
infiltration of monocytes into heart tissues, leading to cardiac
fibrosis. CXCL1 is also active in inflammation in other organs
as a major neutrophil chemoattractant to mediate tissue injury.
CXCL1 may mediates inflammation by NF-κB (nuclear factor-
κB) signaling, a key regulator of pro-inflammatory mediators and
NOX (nicotinamide adenine dinucleotide phosphate oxidase)-
2 subunit. CXCR-2 deletion reduced the activation of NF-
κB signaling (24). However, whether CXCL1 transcription is
regulated by NF-κB needs further study.
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FIGURE 1 | The structure of CXCL1 and working model for the mechanisms of CXCL1 in cardiac fibrosis.

The Effect of CXCR2 on Cardiomyocyte (CM)

Hypertrophy
CXCR2 was reported to promote CM hypertrophy. CXCR2
KO macrophages were co-cultured with WT neonatal rat
cardiac myocytes (CMs) or fibroblasts (CFs), respectively. After
24 h of Ang II treatment, co-culture of CMs with CXCR2
KO macrophages had a significant reduction in CM size,
the expression of the protein levels of p-AKT, p-ERK1/2, p-
STAT3 and CaNA compared with co-culture of CMs with WT
macrophages (2). Therefore, AKT, ERK1/2, STAT3 and CaNA
may be the important mediators of cardiomyocyte hypertrophy.

CXCL1 in Cardiovascular Angiogenesis
Excluding inflammation and fibrosis, CXCL1 is also active in
angiogenesis. In chronic ischemic heart disease (IHD) patients,
the formation of coronary collateralization is notable. In chronic
IHD, myocardial ischemia may stimulate the secretion of
angiogenic chemokines such as CXCL1 to mediate the formation
of coronary collateralization (9). Coronary collateralization
tends to result in better cardiac function, less arrhythmias,
less complications and higher survival (9). It is indicated
that CXC chemokines play a vital role in the presence of
coronary collaterals (9). ELR motif is structurally decisive for the
physiological functions of CXC chemokines (9). The level of ELR-
chemokines including CXCL1 is risen in vascular remodeling and
angiogenesis. Conversely, CXC chemokines without ELR motif
inhibit the progress of angiogenesis. Therefore, CXCL1 is a potent
promoter of angiogenesis.

The Effect of CXCL1 on TGF-Smad2/3 Signaling
TGF (transforming growth factor)-Smad2/3 are the key signaling
mediators of cardiac fibrosis. These researches investigated that
TGF-β1, p-Smad2/3 were suppressed in CXCR-2 knockout mice,
and α-SMA and collagen I also decreased (2, 24). Therefore,
CXCL1 may induce cardiac fibrosis by TGF-Smad2/3 signaling.

Several Factors Influence the Level of CXCL1 in

Cardiac Fibrosis
Many factors are known to have an impact on the serum level
of CXCL1. Renin-angiotensin-aldosterone system (RAAS) is a
major aspect. Angiotensin (Ang) II promotes the expression of
CXCL1 (2). The inhibition of the activity of RAAS contributes
to cardiac remodeling and fibrosis (2, 3). TRAF3IP2 (TRAF3
interacting protein 2T) is known as a signaling intermediate
of aldosterone/salt-induced cardiac remodeling and myocardial
fibrosis (3). It is discovered that the deletion of TRAF3IP2 gene
significantly attenuated expression of CXCL1 (3). Meanwhile,
CXCL1 mRNA level increases obviously in aldosterone-treated
mice (3). Oppositely, it is indicated that Ang II modulates
smoke- induced lung fibrosis and suppresses the increasing of
CXCL1 (29).

IL-17 is thought a factor of adverse cardiac remodeling and
fibrosis (30), and a key downstream mediator of TGF-β which is
an important promote-fibrosis cytokine. It is indicated that IL-
17 promotes the mRNA expression of CXCL1 and CXCL1 is a
downstream gene of IL-17 (30, 31). With the neutralization of
IL-17, there is a downward trend of expression of CXCL1 (30).
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Knockout of IL-17 gene also markedly down-regulates the level
of CXCL1 in liver fibrosis (32).

Bmal1 (aryl hydrocarbon receptor nuclear translocator-like
protein 1) is the gene of aryl hydrocarbon receptor nuclear
translocator-like protein 1 in cardiomyocyte (33). It is presented
that cardiomyocyte-specific deletion of Bmal1 significantly
upgrades the transcript level of CXCL1, triggers diastolic
dysfunction, extracellular matrix response, and impaired
resolution of inflammation (33).

Besides, a proteolytic enzyme named MMP-9 is known to
have the ability of decomposing CXCL1 (34). MMP-12 which
is produced by macrophages is also related to the serum level
of CXCL1 (35, 36). It is known for its function of degrading
extracellular matrix, but MMP12 has several other functions.
The mRNA level of CXCL1 is much higher in MMP12−/− mice
in infarct area of heart compared with wild type group (35).
It is suggested that MMP12 inhibits infiltration of neutrophils
by depression of CXCL1/CXCL2/CXCL5- CXCR2 axis (35).
However, in other study, the silence of MMP12 leads to decline
of CXCL1 and MMP12 is thought a contributor of secretion of
CXCL1 (36). This is a contradiction we should pay attention to.

In addition to the above, a chemokine-binding protein called
“Evasins” is demonstrated to have the ability of inhibiting both
CC and CXC chemokine (37). Evasin-4 is proved to be relevant
to the decreasing of the serum level of CXCL1 (37). CCL5
(C-C Motif Chemokine Ligand 5) is proved important in the
synthesis of CXCL1 and it could be blocked by Evasin-4 (37). In
addition, chemokines CC-chemokine ligand 2 (Ccl2) was related
to the expression of CXCL1 in HSCs (38). In this research,
Tnfr1−/− /Mdr2−/− mice expressed high levels of CCL2, showed
significantly up-regulated hepatic gene expression of CXCL1
compared to wild type.

Signaling Pathway Regulating CXCL1 Expression
In addition to neutrophils, macrophages, and epithelial
cells, activated hepatic stellate cells (HSCs) also release
CXCL1. CD147 promotes CXCL1 expression in HSCs and
CXCL1 promoted HSCs activation through autocrine (39).
CD147 can bind to integrin and activates the downstream
FAK/PI3K signaling pathway. CD147 overexpression induced
the AKT phosphorylation; however, treating with FAK/PI3K
inhibitor LY294002, CD147-induced AKT phosphorylation
and CXCL1 expression were significantly inhibited. Taken
together, CD147 regulates CXCL1 release in HSCs by
phosphatidylinositol 3 kinase(PI3K)/protein kinase B(AKT)
signaling. Therefore, PI3K/AKT signaling may be one
mechanism of CXCL1 expression. A working model is illustrated
in Figure 1.

MMP12 (matrix metallopeptidase 12) is proved relevant to
several inflammatory diseases. Increased expression of MMP12
leads to proliferation of macrophages (36). CXCL1 is regulated
by MMP12 as a pro-inflammatory chemokine (36). Knockdown
of MMP12 gene reduces the expression of multiple types of
cytokines including CXCL1 in animal models (36). Notably,
MMP12 silencing significantly down-regulate the expression
of mitogen-activated protein kinase p38(P38) and extracellular
regulated kinase 1/2 (ERK1/2) and their phosphorylation (36). It

is hard to say the role of the ERK/P38 MAPK signaling pathway
in pro-inflammatory chemokine CXCL1 during inflammation,
but it provides a new mentality to figure out CXCL1 and
its regulation.

CXCL1 in the Fibrosis of Other ORGANS
Lung Fibrosis
CXCL1 is connected with fibrosis of other organs in extensive
research. Lung fibrosis is known as a progressive disease
characterized by inflammatory infiltration and interstitial fibrosis
(40, 41). Neutrophils mediate lung injury via recruitment
and activation (42, 43). Neutrophil influx correlated with
CXCL1 plays an important role in pulmonary fibrosis (27,
28). Inhibition of the genetic synthesis of extracellular matrix
protein is accompanied with reduced level of CXCL1 (44, 45).
It is suggested that IL-17 inducing chemokines promote the
progress of pulmonary fibrosis (46). CXCL1 is recognized as
the downstream gene regulated by IL-17 and is at a higher
level in fibrosis model (46–48). IL-9 is similar to IL-17 in some
experiments (49, 50). In bleomycin-induced lung fibrosis model,
the release of CXCL1 is promoted by bleomycin (51, 52). Besides,
CXCL1 is a novel marker for evaluating the severity of chronic
obstructive pulmonary disease (28, 53). CXCL1 is also involved
in airway remodeling, asthma and cystic fibrosis in lung (54–56).

Hepatic Fibrosis
CXCL1 is also related to hepatic fibrosis. Similar to pulmonary
fibrosis, liver fibrosis also has an accumulation of extracellular
matrix proteins in structure (57–59). Fibrosis in liver is usually
a consequence of chronic inflammation caused by alcohol, diet
and virus infections (39, 60). Neutrophils play an important
role in liver injury (61). Cholestatic liver injury is accompanied
with infiltration of neutrophils and upregulated expression of
CXCL1 (62, 63). Decreased level of CXCL1 is observed in
treatment of non-alcoholic steatohepatitis and hepatic fibrosis.
Hepatic stellate cells (HSCs) are considered as a precursor of
myofibroblasts in the liver and correlate with the production
of extracellular matrix (64–66). CXCL1 could be secreted by
HSCs in liver and CXCL1 promotes the activation of HSCs
at the same time (39). HSCs stimulated by CXCL1 increase
the expression of collagen type I and α-SMA (39). Therefore,
CXCL1 is considered to be a promoter of hepatic fibrosis
(67). Reduced expression CXCL1 is able to accelerate HSCs
apoptosis thereby ameliorating liver fibrosis (68). In addition,
CXCL1 performs a vital role in hepatic fibrosis induced by
high cholesterol and alcohol. Blockade of CXCL1 by specific
antibody reduced hepatic neutrophil infiltration and liver fibrosis
in relevant study (66). Besides, M2-type macrophage mediated
by CXCL1 is significantly upregulated in cirrhosis patients
(69). CXCL1 could also be regulated by IL-17 in liver (70).
Extracellular vesicles-derived miR-150-5p secreted by adipose-
derived mesenchymal stem cells inhibits CXCL1 expression to
attenuate hepatic fibrosis (5). Surprisingly, some studies suggest
that CXCL1 has a protective effect against liver fibrosis and the
expression of CXCL1 suppress fibrosis (58). The effect of CXCL1
in hepatic fibrosis remains further research.
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Renal Fibrosis
All progressive chronic kidney diseases including obstructive
nephropathy could result to renal fibrosis with impaired
renal function (71, 72). CXCL1 acts an important role
in chronic renal inflammation including obstruction as a
neutrophil chemoattractant (73–75). Increased expression of
CXCL1 exacerbates kidney damage in animal model (4, 76). The
expression of CXCL1 gene could be controlled by NF-κB in
kidney, and NF-κB is known as an indirect pro-fibrogenic factor
(77). Blockade of CXCL1-CXCR2 axis efficiently alleviated renal
inflammation. In addition, previous studies indicated that renal
fibrosis is prompted by increased level of receptor CXCR2 (78).
Macrophages mediated by CXCL1 are correlated with collagen
formation, extracellular matrix deposition and the degree of renal
dysfunction in experimental animal models (79). CXCL1 is also
relevant to the fibrosis of intra-allograft in some cases (80).

Other Organs
CXCL1 is also related to the fibrosis in pancreas and biliary atresia
(81, 82). What’s more, fibrosis after autoimmune thyroiditis is
also supposed relevant to CXCL1 (83).

CONCLUSION

CXCL1 is a potent neutrophil chemoattractant, which could
be secreted by macrophages, fibroblasts, keratinocytes, and
epithelial cells (84). It is involved in diverse tissue inflammations,
fibrosis, tumor, angiogenesis in various tissues. In CVD, CXCL1
plays an important role in cardiac fibrosis especially induced
by hypertension, atrial fibrillation, post-irradiation. Therefore,
CXCL1 is a promising target and antagonism of CXCL1 or
CXCR2 is a novel therapy for treatment of cardiac fibrosis.
However, whether cardiac fibrosis induced by other causes (such

as lone AF, aortic coarctation and myocardial infarction) is
associated with CXCL1 is not clear. Hence, more researches need
to conduct to ascertain the roles and relevant mechanisms of
CXCL1 in these cardiac fibrosis. Actually, we have been doing
related research, and we found that the oxidative stress related
pathway might contribute to the effect of CXCL1 in cardiac
fibrosis. However, we need more research. With the aid of
further researches of CXCL1, it will help cardiologists devise
more reasonable therapeutic plans and improve the prognosis of
CVD patients.
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