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Abstract There is a need to identify novel targets in Acute Lymphoblastic Leukemia (ALL), a

hematopoietic cancer affecting children, to improve our understanding of disease biology and that

can be used for developing new therapeutics. Hence, the aim of our study was to find new genes as

targets using in silico studies; for this we retrieved the top 10% overexpressed genes from Oncomine

public domain microarray expression database; 530 overexpressed genes were short-listed from

Oncomine database. Then, using prioritization tools such as ENDEAVOUR, DIR and TOPPGene

online tools, we found fifty-four genes common to the three prioritization tools which formed our

candidate leukemogenic genes for this study. As per the protocol we selected thirty training genes

from PubMed. The prioritized and training genes were then used to construct STRING functional

association network, which was further analyzed using cytoHubba hub analysis tool to investigate

new genes which could form drug targets in leukemia. Analysis of the STRING protein network

built from these prioritized and training genes led to identification of two hub genes, SMAD2

and CDK9, which were not implicated in leukemogenesis earlier. Filtering out from several hundred

genes in the network we also found MEN1, HDAC1 and LCK genes, which re-emphasized the
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important role of these genes in leukemogenesis. This is the first report on these five additional sig-

nature genes in leukemogenesis. We propose these as new targets for developing novel therapeutics

and also as biomarkers in leukemogenesis, which could be important for prognosis and diagnosis.

ª 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf ofKing SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A key focus of cancer research is the identification of driver
genes in the tumorigenesis pathway as tumor specific signature
genes, for use as drug targets or biomarkers, which could be
possible from microarray databases (Ma et al., 2013). The

recent advancement in bioinformatics techniques has made it
possible to search for therapeutic targets for specific diseases
in a systematic and comprehensive manner (Desany and

Zhang, 2004). Acute Lymphoblastic Leukemia (ALL) is a
blood cancer that targets B and T-lymphocyte cells, affecting
their differentiation and leading to the loss of regulation of cell

division (Khalid et al., 2010). Even with numerous advances in
therapeutic efficacy, 20–40% of patients still relapse, especially
children and young adults (Smith et al., 2010). Research stud-
ies have implicated alterations in several pathways that medi-

ate crucial biological processes to play a role in disease
progression and particularly in relapse (Bhojwani et al.,
2006; Pui et al., 2011). These studies suggest that an intercon-

nected network of many genes and their products are altered in
carcinogenesis and may contribute to leukemia pathogenesis
(Bhojwani et al., 2006; Pui et al., 2011).

A study by Kang et al. (2012) reported a correlation
between event free survival and expression levels of NEGR1,
IRX2, EPS8 and TPD52. Lin et al. (2012) reported that point

mutations in NOTCH1 led to increased expression of this gene
which might contribute to pathogenesis in T-ALL. In recent
years, meta-analysis studies have led to the identification of
novel genetic markers that might play crucial roles in the neo-

plastic process and in other diseases, as demonstrated through
our previous studies (Khan and Jamil, 2008; Shaik et al., 2009;
Jamil and Sabeena, 2011). Understanding the evolutionary

relationship of these genes could also help to investigate the
mechanisms of neoplastic transformation observed in leukemic
cells (Jayaraman et al., 2011; Jayaraman and Jamil, 2012).

Further, our previous studies using bioinformatics approaches
have helped in highlighting the significance of protein net-
works in ALL (Jayaraman and Jamil, 2013) and identified

important amino acid residues that may be useful in therapeu-
tic targeting of cell cycle proteins (Jayaraman and Jamil, 2014).
In recent years, several research studies have applied a systems
biology approach to understand ALL leukemogenesis.

Maiorov et al. (2013) identified a set of non-differential puta-
tive biomarkers in T-ALL based on network analysis of
expression data. Gao et al. (2014) analyzed differentially

expressed genes, screened for prognostic genes and identified
latent pathway genes. Their analysis identified HK3 and
PTGS2, two key metabolic pathway genes as possible prognos-

tic genes in pediatric ALL. Chaiboonchoe et al. (2014) used an
integrated bioinformatics approach to identify glucocorticoid
regulated genes in Childhood ALL. Many studies have shown
that various bioinformatics and computational biology

approaches, such as PseKNC (Chen et al., 2014) or Chou’s
PseAAC (Chou, 2001), can be successfully used to identify
modifications in the genome such as recombination spots of

DNA (Chen et al., 2013), various PTM (posttranslational
modification) sites (Xu et al., 2014), anticancer peptides
(Hajisharifi et al., 2014), interactions between drugs and target

proteins in cellular networking (Xiao et al., 2014), providing
very useful information and insights for both basic research
and drug development, and hence are widely welcomed by

the scientific community, both experimental and theoretical.
Here, we have used computational approaches to identify
new targets in leukemogenesis in the hope to provide useful
information for stimulating the development of new and effec-

tive drugs to treat leukemia.
Understanding the interactions of disease genes is essential

as dynamic networking of genes could be correlated with clin-

ical informatics, including therapeutic and imaging profile and
other parameters and this correlation could help in a better
understanding of the disease in relation to each patient

(Wang, 2011). To meet such challenges our objective was to
retrieve overexpressed genes from Oncomine expression data-
base (Rhodes et al., 2007), to perform gene prioritization anal-
ysis using bioinformatics software. Further, we have also

analyzed protein interactions of the prioritized proteins as
studies investigating Protein–Protein interactions have
provided key insights on the biological functioning of many

proteins and have also been effective in identifying novel genes
that play a role in pathogenesis of various diseases such as can-
cer (Huang et al., 2011; Li et al., 2012). Our hypothesis is based

on our belief that a large amount of data generated through
expression studies in previous reports which contribute to leu-
kemogenesis may have been missed due to the varied detection

methods. Hence, our research combines the use of expression
data, gene prioritization analysis and a network based
approach to identify genes of significance in ALL and the
use of well validated datasets, prioritization based approach,

using rigorous network analysis suggests that the results from
our study may be replicable in vivo as well. The use of these
combined bioinformatics approaches enhances the validity of

our results and has led to the identification of few novel genes
in this study.

2. Materials and methods

An overview of the analysis workflow for the study is repre-
sented in Fig. 1.

2.1. Microarray expression data analysis using Oncomine

database

In the current study we queried the Oncomine database to
obtain only those datasets which have reported differentially
expressed genes between normal and leukemic tissues. Oncom-
ine database 3.0 (Rhodes et al., 2007) is a comprehensive
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Figure 1 Scheme showing overview of the methodology followed

in the study.
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cancer microarray expression database with expression data

from experimental studies. We found three studies – Maia
et al. (2005) (one dataset; B-ALL; 20 patients), Andersson
et al. (2007) (one dataset; Childhood B- (87 patients) and
T-ALL (11 patients)) and Haferlach et al. (2010) (two datasets;

Childhood and Adult B- (933 patients) and T-ALL (253
patients)), in Oncomine database which reported differential
expression in ALL and we selected only the top 10% overex-

pressed genes from all these studies. Further, we compared
these studies using the default database threshold values of
odds ratio above 2.0, P-value of 1E-4. The genes short-listed

from this analysis, designated as candidates, were used as input
for gene prioritization.
Table 1 List of ALL specific genes used as training genes for prior

S.No. Gene name Reference

1. NOTCH1 Lin et al. (2012)

2. CRLF2 Tasian and Loh (2011)

3. NOTCH3 Palermo et al. (2012)

4. LEF1 Kühnl et al. (2011)

5. USP44 Zhang et al. (2011)

6. MYC Cardone et al. (2005)

7. Survivin Esh et al. (2011)

8. WT1 Shabani et al. (2008)

9. hCLP46 Wang et al. (2010)

10. MDM2 Hendy et al. (2009)

11. CDX2 Thoene et al. (2009)

12. EPOR Inthal et al. (2008)

13. MsrB2 Cabreiro et al. (2008)

14. ROR1 Shaheen and Ibrahim (2012)

15. ABL1 Chiaretti et al. (2007)
2.2. Gene prioritization using ENDEAVOUR, DIR and
TOPPGene tools

Three software tools – ENDEAVOUR (Tranchevent et al.,
2008), TOPPGene (Chen et al., 2009) and DIR (Chen et al.,

2011) – were utilized to evaluate whether the genes obtained
through Oncomine dataset analysis could play a role in the dis-
ease process. The three tools perform prioritization based on
sources such as disease information, pathway information, phe-

notype, regulatory modules, etc. and produce a ranked list of
genes which could be further validated statistically by each of
the software to output a final ranked list of genes.

2.2.1. Training genes

The gene prioritization tools additionally require a set of train-
ing genes to train the software, which were obtained from the

published literature, reporting their alteration in the disease
process. PubMed was queried using the keywords ‘‘overexpres-
sion’’ and ‘‘acute lymphoblastic leukemia’’ for all studies per-

taining to humans (study period from 1992–March 2012).
Analysis of the retrieved literature revealed 30 genes (Table 1),
which were reported through experimental studies to be

significantly overexpressed in ALL and contribute to
leukemogenesis.

Further, to ensure that the results obtained through the use
of the ALL specific training genes were not random, we also

performed a separate gene prioritization analysis using a set
of housekeeping genes as training genes (Table 2). Thirty
housekeeping genes, having the highest expression in bone

marrow tissues, were retrieved from the study by Chang
et al. (2011) (Table 2). Of the ranked list of genes obtained
from each analysis, the top 100 were considered to be signifi-

cant and were compared to short-list the prioritized genes com-
mon to at least two tools. These common prioritized genes
along with the training genes were used to construct protein

interaction network.

2.3. Construction of Protein–Protein Interaction (PPI) network

We have used STRING database v9 (Search Tool for the

Retrieval of Interacting Genes, available at: http://string-db.
itization.

S.No. Gene name Reference

16. SCGF Bhojwani et al. (2006)

17. AML1 Mikhail et al. (2002)

18. CD49f DiGiuseppe et al. (2009)

19. Aven Choi et al. (2006)

20. BCL2 Coustan-Smith et al. (1996)

21. ABCB1 Baudis et al. (2006)

22. Livin Choi et al. (2007)

23. MK Hidaka et al. (2007)

24. TNF-R1 Holleman et al. (2006)

25. TRAIL-R2 Holleman et al. (2006)

26. TRAIL-R4 Holleman et al. (2006)

27. BCL2L13 Holleman et al. (2006)

28. Ikaros 6 Ruiz et al. (2004)

29. XIAP Hundsdoerfer et al. (2010)

30. HOX11 Ferrando and Look (2003)

http://string-db.org/


Table 2 List of training housekeeping genes with higher

expression in bone marrow tissue (Chang et al., 2011).

S.No. Gene name S.No. Gene name

1. ACTB 16. RPS10

2. B2 M 17. RPS11

3. EEF1A1 18. RPS12

4. HBB 19. RPS14

5. RPL13A 20. RPS15

6. RPL23A 21. RPS17

7. RPL27A 22. RPS18

8. RPL3 23. RPS23

9. RPL30 24. RPS27

10. RPL41 25. RPS29

11. RPL7A 26. RPS3A

12. RPL9 27. RPS6

13. RPL32 28. TPT1

14. RPLP0 29. UBB

15. RPLP1 30. UBC
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org/ (Szklarczyk et al., 2011)) with protein names of the prior-
itized and training genes as seeds for construction of the

protein interaction (PPI) network. We selected the interactions
pertaining to Homo sapiens and grew the interaction network
to obtain an additional 230 protein interactors, using the
‘‘add more interactors’’ option in STRING database, and

further refined it to include only those interactions with a
confidence score greater than 0.9.

Further, to simplify the complicated dense network and to

obtain a better understanding of the interaction network, we
clustered the interactors using STRING k-Means clustering
algorithm (MacQueen, 1967). We specified the number of clus-

ters to be 12, based on the rule of thumb k =
p
(n/2) (Mardia

et al., 1979), where n is number of nodes (protein interactors)
in the cluster. The resulting clusters were separated manually

for better visual representation and comprehension of the
interaction network. Further, to study the functional signifi-
cance of these genes, we used WebGestalt server.

2.4. Gene Ontology (GO) WebGestalt server for functional
enrichment

We used WebGestalt, WEB-based GEne SeT AnaLysis

Toolkit (available at http://bioinfo.vanderbilt.edu/webgestalt/)
(Zhang et al., 2005) for GO enrichment analysis of the
common prioritized genes and the interactors in the protein

network. The statistical significance of the enrichment analysis
was checked by choosing Hypergeometric test and Benjamini–
Hochberg false discovery rate (FDR) correction model for

multiple test adjustment, which were available in the software.
We also set the threshold to the default settings to include a
minimum of two genes per category and a P-value cut-off of
0.05 to obtain significant enrichment. Further, we have used

KOBAS (KEGG Orthology Based Annotation System, avail-
able at http://kobas.cbi.pku.edu.cn/home.do) (Xie et al.,
2011) to perform KEGG database based enrichment analysis

of the prioritized genes obtained using housekeeping and
ALL specific training genes. The default parameter of Hyper-
geometric test/Fisher’s exact test was selected as the statistical

method and Benjamini–Hochberg was used as the FDR
correction method.
2.5. Analysis of the topology of network interaction data and
Hub proteins

The PPI network was downloaded in Protein Standards Initia-
tive (PSI) format and imported into the network visualization

software, Cytoscape (Smoot et al., 2011). The topological
parameters of the network, i.e. node degree distribution and
clustering coefficient, were analyzed using the Network Ana-
lyzer plugin (Assenov et al., 2008). These parameters are a

measure of the importance of the nodes in the network and
their ability to form clusters (Barabási and Oltvai, 2004).
Information about hub genes was obtained through the cyto-

Hubba plugin (Lin et al., 2008) with the option ‘‘confidence
value’’ set as the edge attribute and degree and betweenness
as the node ranking methods.

We set each of the ranking methods to output the top 50
hub forming genes/proteins as a measure of significance. The
genes obtained from both the ranking methods were compared

and those common to both methods were considered to be
significant.

3. Results

3.1. Candidate gene selection and data analysis

We could identify and shortlist candidate genes which were
overexpressed in the Oncomine microarray database. We found
about 23 datasets of Acute Lymphoblastic Leukemia (ALL) in

the database, of which only 3 studies reported differential anal-
ysis between cancer and normal tissues. All the datasets present
in Oncomine represented statistically validated information via

analysis performed by Oncomine using t-tests and validated by
the database using false discovery rate test, prior to incorpora-
tion into the database. Dataset of Maia et al. (2005) comprised

of about 12,624 measured genes with 627 genes among the top
10% overexpressed genes. The dataset of Andersson et al.
(2007) comprised of about 10,735 measured genes with 1072
genes in B-ALL and 1071 genes in T-ALL among the top

10% overexpressed genes. Haferlach et al. (2010) dataset-1
comprised of 19,574 measured genes, and dataset-2 of about
910 genes and 1957 genes each in B-ALL and T-ALL samples

were among the top 10% overexpressed genes.
On comparing all the overexpressed signature genes across

these datasets, we found 237 genes in B-ALL and 422 genes

in T-ALL common to two out of three studies in B-ALL and
present in both the studies used for T-ALL analysis. Since
our aim was to determine the alterations in ALL genes as a
whole, we combined both the B- and T-ALL genes and after

removal of duplicates we obtained 573 genes. Of these, 530
genes, designated as candidates, mapped to ENSEMBL ids,
were short-listed for prioritization.

3.2. Gene prioritization and Gene Ontology (GO) functional

enrichment of overexpressed candidates using training genes

The selected and shortlisted genes from Oncomine were prior-
itized, using the software ENDEAVOUR, ToppGene and
DIR. Each of the gene prioritization algorithms used in this

study ranked the candidate genes according to their signifi-
cance and the results were presented as a tabulated list. On
comparison of the top 100 ranked results from the three tools,

http://string-db.org/
http://bioinfo.vanderbilt.edu/webgestalt/
http://kobas.cbi.pku.edu.cn/home.do


Table 3 Prioritized candidate genes common to ENDEAVOUR, DIR, TOPPGENE tools.

T-ALL only B-ALL only Both B-ALL,T-ALL

ABI2 KHDRBS1 BCR CDK6

ADA LCK BLNK CSNK1E

AOF2 MAP4K1 CDK9 DVL2

BMI1 MEN1 CHD4 GNPTAB

CD3D MLL ETS2 MYB

CD3E NPM1 INSR NONO

CD81 PTMA MEF2C SET

CTCF SMAD2 NR3C1 TCF3

DNTT SMO NRIP1 SPTBN1

FGFR1 TCEA2 PARP1 TP53BP1

FUBP1 TCF7 PHB YY1

GATA3 TFDP2 PMAIP1 Number of genes = 11

HDAC1 TRRAP SOX4

HNRNPR WHSC1 Number of genes = 13

ILF3 ZAP70

Number of genes = 30
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we found that 54 genes (referred to as ALL prioritized genes,

Table 3) were common to the prediction methods and hence
may play an important role in ALL. Of these 54 genes, 30 were
found to be overexpressed in T-ALL, 13 in B-ALL and 11 in

both subtypes.
Cross verification analysis using housekeeping training

genes (Chang et al., 2011) (Table 2) resulted in short-listing

of 77 genes that were common to the three tools used (referred
as housekeeping prioritized genes). Comparison with ALL pri-
oritized genes showed that, although some of the prioritized
genes obtained through ALL specific training genes also occur

in the results from housekeeping training genes, their priority
ranking was vastly different in both.

Functional enrichment of the prioritized genes was analyzed

through WebGestalt software which showed that the 54 ALL
prioritized genes were highly enriched in a diverse array of
pathways such as Hemopoiesis (adjP = 1.91e�08), regulation
of cell proliferation (adjP = 7.63e�08), chromatinmodification
(adjP = 6.72e�08), regulation of transcription (adjP =
1.17e�08) and regulation of biosynthetic processes (adjP =
3.17e�08) (Fig. 2). AdjP values signify P values obtained after

multiple test adjustment using Bonferroni–Hochberg false
discovery rate correction.

KEGGPathway enrichment of the 54ALLprioritized genes,

using KOBAS server, showed significant enrichment in normal
and disease pathways such as primary immunodeficiency (cor-
rected P-value = 0.000672), Transcriptional misregulation in

cancer (correctedP-value = 0.000672), Adherens junction (cor-
rected P-value = 0.044118), Pathways in cancer (corrected P-
value = 0.044118), NF-kappa B signaling pathway (corrected

P-value = 0.066325), and T cell receptor signaling pathway
(corrected P-value = 0.085695). Further, we observed that the
77 housekeeping prioritized genes were enriched in the
KEGG pathways: Ribosome (corrected P-value = 0.002727),

Spliceosome (corrected P-value = 0.010555), Glycolysis/
Gluconeogenesis (corrected P-value = 0.197154), Biosynthesis
of amino acids (corrected P-value = 0.220077).

The differences in functional enrichment between ALL
prioritized and housekeeping prioritized genes suggest that
the genes prioritized from the ALL specific training genes
may be significant in leukemogenesis as their enrichment

analysis is populated by pathways that are known to be
deregulated in ALL.

3.3. Protein–Protein Interaction (PPI) network

After identification of prioritized genes, we investigated protein
associations using the STRING database. The PPI network

using the 54 prioritized and 30 ALL specific training genes as
query (seed), formed a dense network with 313 interacting pro-
teins and 2405 interactions (Fig. 3), after removal of discon-
nected nodes. On grouping the network, the members within

and between each cluster were observed to be highly intercon-
nected, reflecting a high degree of functional association and
suggesting interplay between the myriad pathways that com-

prise the protein network (Fig. 4).
3.4. Functional enrichment analysis of PPI network

Functional enrichment of the network interactors through
WebGestalt server, using KEGG Pathway analysis filter,
revealed that they participate in a wide variety of processes

and pathways such as Cell cycle (adjP = 1.13e�45), apoptosis
regulation (adjP = 1.12e�42), p53 signaling pathway
(adjP = 8.22e�41), T-cell (adjP = 2.57e�34) and B-cell
(adjP = 3.01e�20) receptor signaling pathways, MAPK sig-

naling pathway (adjP = 8.47e�32), Wnt (adjP = 4.03e�27),
Notch (adjP = 5.61e�26), TGF b (adjP = 2.38e�16) signaling
pathways, and Hematopoietic cell lineage (adjP = 1.23e�14).
Comparison of the pathways enriched in ALL specific training
genes and the 54 prioritized genes showed that both sets of
genes share many common cellular pathways. Our analysis of

the PPI Network topology, using Network Analyser plugin in
Cytoscape, revealed that it is a small world scale free network
which follows power law (P(k) � k�c) of node degree distribu-
tion with a degree exponent of 0.923 and R2 of 0.684, where R2

signifies the fitness of data points to the curve. The clustering
coefficient, which indicates cluster forming ability of a particu-
lar node, was 0.434.



Figure 2 Directed acyclic graph showing Gene Ontology of biological processes of the 54 prioritized genes (graph obtained from

WebGestalt server).
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Figure 3 STRING database generated protein interaction network generated using prioritized and training protein names as query.
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3.5. Identification of hub genes

The network protein interactors were analyzed to determine
hubs i.e. proteins that have the highest connectivity within a

network and hence tend to be biologically significant. Through
comparison of fifty hub genes, using degree and betweenness
centrality algorithms, that were output by cytoHubba, we have

identified five prioritized hubs as potential biomarker genes
and therapeutic targets – SMAD2, CDK9, HDAC1, LCK
and MEN1. These hubs were observed to function in the reg-
ulation of cell cycle, cell differentiation and hematopoiesis pro-

cesses. Their prioritization and hubness suggest that they may
be likely to play a crucial role in neoplastic transformation.
These five genes were also found to be part of the clusters

in the PPI network containing proteins involved in
leukemogenesis.

Thus, our results highlight the functioning of the
short-listed genes and their probable role in leukemogenesis

and their use as novel therapeutic target genes.

4. Discussion

In our study, we have profiled overexpressed genes of
biological and statistical significance in B- and T-ALL. Fur-
ther, analysis of the 54 prioritized genes revealed 30 T-ALL

upregulated and 13 B-ALL overexpressed genes (Table 3),



Figure 4 STRING Protein–Protein Interaction network, separated into 12 k-Means clusters with clusters containing LCK, MEN1,

SMAD2, HDAC1, CDK9 specifically highlighted.
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which could be explored further as subtype specific drug tar-

gets and also for understanding leukemic transformation spe-
cific to T- and B-ALL. Also, the eleven genes common to
both subtypes may regulate pathways common, to a certain

extent, in both the subtypes and hence these could emerge as
important targets of the disease.

The altered genes were found to function in cell growth and

development processes that mediate the balance between
actively dividing and quiescent hematopoietic stem cells
(Arai and Suda, 2007). This suggests their possible role in
the disruption of this balance, leading to increased leukemo-

genic transformation. Furthermore, the common pathways
shared by the ALL training and 54 prioritized genes suggest
that the prioritized genes may also contribute to pathogenesis,

via molecular mechanisms that function in actively transform-
ing normal hematopoietic stem cells into leukemic stem cells.

Our study in ALL is based on the need to further understand

leukemogenesis as the exact mechanisms through which altered
genes and pathways co-operate and lead to neoplastic transfor-
mation are still under investigation (Pui et al., 2011). Differen-

tial expression profiling of genes in leukemic samples is essential
for identification of genes and pathways that are deregulated
and thus involved in leukemogenesis. Gene set enrichment
analysis studies by Andersson et al. (2010) have suggested

unique expression profiles specific to leukemic cells that are dif-
ferent from those of other tissues and cancers, thus emphasizing
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the need for in depth analysis of expression datasets to discover
new therapeutic targets and biomarkers for the disease.

In heterogeneous diseases, especially cancers, understand-

ing functional associations could help provide better insights
with respect to disease. The STRING protein interaction net-
work generated in our study, was functionally enriched in

many crucial pathways especially Notch, Wnt and T- and
B-cell receptor signaling pathways which are among the most
deregulated processes in ALL. This functional diversity was

helpful in our study to highlight the multiple aberrant pathway
modules that may act synergistically in leukemia initiation and
subsequent disease process and hence may serve as drug tar-
gets. We also investigated the hub proteins in the network as

they tend to play a significant role in regulation of cell pro-
cesses and disease etiology and hence are prime targets for
designing therapeutic ligands (Zotenko et al., 2008). Through

hub analysis we have short-listed five important therapeutic
targets – SMAD2, CDK9, MEN1, HDAC1, and LCK that
could serve as potential biomarkers which were observed to

be significantly upregulated in leukemic cells. These genes have
crucial roles in regulating cell cycle proliferation and gene
expression processes, therefore could serve as potential thera-

peutic targets and also as biomarkers for prognosis or diagno-
sis of leukemia. Of these, SMAD2 and CDK9 are novel
findings and have not been reported earlier in leukemogenesis
of ALL.

Alterations in HDAC1 have been reported in association
with many cancers and its overexpression in T-ALL has been
suggested to play a role in lymphocyte differentiation

(Moreno et al., 2010). The components of HDAC1 cluster
could play a role in disease progression via deregulated expres-
sion of their target genes, leading to an increase in the levels of

cell survival genes and inhibition of apoptotic genes, resulting
in loss of proliferation control and thus increase in neoplastic
cell number.

Therapeutic strategies targeting LCK gene have been found
effective against ALL malignant cells (Harr et al., 2010; De
Keersmaecker et al., 2014). The close association of LCK clus-
ter interactors suggests that alterations in one gene/protein

may lead to a cascade event disrupting the signaling mecha-
nisms, altering the cell fate determination process. Also, the
members of LCK interaction cluster such as Zap70 and SYK

(Fig. 4) have been previously observed to have altered expres-
sion in ALL and suggested to be possible prognostic markers
for the disease (Ebeid et al., 2008).

MEN1 has been reported to be crucial in MLL leukemo-
genesis (Ichikawa et al., 2003; Caslini et al., 2007;
Grembecka et al., 2010). Many of the interactors of MEN1
cluster, especially NOTCH1 (Lin et al., 2012), CCND1 (Aref

et al., 2006) and LEF1 (Gutierrez et al., 2010) (Fig. 4), have
been reported to be altered in leukemic cells, especially T-leu-
kemia cells. The proteins in the MEN1 cluster may thus be

important for T-lymphocyte mediated leukemogenesis and
may therefore constitute important targets for T-ALL specific
therapy.

The role of SMAD2 gene has been reported in other cancers
such as Pancreatic cancer (Kleeff et al., 1999), and Colorectal
cancer (Matsuzaki et al., 2009) wherein its alteration has been

associated with malignant TGF-b signaling, poor prognosis
and in metastasis (Oft et al., 2002), but no mutations in
SMAD2 in ALL samples were observed (Wieser et al., 1998).
However, in our study we report for the first time that its
expression levels in the T-ALL datasets used for analysis were
significantly high. It has also been identified as a prioritized
hub gene in our study indicating that it could play an impor-

tant role in the T-cell leukemogenesis, through altered TGFb
pathway, similar to other cancers. Alterations in the expression
levels of the proteins in this cluster may contribute to loss of

regulation of proliferation signals and apoptosis and thus lead
to neoplastic transformation. As reviewed by Connolly et al.
(2012), several studies have reported a remarked decrease in

cancer cells on administration of antagonists of TGFb/signal-
ing pathway and hence a similar approach may also be useful
in patients with increased expression of SMAD2 in ALL.

The cyclin dependent kinases (CDKs) help in proper initia-

tion and elongation steps in the transcription process and stud-
ies have reported that their inhibition helps promote apoptosis
in malignant cells and may prevent cytotoxicity due to dereg-

ulated pathways in altered cells (Shapiro, 2006). The overex-
pression of CDK9 in B-ALL indicates that it may contribute
to neoplastic transformation of B-cells. Overexpression of

CDK9 in other cancers such as certain lymphomas (Bellan
et al., 2004) and Neuroblastoma (De Falco et al., 2005) has
been associated with differentiation and proliferation status.

Thus, CDK9 overexpression in B-ALL may deregulate cell
cycle in B-lymphocytes and lead to leukemogenesis through
promotion of increased cell division and targeting this gene
may be useful in controlling aberrant proliferation in

B-ALL. The diversity in the functional pathways of the inter-
actors in this cluster suggests a possible role of their intercon-
nectivity in the transmission of oncogenic signals.

The markers cited before i.e., NEGR1, IRX2, EPS8, TDP52
(Kang et al., 2012) and NOTCH1 (Lin et al., 2012), were
reported to play a crucial role in disease progression. Since

the genes short-listed in our study also function in related
pathways, there may be a possibility of these genes influencing
each other and contributing to leukemogenesis.

Although LCK, HDAC1 and MEN1 have previously been
reported in association with ALL, our study emphasizes the
importance of these genes, their proteins and their interactions
in leukemogenesis. Our study has also identified two new

genes, SMAD2 and CDK9 whose role in the neoplastic trans-
formation of lymphocyte cells in ALL has not been empha-
sized earlier. Therefore, this study assigns new putative roles

to these genes taking part in leukemogenesis as important
hubs. Further, these two genes may serve as prognostic mark-
ers, since they play a critical role in regulation of cell growth.

Since these five genes were generally among the top 2–5%
overexpressed genes in the ALL data sets used in our analysis,
they could be used to differentiate between ALL and healthy
samples. Further, analysis of expression ranking of these genes

in their respective datasets showed that, in case of HDAC1
there is a significant difference in its expression ranking
between T-ALL (top 5%) and B-ALL (�top 10–26%) and

hence expression levels of this gene may also be used to differ-
entiate between B- and T-ALL subtypes and between healthy
and leukemic cells. Also, we observed that the RNA and pro-

tein expression levels of SMAD2 and CDK9 were high in
MOLT4 and REH leukemic cell lines in the Human Protein
Atlas database (Uhlen et al., 2010), which further supports

the investigation of these genes as potential biomarkers in
ALL and further exploration as targets for therapy. Though
further validation via in vitro and in vivo methods may be
needed we believe, that these genes are involved in
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leukemogenesis as they have also been reported to contribute
to carcinogenesis of other neoplasms. Further, the statistical
validation performed by each of the gene prioritization and

network analysis tools used in our study support that the
results we obtained are significant. Also, since our analysis
includes expression studies from Childhood ALL, our results

can especially be useful to understand which pathways func-
tion in disease progression and also in disease relapse in
affected children, which is one of the utmost concerns in treat-

ment failure.
Further, as reviewed by Chou and Shen (2009) and estab-

lished by numerous research studies (such as Chen et al.,
2013, 2014; Xiao et al., 2014; Xu et al., 2014), user-friendly

and publicly accessible web-servers represent the future direc-
tion for developing more useful models and prediction meth-
ods and for demonstrating new and novel findings; hence, we

shall endeavor in our future work to provide a web-server
for the approach and findings presented in this paper.

5. Conclusions

In this study, we have aimed to decipher the significance of the
complex molecular networks of proteins encoded by overex-

pressed genes, retrieved from Oncomine database. Our compu-
tational analysis has short-listed five genes, MEN1, SMAD2,
CDK9, LCK and HDAC1, whose biological and functional rel-

evance suggests their use as therapeutic targets and also as
potential biomarkers and predictors of leukemogenesis in
ALL. The use of interaction networks in our study led to iden-
tification of biological pathway modules, mediated by these

genes that may aid in leukemogenesis. Further, the differential
expression of the five short-listed genes suggests that they may
be useful in segregation of ALL samples from controls. Due to

their functional enrichment we believe that these genes could
serve as potential biomarkers of prognosis and diagnosis and
also the new genes identified in our study, SMAD2 and

CDK9, could serve as novel targets for therapy. This informa-
tion would be helpful in accurately diagnosing ALL and will
be beneficial in improvement of clinical studies. Finally, we

also point to some useful data mining and bioinformatics soft-
ware packages that can be used for identifying novel biomark-
ers in cancer research.
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