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Background
Metagenome sequencing is a powerful approach to study microbial communities in 
natural environments [1]. In a pipeline for the metagenomics project, taxonomic clas-
sification aims to accurately assign each fragment to its corresponding host organism 
and is one of the most important initial steps. With the progress of sequencing technol-
ogy, modern metagenomics methods need to deal with vast sequence datasets. Identify-
ing taxa for billions of reads according to a reference database with many thousands of 
microbial genomes available today is becoming a time-consuming process. As the data-
base from NCBI is continuously growing and being more complete, we have to consider 
the trade-off between the size of the reference database and the classification accuracy as 
well as the computational cost.

Abstract 

Background: Current taxonomic classification tools use exact string matching 
algorithms that are effective to tackle the data from the next generation sequencing 
technology. However, the unique error patterns in the third generation sequencing 
(TGS) technologies could reduce the accuracy of these programs.

Results: We developed a Classification tool using Discriminative K‑mers and Approxi‑
mate Matching algorithm (CDKAM). This approximate matching method was used for 
searching k‑mers, which included two phases, a quick mapping phase and a dynamic 
programming phase. Simulated datasets as well as real TGS datasets have been tested 
to compare the performance of CDKAM with existing methods. We showed that 
CDKAM performed better in many aspects, especially when classifying TGS data with 
average length 1000–1500 bases.

Conclusions: CDKAM is an effective program with higher accuracy and lower 
memory requirement for TGS metagenome sequence classification. It produces a high 
species‑level accuracy.

Keywords: Third generation sequencing, Taxonomic classification, Discriminative 
k‑mer, Approximate matching

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi 
cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Bui and Wei  BMC Bioinformatics          (2020) 21:468  
https://doi.org/10.1186/s12859‑020‑03777‑y

*Correspondence:   
ccwei@sjtu.edu.cn 
1 Department 
of Bioinformatics 
and Biostatistics, 
School of Life Sciences 
and Biotechnology, Shanghai 
Jiao Tong University, 
Shanghai 200240, China
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-1031-034X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03777-y&domain=pdf


Page 2 of 13Bui and Wei  BMC Bioinformatics          (2020) 21:468 

Currently, there have been many methods developed to taxonomically classify 
metagenomic data. In general, they can be divided into two categories: (1) alignment-
based methods and (2) sequence composition based methods, such as k-mer-based 
methods [2]. Alignment-based classifiers proceed by aligning metagenome sequences to 
all genomes in the reference database to find the genome with the best alignment. The 
most well-known alignment algorithm is BLAST program [3]. Although its original pur-
pose was not for metagenomic classification, BLAST still works for this problem. Almost 
all classifiers extended from this method are accurate, however suffer from slow speed. 
Another type of alignment programs is fast for sequence mapping, such as Bowtie2 [4]. 
By applying a concatenation procedure to remove the shared regions between different 
strains of a species, Centrifuge [5] creates a highly compressed BWT-indexed reference 
database and achieves a higher speed. In contrast, sequence composition based meth-
ods, such as CLARK [6] and Kraken [7] are fast. The database of CLARK is basically a 
hash table, which contains a reduced set of k-mers and uses separate chaining to resolve 
collisions. Any k-mer that appears in more than one genome is removed. In Kraken, 
each k-mer is stored as a hash value and mapped to the lowest common ancestor of the 
source genome. Kraken 2 [8] improves upon Kraken by using a Compact Hash Table, a 
probabilistic data structure that supports storing only 15% of the database. The speed 
increases 5 times while maintaining the accuracy as the original version.

The advantages of the third-generation sequencing technologies such as long read 
length make them attractive for many applications including metagenomics study. With 
further improvement in throughput and error rate reduction, this platform can be a great 
promise for analyzing the structure of more complex microbial communities [9]. How-
ever, due to the noisy outputs (error rate of 10–20%) of TGS platforms such as Nanopore 
[10] or PacBio [11], current taxonomic classification methods for NGS sequencing data 
do not work well for TGS sequencing data in some situations. For example, under a sim-
ple binomial model on a read length of 1000 and a uniform 15% error rate, only 73 exact 
16-mers matches are found in the comparison with its correct mapping location [12]. 
Metamaps [12] is a hybrid tool that combines mapping strategy based on short k-mer 
and a probabilistic model using Expectation Maximization (EM) algorithm to estimate 
the sample composition. Simulating on long reads, Metamaps provides a higher accu-
racy but a hundred times slower than other existing methods.

In this project, we present CDKAM, a new taxonomic classification tool for TGS 
sequencing data with high error rate. The efficiency of our method and other bioinfor-
matics applications are compared and validated on simulated and real long-read metage-
nome sequencing data. The results show that CDKAM can classify TGS sequences to 
their source genomes accurately and efficiently.

Implementation
Design of k‑mer data structure

We designed a data structure of k-mers as demonstrated in Fig. 1. A long k-mer with a 
size of 32 bases is chosen to increase the accuracy of classification. For each k-mer, the 
stored information includes a PREFIX (the first n bases, n could be equal or less than 16) 
and a SUFFIX (the last 16 bases). The SUFFIX is further divided into two parts: QM and 
DP with the length of m and 16-m, correspondingly. Additionally, the SUFFIX is paired 
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with the genus or species taxonomy ID of the k-mer. Here, we introduce an example 
about the approximate matching string used in CDKAM. GCT TAA CAA CGT CGT TAA 
GCTCA_ATG TCA TA is approximately matched with GCT TAA CAA CGT CGT TAA 
ACT CAA ATG TAA TA using the pink part, which contains two replacements and one 
deletion as the green highlighted characters in Fig. 1.

Reference database creation

The reference genomes of archaea, bacteria, fungi, virus and human used for the clade 
exclusion experiments are downloaded from NCBI. As reported in May 2020, the total 
size is 84 GB.

The database construction of CDKAM is shown in Algorithm 1 and Fig. 2. The k-mer 
collision is solved at three stages: species level, genus level and the whole database level. 
At the first step of collecting the k-mers of all strains that belong to a species, each 
identified k-mer is stored only once to avoid duplication. Next, the overlapping k-mers 
that are shared by at least two species of a genus are assigned to the taxonomy of the 
genus level. A proportion X% of the k-mers at each genus level is chosen (X% is set to 
15% by default). They are selected uniformly over the range of each genome in order to 
maximize the chance of hits. After combining the k-mers from all the species used to 
construct the database, CDKAM removes any common k-mer between all genomes to 
obtain discriminative k-mers, which represent unique genomic regions characterizing 
each species. Finally, the full set is divided into  4n smaller groups by using the integer 
value of k-mer’s PREFIX as the group ID. Consequently, CDKAM only need to store the 
size of each group, the SUFFIX and taxonomy ID of k-mers, which could reduce a large 
portion of memory consumption.

Fig. 1 The structure of k‑mers in CDKAM. A k‑mer contains two parts: PREFIX and SUFFIX. SUFFIX can further 
be divided into two fragments: QM and DP, where QM stands for “quick mapping”, DP means “dynamic 
programming”, which are two fragments used for quick classification based on approximate matching 
strategies. For k‑mers with the same PREFIX, we can group them by using a groupID converted from PREFIX, 
and save multiple k‑mers (one PREFIX and multiple SUFFIXes) in a compressed way (see Reference database 
creation for more details)
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Algorithm 1: Description of CDKAM’s database building phase.

Fig. 2 Diagram of reference database construction. Step 1: From the downloaded reference genomes and 
taxonomy information, CDKAM creates the mapping of sequences IDs and taxonomy IDs. Step 2: collecting 
k‑mers and solving the k‑mer collision to obtain discriminative k‑mers as demonstrated in the Algorithm 1. 
Step 3: compressing the database. In the final step, the whole set of k‑mers is divided into smaller groups. 
Then, for each group, CDKAM stores the number of kmers that shared the same group ID (saved in the Size 
file), the SUFFIX of k‑mers (saved in the Suffix file) and their taxonomy ID (saved in the Taxonomy_ID file)
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Classification based on approximate mapping approach

Algorithm 2 presents the searching algorithm of CDKAM. For each k-mer of the querying 
read, the positions in the database that contain k-mers with the same group ID are exam-
ined. CDKAM uses a linear probe over this range, while Kraken and CLARK apply a binary 
search. During the searching procedure, an approximation algorithm is utilized to ignore at 
most 3 errors for a matched k-mer. The QM component with m bases in the SUFFIX of the 
querying k-mer and those in the database are mapped by a “Quick Matching” technique. 
Their converted integer values are masked by a seed mask such as 11,111*, 1111*1, … before 
comparing. The purpose of this step is to guarantee at least m − 1 bases are equal. With no 
more than one substitution, it can pass and move to the second check. The comparison of 
DP part is done by a banded “Dynamic Programming” algorithm with a width of 4. In this 
manner, we tolerate 2 errors, which can include insertions and deletions. The final assign-
ment of a read to a taxonomy ID is determined by the highest number of matched k-mers.

Algorithm 2: CDKAM searching procedure.

Datasets for model selection

We compare Kraken 2, Centrifuge, CLARK, and CDKAM in different settings involving 
five simulated datasets and three real datasets.

Each simulated dataset contains multiple data. In the first scenario, we aim to assess 
the detection ability of classifiers when all sequencing reads were from genomes avail-
able in the reference database. For each bacterial genome in the reference database, 20 
simulated reads are generated. The first dataset contains 342,360 reads from 17,118 bac-
terial genomes in the reference database. Next, we simulate a metagenome sample with 
40 prokaryotic genomes as the simulation of Kraken2 [8] (Additional file 1: Table S5). 
For each genome, we generate 10,000 reads. There are totally 400,000 reads. The read 
length in both datasets is exactly 1000 bases. For each error rate at 5%, 10%, 15%, or 
20%, sequencing errors are randomly added on the original reads (No. 1), and we call 
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the resulted data No. 2, 3, 4, and 5 sample of the dataset respectively. Based on the same 
testing genomes, the third dataset contains five samples with 15% error rate, but the 
length of reads varies from 1000, 1500, 2000, 3000, and 4000 bases. The fourth dataset 
is created similarly to the third one with 20% error rate are added. The fifth simulation 
is carried out on a particular database and dataset. 70% of the bacterial genomes (4142 
species) are chosen randomly and used for building the database, while the remaining 
part of the reference genomes is used for generating testing reads. For each strain among 
1752 species in the testing set, 4000-bases long reads with 15% error rate are created.

Three sets of real metagenomic sequencing data are PRJNA493153 [13], Zymo R10 
[14], and Zymo R10v2. The first one is a real Nanopore MinION sequencing data from 
the human microbe project PRJNA493153, which contains 548,721 reads with the aver-
age length of 1000 bases. There are 10 samples, the total size is 1.2 GB. Zymo R10 data-
set is a Nanopore GridION sequencing data of the Zymo Community Standards R10 
synthetic community, which comprises five Gram-positive bacteria, three Gram-nega-
tive bacteria, and two yeasts (Additional file 1: Table S6). There are more than 3 million 
reads with a total size of 25  GB. Additional file 1: Figure S1 presents statistics on the 
read lengths of Zymo dataset with the mean of 3860 bases. To generate a species-level 
true set, we use Minimap2 [15] with -ax map-ont to map the reads against the refer-
ence genomes provided by Zymo. All reads that cannot be mapped by Minimap2 are 
considered as the interference. For a read that can be mapped to multiple genomes by 
Minimap2, if a classifier provides the result matched with one of the possible taxonomy 
IDs, we will count as a true-positive classification. Zymo R10v2 dataset is modified from 
the Zymo R10 dataset in order to test classifiers against the TGS data sequences that 
have medium lengths. For each read, we trim 1500 bases in the middle region to create a 
new dataset.

Evaluation of accuracy

To compare CDKAM with other tools, sensitivity, precision, and F1-scores are used and 
evaluated at genus or species level. The classified reads are grouped into the following 
categories: true-positive (TP), false-negative (FN), vague-positive (VP), and false-posi-
tive (FP). TP are those sequences assigned to the right genomes at the same taxonomy 
level or lower levels (species level is a lower level compared to genus level). A read 
belongs to the FN category if the classifier fails to assign the sequence. The concept of 
VP is used for the evaluation at species level only. A read classification is called a VP if it 
is assigned correctly only at genus level and does not have any further information about 
species level. Finally, an FP classification is defined as an incorrect classification, that is, 
not at the true genus nor true species of origin. The unclassified reads would belong to 
true-negative (TN) or false-negative (FN).

For example, a classification of an Escherichia coli fragment as Escherichia would be 
evaluated as a TP at genus level, but as a VP at species level. Classification of that same 
fragment as Escherichia albertii would be evaluated as FP at species level, but as a TP 
at genus level (because the LCA of Escherichia albertii and Escherichia coli is the genus 
taxon Escherichia).
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The detection rate is the proportion of the positive classified reads vs the total num-
ber of reads, i.e. D-rate = (TP + FP + VP)/TOTAL. Sensitivity at a certain taxonomy 
level is defined as the proportion of the number of true-positive assignments vs the 
total number of reads classified, i.e. SEN = TP/(TP + FP + VP + FN). We define pre-
cision as the proportion of classifications that are true positives among the number of 
positive calls (excluding vague positives when evaluating at species level), i.e. PRE = TP/
(TP + FP). An F1-score is computed as the harmonic mean of sensitivity and precision, 
i.e. F1 = 2 × SEN × PRE/(SEN + PRE).

Computation environment

CDKAM and other taxonomic classifiers (Kraken2 v2.0.9, Centrifuge v1.0.4, CLARK 
v1.2.6.1) are benchmarked on a compute node having 512  GB of memory and Intel 
E5-2630 v4 processors. All experiments are run on single-thread mode. The database of 
all classifiers are updated to May 2020.

Results and discussion
Parameter settings

By selecting the first n bases of k-mers as the PREFIX, the numbers showing the size of 
each group in the database require 4 × 4n bytes. Besides that, the value of m during the 
searching query also influences the speed and efficiency of the CDKAM. In this part, we 
present the performance of X = 15% version with the different parameters of n and m 
on the sample No. 4 in the first dataset. Figure 3A presents the processing time and the 
extra memory needed for the group IDs when m = 6 and n varies. Meanwhile, Fig. 3B 
shows the processing time and the F1-scores at genus level with different values of m 
and a fixed n = 14. CDKAM tends to decrease the accuracy when m increases, but the 
difference is slight. Remarkably, the case of m = 6 is the optimal point of two comparison 
algorithms, quick mapping (QM) and dynamic programming (DP). From these experi-
ments, we choose (n = 14, m = 6) to balance speed, memory usage, and accuracy.

The parameter X affects the size of the built database. A version with a greater value of 
X produces a larger database, which could decrease the speed but increase the accuracy. 
The difference in the accuracy of CDKAM with X = 10%, X = 15% and X = 20% is small, 
while that of CDKAM with X = 5% drops dramatically. More specific results are pre-
sented in Additional file 1: Table S1, Table S2, and Fig. 7. Unlike the collision avoidance 
algorithm in CLARK, which eliminates all intersections in the k-mer set of each species, 
the shared k-mers at the genus level in CDAKM are given a high priority and saved in 
the database. Consequently, it is unneeded to keep all k-mers in the final set. A fraction 
of the total k-mers can provide a good resolution about the true taxonomic origin of the 
sequencing data and also reduce the large computation cost.

Performance on simulated data

When dealing with simulated reads without error, most tools give F1-scores greater than 
90% at the genus level (Additional file 1: Table S1, Table S2). However, on the test cases 
containing sequencing errors, CDKAM achieves higher accuracy than any other classi-
fier. For example, the default CDKAM version still exceeded an F1-score of 95.79% and 
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94.54% when classifying reads with 15% sequencing errors in the first and the second 
dataset. However, the accuracy of CLARK decreases significantly due to a low detec-
tion rate if a long k-mer (31-mers) is chosen. A shorter k-mer (24-mers) version gives a 
higher sensitivity, but the false positive would increase (Fig. 4). Similarly, Kraken 2 and 
Centrifuge also correctly classify a smaller amount of reads compared to CDKAM. This 
is caused by the exact string matching algorithm since many k-mers with one base varia-
tion could not be detected.

We use the third and the fourth experiment to assess the effect of read length on clas-
sification accuracy (Additional file 1: Table S3, Table S4). It is worth noting that the accu-
racy drops sharply between 15 and 20% error rate for all methods on the shorter reads. 
For example, on the read length 1000-bases, the F1-score of Kraken2 at genus level 
reduces significantly from 84.60 to 40.41%. By contrast, on the read length 4000-bases, 
the decrease is less serious. In this case, the gap is only 12.98%, from 97.89 to 84.91%. 
When the read length increases, there would be more hits that could provide more spe-
cific information about their true host organism. As a consequence, all methods perform 
better than they do on the shorter reads. Kraken2 and Centrifuge show a significant 
improvement with the F-1 score at genus level up to more than 97% when classifying the 
4000-bases reads on the third dataset (Additional file 1: Table S3). It is noticeable that 
on the fourth dataset with a higher error rate at 20%, they perform worse than CDKAM 
(Additional file 1: Table S4). As opposed to a fall in the accuracy of other classifiers at 
species level, CDKAM with X = 20% still has a high F1-score in both simulations, which 
are 90.68% and 88.08%. These results indicate that CDKAM is more robust than other 
methods in the deal with the sequencing error, in particular for situations in which the 
error rate becomes higher.

The ability to deal with unknown sequences is an important concern in metagenom-
ics, especially for those environmental samples with a high percentage of unknown 
species, which have no similar genome with a high sequence identity in the reference 
database. To address this, we include a fifth dataset by dividing the whole reference 
genomes of bacteria into two sets: 70% species for the reference database construction 
and the remaining 30% for testing, and then evaluating the accuracy at genus level. By 

Fig. 3 Performance of CDKAM with the different parameter settings. a m = 6 versus different values of n. b 
n = 14 with different values of m 
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selecting genomes randomly, the sequencing reads in the testing set could be originated 
from strains not represented in the reference database, or from those having siblings at 
family or genus level in the database. In this experiment, CDKAM detects 63.83% of the 
reads and then assign them to sibling species with those in the database. 37.7% of species 
have more than 50% classified reads, while 49.7% of species have more than 25% classi-
fied reads. In addition, 32.64% of species cannot be found, which means they have very 
different sequences and their k-mer sets do not intersect with those of other species. 
It is clear from these results that classifying unknown sequences is still a challenge for 
CDKAM.

Performance on real data

CDKAM with X = 15% is selected to perform the evaluation on the real TGS data. On 
the PRJNA493153 dataset, CDKAM shows the highest consistency (Fig.  5 and Addi-
tional file 1: Figure S2). The detection rate of CDKAM, Kraken2, Centrifuge, CLARK24 
and CLARK31 are 59.77%, 55.32%, 57.99%, 62.80% and 44.41%, correspondingly. 
Because there is no benchmark for this microbe community, we count how many reads 
getting the same genus-level taxonomy ID between different methods. There are 44.36% 
classified reads by CDKAM sharing the result with Kraken2 and 42.26% of them sharing 
the result with Centrifuge.

The evaluation at the genus level on the Zymo R10 dataset indicates that the sensitiv-
ity of the CDKAM and Kraken2 assignments is higher than that of the remaining tools, 
while CLARK using 31-mers provides the highest precision (Fig.  6). The F1-score of 
CDKAM at genus level is 94.91% and slightly greater than that of CLARK and Kraken2, 
which are 92.31% and 92.02%, respectively. Besides, CDKAM performs the best at spe-
cies level. The compositional estimation by CDKAM is the closet to alignment stats by 
Minimap2 as presented in Additional file  1: Table  S7. Turning to the smaller dataset 
Zymo R10v2, almost all classifiers show a trend towards lower classification accuracy by 
2–4% for shorter reads. Meanwhile, CDKAM performs stably and achieves the F1-score 
of 91.19% at the species level.

Fig. 4 Comparison of methods on a data with a high sequencing error rate. Accuracy measurement types 
include detection rate, sensitivity, precision, and F1‑score. The data used for the experiment is the sample No. 
4 in the first dataset, which contains an error rate of 15%
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Runtime and memory consumption

We use the Zymo R10 dataset to measure the actual processing speed of classifiers. As 
shown in Fig. 7, Kraken2 is ultrafast, whereas Centrifuge, CLARK and CDKAM could be 
grouped together in terms of speed. CDKAM is slower than Centrifuge, but the differ-
ence is negligible. Although the approximation algorithm is slower than the exact match-
ing algorithm in general, a small and sufficient database reinforces CDKAM to speed up. 
In fact, CDKAM is slightly faster than CLARK in the case of classifying a medium size 
dataset such as PRJNA493153 data. For an experimental dataset of 100,000 TGS reads, 
CDKAM will finish the sequence classification in about 5 min.

CDKAM supports parallel processing by using thread pools mechanism. Each local 
thread reads a fragment of the input file, save it temporarily in the buffer and then wait 
in the queue. After finishing the reading process of N fragments, N threads carry out the 
classification parallelly. The classification results from these threads are finally merged 
into the output file. The wall-clock time of CDKAM (X = 15%) when running with 1, 2, 4, 
8, and 16 threads on the Zymo R10 dataset are 129, 58, 32, 17, and 10 min, respectively.

Novelty of CDKAM

The key novelty of CDKAM is the combination of an effective collision avoidance mech-
anism for building the database and approximate matching strategies for searching 
k-mers. It can deal with high sequencing error rates in TGS data and maintain a high 
speed as well. To achieve these purposes, a small portion of the final k-mer set is stored 
in the database of CDKAM, which can decrease the memory consumption and increase 
the processing speed, while approximate matching strategies with two phases of quick 
mapping and dynamic programming algorithm provide a higher opportunity to detect 
the alignment of query sequences and the database.

Fig. 5 Comparison between CDKAM and other classification tools on the PRJNA493153 dataset. This figure is 
created using upset [16] (https ://caley do.org/tools /upset /) to show the intersection of results from different 
classification tools

https://caleydo.org/tools/upset/
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Conclusions
CDKAM is  a new taxonomy classification tool designed for sequencing reads with 
high error rates. Compared to existing tools, it has good speed, small memory require-
ment and high accuracy. Especially, it is more accurate than all other existing tools for 
reads with medium lengths, such as 1000–1500 bases. For very long sequencing reads, 
its accuracy performance is comparable to the best existing tools, such as Kraken2 and 
Centrifuge.

Fig. 6 Comparison of the accuracy of classification methods on a real Nanopore (Zymo R10) dataset

Fig. 7 Comparision of speed (million bases per minutes) and memory consumption (GB) of classifiers on the 
Zymo R10 dataset
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Availability and requirements
Project name: CDKAM

Project home page: https ://githu b.com/SJTU-CGM/CDKAM 
Operating system(s): Linux
Programming language: Perl, C++ 11, and Shell
Other requirements: Perl (5.10.1 or above), G++ (4.8.5 or above)
License: GNU GPL v.3
Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9‑020‑03777 ‑y.

Additional file 1. Supplementary file for Table S1‑7 and Figure S1‑2.
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