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Fungi are more transient 
than bacteria in caterpillar gut 
microbiomes
Martin Šigut1,2*, Petr Pyszko1, Hana Šigutová1, Denisa Višňovská1,2, Martin Kostovčík2, 
Nela Kotásková1, Ondřej Dorňák1, Miroslav Kolařík2 & Pavel Drozd1

Despite an increasing number of studies on caterpillar (Insecta: Lepidoptera) gut microbiota, bacteria 
have been emphasized more than fungi. Therefore, we lack data on whether fungal microbiota is 
resident or transient and shaped by factors similar to those of bacteria. We sampled nine polyphagous 
caterpillar species from several tree species at multiple sites to determine the factors shaping leaf and 
gut bacterial and fungal microbiota as well as the extent to which caterpillars acquire microbiota from 
their diet. We performed 16S and ITS2 DNA metabarcoding of the leaves and guts to determine the 
composition and richness of the respective microbiota. While spatial variables shaped the bacterial 
and fungal microbiota of the leaves, they only affected fungi in the guts, whereas the bacteria were 
shaped primarily by caterpillar species, with some species harboring more specific bacterial consortia. 
Leaf and gut microbiota significantly differed; in bacteria, this difference was more pronounced. 
The quantitative similarity between leaves and guts significantly differed among caterpillar species 
in bacteria but not fungi, suggesting that some species have more transient bacterial microbiota. 
Our results suggest the complexity of the factors shaping the gut microbiota, while highlighting 
interspecific differences in microbiota residency within the same insect functional group.

Interactions between insect herbivores and host plants are among the most important ecological associations on 
Earth1. The role of mediating such interactions is played by associated gut microbiota (bacteria, archaea, fungi, 
protozoa, and viruses)2,3. These microorganisms may, among other roles, provide their herbivore hosts with 
nutrients; aid in the digestion and detoxification of plant tissues; synthesize pheromones; modulate immune 
responses and communication; govern reproduction; and provide protection against pathogens, predators, and 
parasitoids4–6. Lepidoptera are one of the largest insect herbivore orders and their evolutionary success may 
depend on their beneficial relationship with microorganisms5,7.

Living leaves harbor abundant epiphytic (epiphytes)8 and endophytic (endophytes)9 microbial communities. 
Leaf–microbiota relationships range from being clearly negative for the plant10 to strongly positive11. The 
leaf microbiota is diverse with bacteria and especially fungi playing the most prominent roles12,13, providing 
interactive potential for leaf consumers14. However, the caterpillar midgut is a hostile environment for diet-
derived microbes because of its simple tube-like structure, extreme alkalinity (pH 8–12), and high level of plant 
secondary metabolite content (e.g., allelochemicals) from ingested plant tissues5,15,16. Species-specific digestive 
enzymes are adapted to the gut physiochemical conditions. Therefore, they may act as filters for specific gut 
microbial communities5,17.

There is an ongoing debate around the residency and ecological role of caterpillar gut microbiota18. Transiency 
is supported by the fact that diet best explains the dissimilarity in the microbiomes19,20 and that gut changes during 
the life cycle may prevent the establishment of specific assemblages21. Residency is supported by microbiota 
removal potentially reducing caterpillar fitness22. Certain bacterial populations may persist throughout the life 
cycle, despite extensive gut changes during pupation and metamorphosis19,23. Despite the absence of specialized 
gut structures and rapid food transition24, bacteria may form a biofilm, suggesting that they may have an ability 
to colonize the gut25. Therefore, the caterpillar microbiome is likely a multilayer system comprising core taxa 
and a more flexible non-core microbiome26,27 which has a controversial functional role.

Caterpillar gut microbiomes are dynamic and variable with differences in community composition mainly 
depending on the host phylogeny, life stage, physiological environment, and the diet4,7,16,19,28–30. In contrast, the 
microbiota of the diet, which predominantly comprises leaves, depends on the identity of the plant. Plant species 
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differ in their capacity to harbor microbial communities12,13,31. Nutrient availability varies in space and time32 
depending on environmental factors and the associated physiological activity and productivity10,33. Therefore, 
we can expect host-interspecific and spatial differences in the diversity and community composition of the gut 
microbiota.

To determine the factors shaping the diversity and composition of the leaf and gut microbiota and to identify 
the core and transient components of the gut, it is necessary to analyze both environments simultaneously. 
Many metabarcoding studies have focused on a single factor7,34–36 and neglect possible multifactorial effects. 
Studies on the leaf microbiomes of multiple plant species are rare (see12,13,37,38 for exceptions) and the same 
applies to caterpillars35,39,40. These studies have focused on either the bacterial or fungal components. The 
fungal microbiome has been neglected, especially in caterpillars, although it may be richer than the bacterial 
microbiome40.

Using an extensive dataset from nine polyphagous caterpillar species sampled from five tree species at 
multiple sites in three geographically distant temperate forests, we aimed to (i) determine the factors shaping 
the composition and species richness of the bacterial and fungal microbiota of leaves and caterpillars, and (ii) 
compare the composition and richness of the leaf and gut microbiota to elucidate the origin/host fidelity of the 
gut microbiota. We hypothesized that in the case of the transient microbiota, the composition and richness of 
the gut microbiota of caterpillars feeding on different plant populations or species is different. If the community 
structure and richness were either affected by caterpillar species or constantly differed from the leaf microbiota, 
we expected the presence of specific gut microbiota.

Results
Dataset.  Regarding the leaf samples, bacterial (μ = 9281 reads per sample; interquartile range (IQR) 2525–
13,335) and fungal reads (μ = 4738; IQR 1702.5–6418) were represented by 10,965 and 4034 ASVs, respectively. 
On average, we classified 166.8 (SD ± 120.4) bacterial and 72.3 (SD ± 36.2) fungal ASVs per leaf sample. The 
bacterial ASVs occurred on average in 5.21 ± 0.142 samples (1.87 ± 0.051%), and the fungal ASVs occurred in 
6.00 ± 0.260 samples (2.15 ± 0.093%).

The bacterial (μ = 7935 reads per sample; IQR 1571.5–9757) and fungal reads (μ = 5922; IQR 2028–7911) in 
the guts were represented by 12 004 and 9378 ASVs, respectively. On average, we classified 104.2 (SD ± 81.8) 
bacterial and 90.7 (SD ± 39.8) fungal ASVs per gut sample. The bacterial ASVs occurred on average in 7.44 ± 0.246 
samples (0.84 ± 0.028%), and the fungal ASVs occurred in 9.54 ± 0.387 samples (1.08 ± 0.044%). The hierarchical 
taxonomic composition of the leaf and gut microbiota is shown in Figs. S1 (bacteria) and S2 (fungi).

Factors shaping the leaf microbiota.  The bacterial composition was shaped primarily by locality 
(explaining 10.94% of variability; df = 262, F = 19.36, p = 0.001), tree species (8.86%; df = 262, F = 6.27, p = 0.001) 
and their interactions (5.24%; df = 262, F = 2.65, p = 0.001) (Fig. S3), and irradiation (0.90%; df = 262, F = 3.18, 
p = 0.001). Fungal composition was shaped by the tree species (explaining 18.03% of variability; df = 264, 
F = 15.20, p = 0.001), locality (12.20%; F = 25.70, p = 0.001), and their interactions (7.12%; F = 4.29, p = 0.001) 
(Figs. S3, 1).

Bacterial richness mainly depended on the locality (df = 262, F = 40.22, p < 0.001), tree species (df = 262, 
F = 8.88, p < 0.001) and their interactions (df = 262, F = 4.74, p < 0.001) (Fig. 2a), and irradiation (df = 262, F = 5.02, 
p = 0.026). With increasing irradiation, the richness decreased (df = 262, F = 5.41, p = 0.021). Fungal richness 
mostly depended on the locality (df = 262, F = 48.54, p < 0.001), tree species (df = 262, F = 11.84, p < 0.001), and 
their interactions (df = 262, F = 8.58, p < 0.001) (Fig. 2b) and decreased significantly with increasing irradiation 
(df = 262, F = 5.45, p = 0.005) (Fig. 1).

Factors shaping gut microbiota.  The bacterial composition was primarily shaped by caterpillar species 
(explaining 21.10% of variability; df = 866, F = 30.36, p = 0.001; Figs. 3a, S4), then by the caterpillar body length 
(1.62%; df = 866, F = 18.62, p = 0.001), locality (0.94%; df = 866, F = 5.39, p = 0.001), tree species (0.91%; df = 866, 
F = 2.62, p = 0.001), and irradiation (0.20%; df = 866, F = 2.33, p = 0.011). The fungal composition was primarily 
shaped by the locality (explaining 8.40% of variability; df = 882, F = 5.16, p = 0.001) and the caterpillar species 
(4.02%; df = 882, F = 5.16, p = 0.001; Figs. 3b, S4), followed by the tree species (3.24%; df = 882, F = 6.65, p = 0.001) 
(Fig. 1).

The bacterial richness depended on the caterpillar species (df = 864, F = 62.47, p < 0.001; Fig. 4a), sampling 
plot (df = 864, F = 4.05, p < 0.001), and the irradiation (df = 864, F = 6.64, p = 0.001) with a peak bacterial richness 
at 60% of the irradiated crown. There was a significant interaction between caterpillar species and the sampling 
plot (df = 861, F = 3.49, p < 0.001). Fungal richness depended on the sampling plot (df = 861, F = 18.06, p < 0.001), 
followed by the caterpillar species (df = 861, F = 10.32, p < 0.001; Fig. 4b) and the tree species (df = 861, F = 5.52, 
p < 0.001) (Fig. 1).

Comparison of the leaf and gut microbiota.  The composition of the bacterial microbiota of leaves 
and guts significantly differed, explaining 7.40% of the variability (df = 1160, F = 92.66, p = 0.001; Fig. 5a). The 
composition of fungal microbiota also differed, explaining 1.14% of the variability (df = 1161, F = 13.43, p = 0.001; 
Fig. 5b). The dispersion in β-diversity of samples was greater for guts than for leaves in the bacteria (df = 1159, 
F = 16.90, p = 0.001) but not in the fungi (df = 1160, F = 3.06, p = 0.087; Fig. S5). The quantitative similarity between 
the leaves and guts (i.e., leaf–gut similarity) was higher for fungal microbiota than for the bacterial microbiota 
(V = 8091, p < 0.001; Figs. 5a,b and S6). The leaf–gut similarity did not differ among the host plants (df = 877, 
χ2 = 1.45, p = 0.835 and df = 878, χ2 = 8.97, p = 0.062 for bacteria and fungi, respectively) or among caterpillar 
species for the fungal microbiome (df = 874, χ2 = 9.15, p = 0.329) but differed among caterpillar species for the 
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Figure 1.   Sampling scheme for leaves and caterpillars with an overview of the effect of individual variables on 
the composition and richness of the associated bacteria and fungi. For significant variables, the order of their 
significance in the respective analyses is given based on Akaike’s information criterion (AIC), stepwise forward 
selection from permutational multivariate analysis of variance (PERMANOVA) (richness) and generalized 
linear models with Gamma distribution (composition). Only the significant interactions are shown.

Figure 2.   Rarefied richness of (a) bacterial genera and (b) fungal species at the tree species level within the 
sampling localities.
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bacterial microbiome (df = 873, χ2 = 19.70, p = 0.012) and was significantly lower in A. aescularia and O. brumata 
(df = 873, z = − 2.68, p = 0.007 and df = 873, z = − 2.01, p = 0.045, respectively).

Among the 10 most abundant bacteria and fungi, Streptococcus (bacteria) was significantly associated with 
the guts (p < 0.05), whereas Sphingomonas (bacteria) and Erysiphe (fungus) were significantly associated with 
leaves (p < 0.05) (Fig. 6a,b). All the indicator taxa are shown in Table S1.

Rarefied bacterial genera richness was higher in the leaves than in the guts (χ2 = 9.82, p = 0.007; 47.3 
[SD ± 20.2] and 40.3 [SD ± 21.7] genera per sample in the leaves and guts, respectively), whereas the rarefied 
fungal species richness was higher in the guts than in the leaves (χ2 = 15.91, p < 0.001; 30.0 [SD ± 9.2] and 25.9 
[SD ± 9.3] species per sample in the guts and leaves, respectively). In the leaves and guts, the bacterial genera 
richness was higher than the fungal species richness (V = 36 614, p < 0.001; V = 279 457, p < 0.001) (Fig. S7).

Discussion
Leaves harbor diverse and abundant bacterial12,38 and fungal13,41 microbial communities. However, the high 
overall richness in the caterpillar guts contradicts previous findings on species-poor bacterial communities7,30,39 
Contrary to the findings of our previous study40, the bacterial microbiome was richer than the fungal 
microbiome, especially considering that bacterial richness was estimated at the genus level and the fungal 
richness was estimated at the species level. On the other hand, our previous study was aimed primarily at 
fungal microbiomes of leaves and caterpillar guts, and bacteria were studied only marginally. Therefore, the 
number of bacterial samples in that study was low. Moreover, in our previous study, we focused mainly on 
the surficial microbiota (epiphytes) and used different primer sets and bioinformatic tools. In that study, we 

Figure 3.   Principal coordinate analysis (PCoA) plots showing differences in (a) bacterial and (b) fungal 
microbiota composition among the guts of nine polyphagous caterpillar species.

Figure 4.   Accumulation curves (mean ± SD) of (a) bacterial genera and (b) fungal species associated with the 
guts of nine polyphagous caterpillar species.
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worked with OTUs, bacteria were sequenced in 300 bp paired-end mode and identified using the GreenGenes 
database, and fungi were identified only to the genus level, altogether resulting in discrepancy between both 
studies. Nevertheless, the quantification of the 16S and ITS2 DNA in the initial samples is necessary to assess the 
proportional representation of bacteria and fungi in the gut microbiota. Moreover, the extent to which microbial 
communities obtained by metabarcoding are composed of legacy DNA from dead or dormant cells and spores 
remains to be determined42.

The bacterial and fungal components of the leaves were significantly affected by tree species, which is a typical 
pattern43. However, they significantly interacted with locality, implying that trees at different localities harbored 
specific microbial assemblages. This is in contrast with the findings of a recent study that suggested low variability 
in the leaf microbial diversity among individual sites44. However, these findings are aligned with the leaf microbes 
being acquired from the environment, but their survival is filtered by the plant45. The microbiomes of a focal host 

Figure 5.   Similarity comparison of (a) bacterial and (b) fungal microbiota composition between caterpillar guts 
and host tree leaves.

Figure 6.   Composition of (a) bacterial and (b) fungal microbiota associated with caterpillar guts and host tree 
leaves. The 10 most abundant bacterial genera and fungal species are shown.
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species may be affected by the local plant community composition and diversity31,37,44. These measurements were 
beyond the scope of our study but may be responsible for the spatial differences recorded.

Irradiation significantly affected the fungal richness and bacterial composition and species richness. Sun 
exposure is a good predictor of fungal abundance46 and diversity47. For the bacteria, Stone and Jackson48 found 
distinct community composition across canopy positions, with speculative attributability to radiation. However, 
shaded leaves are less exposed to rain, which changes the bacterial composition. Moisture availability may have 
had a substantial impact on the leaf microbiota49. Desiccation, especially in combination with UV radiation, 
strongly limits microbial populations50. However, in the leaf bacteria, UV radiation has been found to have no 
effect on the species richness51.

In caterpillars, bacterial composition and richness were primarily shaped by the caterpillar species. In 
fungi, the role of the host species is secondary, with these being primarily shaped by spatial variables. Strong 
interspecific differences were found in the current study, which is in contrast with the findings of numerous 
studies that similar communities are shared among caterpillar species. This implies a relatively low level of 
importance for the host physiological environment in structuring microbial communities and emphasizing the 
dietary effect19,29,35,39. In contrast, independent of diet, there are interspecific differences in the physiochemical 
conditions of the gut, which exert strong selection pressure on microbiota5,17. In this context, the associated 
differences in the gut microbiota were in line with other findings from the literature.

Bacterial composition was significantly affected by the caterpillar body length. Changes in the community 
composition are attributed to the increasing importance of gut filtering throughout the caterpillar life cycle7,28,52. 
As caterpillars grow, less oxygen penetrates the gut lumen, which promotes the development of facultative 
anaerobic bacteria dominated by Enterobacteriaceae, which decreases the diversity23. This was not reflected here 
because we only sampled similarly sized caterpillars (3–4th instar) to suppress the effects of the developmental 
stage. This protocol did not result in a dataset composed of same-instar caterpillars, and some effect from body 
length may be attributable to this effect.

Apart from the strong effect of the caterpillar species, differences in the composition and richness of the gut 
bacterial microbiome were shaped by irradiation, spatial variables, and their interaction with the caterpillar 
species. The climatic and ecological factors of host habitats are known to affect the insect gut bacterial 
composition53,54. However, given that the conditions of the individual plots affect individual caterpillar species 
differently, the effect of the environmental conditions remains unresolved. The bacterial richness and composition 
may be strongly affected by biotic conditions, especially parasitoid infection26. The spatial differences in the 
parasitism rate and the parasitoid community composition are well known55,56. Although we tried to eliminate 
all the parasitized samples prior to processing, the parasitoid juvenile stages may have been overlooked and could 
have contributed to the differences in the bacterial composition and richness.

Host tree species also significantly affected the gut fungal and bacterial microbiomes. Bacterial gut 
communities are strongly influenced by diet57. Here, however, the leaf bacteria were primarily affected by the 
spatial variables. Therefore, the bacterial gut content may not be affected by the microbial composition of the 
diet, but rather by its quality including the protein and carbohydrate content20, and plant secondary metabolites25. 
This places strong selective pressure on the gut microbiota. This pressure seems to be less important for fungal 
components, which are primarily affected by the spatial variables either in the diet or the gut.

The composition of the bacterial and fungal gut components significantly differed from those of the leaves. 
However, this difference was much more pronounced in the bacteria. Caterpillars move over relatively long 
distances when feeding58, and Orthosia spp. are occasional entomophages59. They likely sampled a much larger 
microbial pool than that reflected in the relevant leaf sample, which may have contributed to their low level of 
similarity. The bacterial richness was higher in the leaves than in the guts, whereas fungal components showed 
an opposite pattern, suggesting that the fungi may be less filtered than the bacteria. The composition of the leaf 
bacteria was balanced, whereas in the guts there was a higher level of host-interspecific variability. In contrast, the 
fungal component of both leaves and guts was dominated by Aureobasidium pullulans, Ramularia, and Dothiora, 
highlighting an occurrence of environmental acquisition greater than in bacteria.

This finding was corroborated by analysis of the factors that form individual microbial components of the 
gut. In fungi, the caterpillar species was a secondary factor explaining less variability than the spatial variables 
including the locality and the sampling plot, which predominantly shaped the richness and composition of 
the diet. However, the bacterial component of the guts was shaped primarily by the caterpillar species and was 
affected by the caterpillar body length, indicating a greater involvement of gut filtering. The bacteria in the diet 
varied considerably among individual localities. However, this was not reflected in the gut bacteria. The spatial 
variability of bacteria manifested at the level of individual localities, which may reflect the host’s adaptation to 
local conditions. These results indicate that the fungal component of the gut is more transient, whereas bacteria 
form a core component.

The leaf–gut similarity of the bacterial—but not the fungal—components differed significantly among 
caterpillar species, suggesting that some species have lower leaf–gut similarities (specifically A. aescularia and 
O. brumata). This suggests a higher involvement of resident (core) bacterial taxa or stronger environmental 
filtering. This may be explained by their similar life histories and dispersal strategies. Unlike the remainder 
of the study species, adults remain active during winter, occurring in high abundances60. For both species, 
ballooning dispersal, in which caterpillars use silk to move through the air, was documented61. Both strategies 
could contribute to sampling different microbial pools from the environment. Extreme winter conditions may 
alter the adult gut microbiota, which may be vertically transferred to the offspring through contamination of the 
egg surface23,28. While the bacterial microbiota of some hosts (P. munda, A. aescularia, P. pilosaria, O. brumata) 
were relatively similar, other species (E. defoliaria, L. dispar) hosted more specific bacterial consortia, suggesting 
diversity in the direction of environmental filtering.
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Our study highlights the complexity of the factors shaping leaf and caterpillar gut microbiota, which makes 
it difficult to draw conclusions, even with a large dataset. Other important factors were not accounted for in 
this study, namely the interactions within and among microbial groups that are abundant and of considerable 
importance in the leaves62,63 and the gut3,64. The relatively static physiochemistry of the host as well as the 
dynamic microbe-microbe, microbe-host and host-mediated microbe-microbe interactions are likely the drivers 
of microbiota community composition43, as applied in both environments. Future studies using a community-
level approach may clarify the relative importance of stochastic and deterministic processes in governing the 
gut microbiota assembly and how this importance varies through space and time. A functional approach using 
transcriptomics, which identifies biologically active taxa, would complement these studies, and elucidate the 
link between the core component of the gut and its significance for the host.

Materials and methods
Sampling of leaves and caterpillars.  Field sampling was conducted at the end of April to mid-May, 2018 
at three remote localities in the temperate floodplain forests of Moravia, Czech Republic: southern (48.8926N, 
17.0700E; 170 m a.s.l.), central (49.6932N, 17.1399E; 225 m a.s.l.), and eastern (49.7918N, 18.2061E; 220 m a.s.l.) 
(Fig. S8). At each locality, we sampled the leaves of five tree (Fagales: Quercus robur, Q. petraea, Corylus avellana, 
Carpinus betulus, and Alnus glutinosa) and nine caterpillar species (polyphagous leaf-chewers, Lepidoptera—
Noctuidae: Orthosia cerasi, O. cruda, and Perigrapha munda; Geometridae: Agriopis marginaria, Alsophila 
aescularia, Erannis defoliaria, Operophtera brumata, and Phigalia pilosaria; and Erebidae: Lymantria dispar). 
Within each locality, we set three remote sites (sampling plots) containing all the tree species, each represented 
by six to seven individuals (Fig. 1). The caterpillars were sampled manually or by using 1-m2 beating sheets. 
Each individual was captured using sterilized tweezers, transferred to a 1.5-ml centrifuge tube with 98% ethanol, 
and the post-mortem length was then measured. To minimize the combined effect of the developmental stage 
and the locality (localities were sampled consecutively) on the composition and diversity of the microbiota7, we 
sampled 3–4th instars of the given species in each sampling plot.

Simultaneously, we sampled the host tree leaves. Within each tree, we randomly selected five leaves, cut the 
middle parts (2 cm2 segments; i.e., 10 cm2 per sample) using sterilized tweezers and scissors, and transferred 
them to a 1.5-ml centrifuge tube with 98% ethanol. Given that herbivory is known to generate variations in the 
within-host microbial fitness and alter the structure of the leaf microbiota65,66, we assessed the effect of herbivory 
by selecting approximately half of the samples (n = 136) from leaves with herbivory damage and half (n = 143) 
from pristine leaves. For each tree from which we had leaf and caterpillar samples, we estimated (based on three 
collectors) the irradiated proportion of the crown, measured the sampling height above the ground using a digital 
laser distance meter (HECHT® 2006; Hecht Motors Inc., Prague, Czech Republic), and measured the diameter 
at breast height. The tubes with the caterpillar and leaf samples were stored at − 32 °C. To maintain a balanced 
sampling design, leaf samples from 279 tree individuals and 883 caterpillars with the best overlap among tree 
individuals, tree species, sampling plots, and localities were selected for further processing (Table S2).

Identification of caterpillars.  The caterpillars were identified at the morphospecies level using standard 
identification keys, field guides, and online databases (Table S3). Specimens that could not be reliably assigned to 
a morphospecies (e.g., congeneric species; 231 individuals) were subjected to the DNA barcoding of cytochrome 
oxidase subunit I (COI) following Hrcek et  al.67. We used DNA extracted from the guts (see below). PCR 
products were sequenced in the forward or reverse direction using an ABI 3730XL sequencer (Macrogen Europe, 
Amsterdam, Netherlands). Specimen records with sequences are accessible on BOLD (dataset DS-SYMB; DOI 
https://​doi.​org/​10.​5883/​DS-​SYMB).

Processing of caterpillars and leaves.  Each caterpillar was washed through vortexing in a 1.5-ml tube 
with 98% ethanol at 2100 rpm for 90 s, transferred to a clean 1.5-ml tube, and washed in a 1-ml sterile solution 
of 1% Tween 80 and phosphate-buffered saline (PBS) (Sigma-Aldrich, Saint Louis, MO, USA) at 2100 rpm for 
45 s to minimize contamination by surficial microbiota. The gut content was separated using a sterilized scalpel, 
needle, and minute pins onto paraffin wax sterilized with flamed ethanol68 and transferred to a new 1.5-ml tube 
with 100 μl of 1× PBS. The leaf samples in the 1.5-ml tubes with 98% ethanol were vortexed at 2100 rpm for 
45 s and then centrifuged at 5400×g for 15 min at 4 °C. The supernatant was discarded, and the residual ethanol 
was evaporated at 55 °C for 45 min. Subsequently, leaf samples (tissue together with the DNA pellet from their 
surface) were resuspended in 200 μl of 1× PBS solution and stored at − 32 °C for subsequent DNA isolation.

DNA metabarcoding of bacteria and fungi.  The DNA was extracted at the level of individuals from 
the guts (n = 883) and leaves (n = 279) using a NucleoSpin Tissue DNA Isolation Kit (Macherey–Nagel, Düren, 
Germany) following the manufacturer’s protocol. The samples were repeatedly crushed in 1.5-ml tubes using 
plastic pestles and liquid nitrogen before cell lysis. In samples with higher amounts of the input tissue, we 
adequately increased the volume of enzymes and buffers used for (pre)lysis and subsequent DNA binding 
steps. To ensure broad bacterial and fungal diversity recovery, we used highly degenerate primers, which 
can significantly reduce the recovery of plant-originating sequences (chloroplasts). For the amplification of 
the fungal ITS2 rRNA region, we used ITS3_KYO2 5ʹ-GAT​GAA​GAA​CGY​AGY​RAA​-3ʹ (forward) and ITS4_
KYO3 5ʹ-CTBTTVCCKCTT​CAC​TCG-3ʹ (reverse)69, and for the bacterial V5–V6 16S rRNA region, we used 
799F 5ʹ-CMGGA​TTA​GAT​ACC​CKGG-3ʹ (forward) and 1115R 5ʹ-AGG​GTT​GCG​CTC​GTTG-3ʹ (reverse)70,71 
with barcodes added to the 5ʹ end of both primers, enabling the identification of each sample. All the PCRs 
were performed in triplicate to minimize the effects of stochastic amplification. The amplification of the ITS2 
rRNA gene region was performed as described by Toju et al.69 with minor modifications consisting of initial 
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denaturation at 95 °C for 3 min; 35 cycles at 94 °C for 30 s, 55 °C for 60 s, 72 °C for 60 s; and a final extension at 
72 °C for 10 min. The amplification of the 16S rRNA gene region consisted of initial denaturation at 94 °C for 
4 min; 35 cycles at 94 °C for 45 s, 50 °C for 60 s, 72 °C for 75 s, and a final extension at 72 °C for 10 min. Each PCR 
reaction (25 μl) consisted of 9.4 μl molecular biology grade water (New England BioLabs, Ipswich, MA, USA), 
0.5 U KAPA2G Robust HotStart DNA Polymerase, 5 μl of 5× KAPA2G Buffer B, 5 μl of 5× KAPA2G Enhancer 
(all Kapa Biosystems, Wilmington, NC, USA), 0.5 μl of 10 mM dNTP Mix (Thermo Fisher Scientific, Waltham, 
MA, USA), 0.8 μM of each primer, and 2 μl of genomic DNA. All the PCR products were analyzed using 1.5% 
agarose gel. We pooled triplicate PCR reactions of individual samples within each “plate library” (96 samples). 
The amplicons of the specific length from individual libraries were excised from the 2% agarose gel and purified 
using a QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany). The DNA concentration was measured using a 
Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific), and we equalized concentrations within all the libraries 
to 20 ng/μl. Individual “plate libraries” were subjected to DNA ligation of sequencing adapters and library-unique 
multiplex identifiers using the KAPA Hyper Prep Kit, and were subsequently quantified using a KAPA Library 
Quantification Kit (both Kapa Biosystems). The equimolar proportions of the individual “plate libraries” were 
pooled, creating one final library of fungal samples and a second of bacterial samples at 7.5 ng/μl. The fungal 
library was subjected to paired-end sequencing on a MiSeq instrument, producing 2 × 300 bp reads (four runs in 
total), whereas the bacterial library was subjected to single-end sequencing on the NextSeq 500 (Illumina Inc., 
San Diego, CA, USA) (one run), producing a 1 × 150 bp read at the Genomics Core Facility, CEITEC (Masaryk 
University, Brno, Czech Republic). In this study, bacterial sequences represented 39.0% and fungal sequences 
represented 39.8% of the total NextSeq and MiSeq sequencing outputs. The remaining sequences were dedicated 
to another study. The raw demultiplexed sequencing data with sample annotations are available at the NCBI 
Bioproject website (https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/) under the accession number PRJNA694554.

DNA metabarcoding data processing.  The sequencing data were processed using QIIME 2.0 2020.272. 
The raw reads were demultiplexed and quality filtered using the q2‐demux plugin, and in the case of the fungal 
datasets, the ITS region was extracted using the q2-ITSxpress plugin73. Afterwards, the reads were denoised 
using the DADA2 algorithm74 and a feature table with counts of amplicon sequence variants (ASVs) per sample 
was produced. The taxonomy was assigned using the q2‐feature‐classifier classify-sklearn75 using a trained 
naïve Bayes classifier against the SILVA_138_SSURef_Nr99 bacterial reference database76 and UNITE QIIME 
release for Fungi version 8.077,78. We obtained an ASV table with 27,552,665 bacterial and 6,679,221 fungal 
reads. Further, we identified contaminant ASVs using the “decontam” package79 based on the prevalence method 
with extraction controls as negatives (three per each 96-well plate). The probability threshold below which the 
null hypothesis of non-contamination was rejected was 0.1. We discarded 353 bacterial and 291 fungal ASVs 
(2.92% of reads; Table S4) and removed unassigned reads (3.04%) and those associated with chloroplasts and 
mitochondria (46.9%). Finally, 9,586,289 bacterial (7,006,293 gut; 2,579,996 leaf) and 6,551,306 fungal reads 
(5,229,511 gut; 1,321,795 leaf) were used for analysis.

Statistical analyses.  The data were analyzed using R 4.0.280 and Canoco 5.081. For hierarchical visualization 
of the recovered fungal and bacterial composition of the leaf and gut microbiota, we used Krona charts82. The 
bacterial ASVs were analyzed at the genus level (only a small number of ASVs could be classified to the species 
level), whereas the fungal ASVs were analyzed at the species level. For the bacterial and fungal taxa, the number 
of reads, and the variables entering the analyzes, see Table S5. To compare the bacterial genera/fungal species 
richness, the number of reads in each sample was rarefied to 400. Rickettsiales (i.e., Rickettsia and Wolbachia) 
were excluded from the analyses of gut composition as they are intracellular parasites, likely originating from 
gut cells instead of the lumen. However, they were not excluded from the leaf analyses, in which they commonly 
survive83. However, this group was excluded from both datasets for comparison of the leaf and gut composition. 
For the final generalized linear models, we checked the possible collinearity of variables using the generalized 
variance inflation factor from the “car” package84 adjusted to the given degrees of freedom, potentially excluding 
variables exceeding the threshold of > 2.

Ethics statement.  No specific permissions were required to collect insect and plant specimens, because 
the study species do not include any species at the risk of extinction, according to the IUCN Policy Statement 
on Research Involving Species at Risk of Extinction, or endangered species of wild fauna and flora according 
to the Convention on the Trade in Endangered Species of Wild Fauna and Flora. Voucher specimens for all the 
plant and insect species described in the manuscript are deposited in the collection of the University of Ostrava 
(with deposition numbers from DS_SYMB_F001 to DS_SYMB_F279 for plants, and from DS_SYMB_C001 to 
DS_SYMB_C883 for insects).

Factors shaping the leaf and gut microbiota.  To determine the most important factors shaping the 
composition of the leaf and gut microbiota, we performed permutational multivariate analysis of variance 
(PERMANOVA) using the “vegan” package85 with 999 permutations and distance matrices calculated using 
the Bray–Curtis method separately for the bacterial and fungal datasets. For the leaf microbiota, we used two 
groups of explanatory variables, characterizing the host tree (species, diameter at breast height, sampling height, 
irradiation of crown, and herbivory damage) and the environment (locality, sampling plot, and day in the season). 
For the gut microbiota, we added a third group of variables characterizing the host caterpillar (species, family, 
and body length). The final models were built using stepwise forward selection based on Akaike’s information 
criterion (AIC). The resulting models were accompanied by principal coordinate analyses (PCoA) of both 
datasets tested by Monte Carlo permutation tests for the significance of correlation with 999 permutations. The 
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caterpillar species was used as an explanatory variable, and for the fungal dataset, locality was used as a covariate, 
which explained more variability than the caterpillar species in PERMANOVA.

We analyzed the rarefied richness using generalized linear models with Gamma distribution, except for a 
linear model for the gut microbiota fungal dataset, which were built using stepwise forward selection based on 
AIC from the set of explanatory variables characterizing the trees, environment, and caterpillars for the gut 
microbiota only. For the gut microbiota, we compared the distribution of the rarefied richness for the bacterial 
and fungal datasets using the paired Wilcoxon signed-rank test.

Comparison of the leaf and gut microbiota.  We used PERMANOVA to compare the bacterial/fungal 
composition between the leaves and the guts. Given that multivariate variation among the test groups may, in 
the case of an unbalanced number of samples, compromise the PERMANOVA results, we added PERMDISP2 
procedure for the analysis of multivariate homogeneity of group dispersions (variances) based on the Bray–
Curtis distance, measuring the distance to the group centroids86. The models were accompanied by PCoA for 
both datasets, with each tested using the Monte Carlo permutation test for the significance of correlation with 
999 permutations. The analyses were supplied by bar plots depicting the 10 most abundant bacterial genera and 
fungal species. We calculated the quantitative similarity between each gut and its host tree leaf sample using the 
Renkonen index87. We compared the distribution of the leaf–gut similarity for the bacterial and fungal datasets 
using paired Wilcoxon signed-rank tests. We analyzed which explanatory variables affected the similarity using 
generalized linear models with binomial distribution built by stepwise forward selection. For the final model, 
the contrasts were set to sum, which compares the mean of a dependent variable for a given level to the overall 
mean of the dependent variable.

The rarefied bacterial genera/fungal species richness of the gut and leaf microbiota was compared using 
generalized linear mixed models with Gamma distribution and the sampling plot as random terms using the 
“lme4” package88. The significance of the models was determined by comparing them with relevant null models. 
We identified the indicator bacterial genera/fungal species for the leaves and guts and separately for the gut 
microbiota of each caterpillar species and the leaf microbiota of each tree species using the IndVal method 
from the “labdsv”89 and “indicspecies”90 packages, which generates a value indicating the frequency and relative 
abundance of reads91 and by using multi-level pattern analysis89,90 with adjusted p-values to correct for multiple 
comparisons using Benjamini–Hochberg corrections92.

Data availability
Caterpillar specimen records with sequences are accessible on BOLD (dataset DS-SYMB; https://​doi.​org/​10.​5883/​
DS-​SYMB). Bacterial and fungal raw demultiplexed sequencing data with sample annotations are available at the 
NCBI Bioproject website (https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/) under the accession number PRJNA694554. 
An overview of the bacterial and fungal taxa, the number of reads, and the variables entering the analyzes is 
included in the Supplementary Information (Table S5).
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