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Developing intelligent neuromorphic solutions remains a challenging

endeavor. It requires a solid conceptual understanding of the hardware’s

fundamental building blocks. Beyond this, accessible and user-friendly

prototyping is crucial to speed up the design pipeline. We developed an open

source Loihi emulator based on the neural network simulator Brian that can

easily be incorporated into existing simulation workflows. We demonstrate

errorless Loihi emulation in software for a single neuron and for a recurrently

connected spiking neural network. On-chip learning is also reviewed and

implemented, with reasonable discrepancy due to stochastic rounding. This

work provides a coherent presentation of Loihi’s computational unit and

introduces a new, easy-to-use Loihi prototyping package with the aim to help

streamline conceptualization and deployment of new algorithms.

KEYWORDS
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1. Introduction

Neuromorphic computing offers exciting new computational structures.

Decentralized units inspired by neurons are implemented in hardware (reviewed

by Schuman et al., 2017; Rajendran et al., 2019; Young et al., 2019). These can be

connected up to one another, stimulated with inputs, and the resulting activity patterns

can be read out from the chip as output. A variety of algorithms and applications

have been developed in recent years, including robotic control (DeWolf et al., 2016,

2020; Michaelis et al., 2020; Stagsted et al., 2020), spiking variants of deep learning

algorithms, attractor networks, nearest-neighbor or graph search algorithms (reviewed

by Davies et al., 2021). Moreover, neuromorphic hardware may provide a suitable

substrate for performing large scale simulations of the brain (Furber, 2016; Thakur et al.,

2018). Neuromorphic chips specialized for particular computational tasks can either be

provided as a neuromorphic computing cluster or be integrated into existing systems,

akin to graphics processing units (GPU) in modern computers (Furber et al., 2014;

Davies et al., 2021). With the right ideas, networks of spiking units implemented in
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neuromorphic hardware can provide the basis for powerful

and efficient computation. Nevertheless, the development of

new algorithms for spiking neural networks, applicable to

neuromorphic hardware, is a challenge (Grüning and Bohte,

2014; Pfeiffer and Pfeil, 2018; Bouvier et al., 2019).

At this point, without much background knowledge of

neuromorphic hardware, one can get started programming

using the various software development kits available (e.g.,

Brüderle et al., 2011; Sawada et al., 2016; Lin et al., 2018;

Rhodes et al., 2018; Michaelis, 2020; Müller et al., 2020a,b;

Spilger et al., 2020; Rueckauer et al., 2021). Emulators for

neuromorphic hardware (Furber et al., 2014; Petrovici et al.,

2014; Luo et al., 2018; Valancius et al., 2020) running on a

standard computer or field programmable gate arrays (FPGA),

make it possible to develop neuromorphic network architectures

without even needing access to a neuromorphic chip (see e.g.,

NengoLoihi1 and Dynap-SE2). This can speed up prototyping

as the initialization of networks, i.e., distributing neurons and

synapses, as well as the readout of the system’s state variables

on neuromorphic chips takes some time. At the same time

emulators transparently contain the main functionalities of the

hardware in code and therefore provide insights into how it

works. With this understanding, algorithms can be intelligently

designed and complex network structures implemented.

In the following, we introduce an emulator for the digital

neuromorphic chip Loihi (Davies et al., 2018) based on the

widely used spiking neural network simulator Brian (Stimberg

et al., 2019). We first dissect an individual computational

unit from Loihi. The basic building block is a spiking unit

inspired by a current based leaky integrate and fire (LIF)

neuron model (see Gerstner et al., 2014). Connections between

these units can be plastic, enabling the implementation of

diverse on-chip learning rules. Analyzing the computational

unit allows us to create an exact emulation of the Loihi

hardware on the computer. We extend this to a spiking

neural network model and demonstrate that both Loihi and

Brian implementations match perfectly. This exact match

means one can do prototyping directly on the computer using

Brian only, which adds another emulator in addition to the

existing simulation backend in the Nengo Loihi library. This

increases both availability and simplicity of algorithm design for

Loihi, especially for those who are already used to working

with Brian. In particular for the computational neuroscience

community, this facilitates the translation of neuroscientific

models to neuromorphic hardware. Finally, we review and

implement synaptic plasticity and show that while individual

weights show small deviations due to stochastic rounding, the

statistics of a learning rule are preserved. Our aim is to facilitate

the development of neuromorphic algorithms by delivering an

1 https://www.nengo.ai/nengo-loihi/

2 https://code.ini.uzh.ch/yigit/NICE-workshop-2021

open source emulator package that can easily be incorporated

into existing workflows. In the process we provide a solid

understanding of what the hardware computes, laying the

appropriate foundation to design precise algorithms from the

ground up.

2. Loihi’s computational unit and its
implementation

Developing a Loihi emulator requires precise

understanding of how Loihi works. And to understand

how something works, it is useful to “take it apart and put

it back together again”. While we will not physically take

the Loihi chip apart, we can inspect the components of

its computational units with “pen and paper”. Then, by

implementing each component on a computer we will test that,

when put back together, the parts act like we expect them to.

In the following we highlight how spiking units on Loihi

approximate a variant of the well-known LIF model using first

order Euler numerical integration with integer precision. This

understanding enables us to emulate Loihi’s spiking units on

the computer in a way that is straightforward to use and easy to

understand. For a better intuition of how the various parameters

on Loihi interact, we refer readers to our neuron design

tool3 for Loihi. Readers familiar with Davies et al. (2018) and

numerical implementations of LIF neurons may prefer to skip

to Section 2.3.

2.1. Loihi’s neuron model: A recap

The basic computational unit on Loihi is inspired by a

spiking neuron (Davies et al., 2018). Loihi uses a variant of the

leaky integrate and fire neuron model (Gerstner et al., 2014) (see

Appendix 9.1). Each unit i of Loihi implements the dynamics

of the voltage vi

dvi

dt
= −

1

τv
vi(t)+ Ii(t)− vthi σi(t), (1)

where the first term controls the voltage decay, the second term

is the input to the unit, and the third term resets the voltage

to zero after a spike by subtracting the threshold. A spike is

generated if vi > vthi and transmitted to other units to which

unit i is connected. In particular, vmodels the voltage across the

membrane of a neuron, τv is the time constant for the voltage

decay, I is an input variable, vth is the threshold voltage to spike,

and σ (t) is the so-called spike train which is meant to indicate

whether the unit spiked at time t. For each unit i, σi(t) can be

3 https://github.com/andrewlehr/loihi_parameter_tuning_dashboard
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written as a sum of Dirac delta distributions

σi(t) =
∑

k

δ(t − ti,k), (2)

where ti,k denotes the time of the k-th spike of unit i. Note

that σi is not a function, but instead defines a distribution

(i.e., generalized function), and is only meaningful under an

integral sign. It is to be understood as the linear functional

〈σi, f 〉 : =
∫

σi(t)f (t) dt =
∑

k f (ti,k) for arbitrary, everywhere-

defined function f (see Corollary 1 in Appendix 9.1.2).

Input to a unit can come from user defined external

stimulation or from other units implemented on chip. Davies

et al. (2018) describe the behavior of the input I(t) with

Ii(t) =
∑

j

Jij(αI ∗ σj)(t)+ Ibiasi , (3)

where Jij is the weight from unit j to i, Ibiasi is a constant bias

input, and the spike train σj of unit j is convolved with the

synaptic filter impulse response αI , given by

αI(t) = exp

(

−
t

τI

)

H(t), (4)

where τI is the time constant of the synaptic response and H(t)

the unit step function. Note that αI(t) is defined differently here

than in Davies et al. (2018) (see Appendix 9.1.3 for details).

The convolution from Equation (3) is a notational convenience

for defining the synaptic input induced by an incoming spike

train, simply summing over the time-shifted synaptic response

functions, namely (σi ∗ f )(t) = 〈σi, τt f̃ 〉 =
∑

k f (t − ti,k), where

τt f (x) = f (x− t) and f̃ (x) = f (−x) (see Appendix 9.1.2).

2.2. Implementing Loihi’s spiking unit in
software

From the theoretical model on which Loihi is based, we

can derive the set of operations each unit implements with

a few simple steps. Using a first order approximation for the

differential equations gives the update equations for the voltage

and synaptic input described in the Loihi documentation.4

Combined with a few other details regarding Loihi’s integer

precision and the order of operations, we will have all we need

to implement a Loihi spiking unit in software.

2.2.1. Synaptic input

From Equation (3), we see that the synaptic input can

be written as a sum of exponentially decaying functions with

4 The documentation for the NxSDK is available from Intel on request.

amplitude Jij beginning at the time of each spike tj,k (see

Appendix 9.1.2). In particular we have

Ii(t) =
∑

j

Jij
∑

k

exp

(

tj,k − t

τI

)

H(t − tj,k)+ Ibiasi . (5)

To understand the behavior of the synaptic input it is helpful

to consider the effect of one spike arriving at a single synapse.

Simplifying Equation (5) to just one neuron that receives just

one input spike at time t1 = 0, for t ≥ 0 we get

I(t) = J · exp

(

−
t

τI

)

(6)

and for t < 0, I(t) = 0. Each spike induces a step increase

in the current which decays exponentially with time constant τI .

Taking the derivative of both sides with respect to t gives

dI

dt
= −

1

τI
· I(t), (7)

I(0) = J. (8)

Applying the forward Euler method to the differential equation

for 1t = 1 and t ≥ 0, t ∈ N we get

I[t] = I[t − 1]−
1

τI
· I[t − 1]+ J · s[t], (9)

where s[t] is zero unless there is an incoming spike on the

synapse, in which case it is one. Here, s[0] = 1 and s[t] =

0 for t > 0. With this we have simply incorporated the

initial condition into the update equation. Note that we have

switched from a continuous [e.g., I(t)] to discrete (e.g., I[t]) time

formulation, where 1t = 1 and t is unitless.

Loihi has a decay value δI , which is inversely proportional

to τI , namely δI = 212/τI . Swapping τI by δI reveals

I[t] = I[t − 1] · (212 − δI) · 2−12 + J · s[t]. (10)

The weight J is defined via the mantissa w̃ij and exponent2 (see

Section 3.1) such that the equation describing the synaptic input

becomes (with indices)

Ii[t] = Ii[t−1] ·(2
12−δI) ·2−12+26+2 ·

∑

j

(

w̃ij · sj[t]
)

, (11)

where sj[t] ∈ {0, 1} is the spike state of the jth input neuron.

Please note that Equation (2.2.1) is identical to the Loihi

documentation.

From this we can conclude that the implementation of

synaptic input on Loihi is equivalent to evolving the LIF synaptic

input differential equation with the forward Euler numerical

integration method (see Figure 1A1).
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2.2.2. Voltage

It is straightforward to perform the same analysis as above

for the voltage equation. We consider the subthreshold voltage

dynamics for a single neuron and can therefore ignore the reset

term vthi σi(t) from Equation (1), leaving us with

dv

dt
= −

1

τv
v(t)+ I(t). (12)

Applying forward Euler gives

v[t] = v[t − 1]−
v[t − 1]

τv
+ I[t]. (13)

Again, to compare with the Loihi documentation we need

to swap the time constant τv by a voltage decay parameter, δv,

which is inversely proportional to the time constant, the same as

above for synaptic input. Plugging in τv = 212/δv leads to

v[t] = v[t − 1] · (212 − δu) · 2−12 + I[t]. (14)

By introducing a bias term, the voltage update becomes

vi[t] = vi[t − 1] · (212 − δu) · 2−12 + Ii[t]+ Ibiasi . (15)

Equation (15) agrees with the Loihi documentation. Like

the synaptic input, the voltage implementation on Loihi is

equivalent to updating the LIF voltage differential equation

using forward Euler numerical integration (see Figure 1A2).

2.2.3. Integer precision

Loihi uses integer precision. So the mathematical

operations in the update equations above are to be understood in

terms of integer arithmetic. In particular, for the synaptic input

and voltage equations the emulator uses round away from zero,

which can be defined as

xround := sign(x) · ⌈|x|⌉. (16)

where ⌈·⌉ is the ceiling function and sign(·) the sign function.

2.3. Summary

We now have all of the pieces required to understand

and emulate a spiking unit from Loihi. Evolving the

differential equations for the current-based LIF model with

the forward Euler method and using the appropriate rounding

(see Section 2.2.3) and update schedule (see Section 4.1

and Appendix 9.2.1) is enough to exactly reproduce Loihi’s

behavior. This procedure is summarized in Algorithm 1 and an

exact match between Loihi and an implementation for a single

unit in Brian is shown in Figure 1A. Please note that during the

refractory period Loihi uses the voltage trace to count elapsed

time (see Figure 1A2, Appendix 9.2.2), while in the emulator the

voltage is simply clamped to zero.

Result: Simulate one Loihi unit with one input

synapse for tmax time steps and read out

state variables (I, v) and spikes (σ).

# Define round away from zero

rnd(·) := sign(·)⌈|·|⌉

# Define input spike train

St = {0, 1} ∀ t ∈ N | t ≤ tmax

# Define synaptic weight

J : = 26+2 · w̃, 2 ∈ [−8, 7], w̃ ∈ [−256, 255]

# Define threshold

vth : = vmant · 2
6, vmant ∈ [0, 131071]

# Define voltage and synaptic input decay

τ−1v = δv/212, δv ∈ [0, 4096]

τ−1I = δI/212, δI ∈ [0, 4096]

# Initialize variables

It , vt , σt = 0 ∀ t ∈ N | t ≤ tmax

# Loop over simulation steps

for t from 1 to tmax do

# Spike input

s← St

# Update and read synaptic input

It ← It−1 − rnd(τ
−1
I · It−1)+ J · s

# Update and read voltage

vt ← vt−1 − rnd(τ−1v · vt−1)+ It

# Check threshold

if v > vth then

# Read spike

σt ← 1

# Reset voltage

vt ← 0

end

end

Algorithm 1. Loihi single neuron emulator.

3. Network and plasticity

We now have a working implementation of Loihi’s spiking

unit. In the next step, we need to connect these units up into

networks. And if the network should be able to learn online,

connections between units should be plastic. In this section, we

review how weights are defined on Loihi and how learning

rules are applied. This includes the calculation of pre- and post-

synaptic traces. Based on this, we outline how these features are

implemented in the emulator.

3.1. Synaptic weights

The synaptic weight consists of two parts, a weight mantissa

w̃ and a weight exponent2 and is of the form w̃·26+2. However,
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FIGURE 1

(A) Input trace of a single synapse (left) and voltage trace (right) of a neuron. The neuron receives randomly timed excitatory and inhibitory input

spikes. The emulator (yellow) matches Loihi (blue) in both cases perfectly. Note that Loihi uses the voltage register to count refractory time,

which results in a functionally irrelevant di�erence after a spike, e.g time step 17 in A2 (see Appendix 9.2.2). (B) Network simulation with 400

excitatory (indices 100− 500) and 100 inhibitory (indices 0− 100) neurons. The network is driven by noise from an input population of 40

Poisson spike generators with a connection probability of 0.05. All spikes match exactly between the emulator and Loihi for all time steps. The

figure shows the last 400 time steps from a simulation with 100, 000 time steps.

in practice the calculation of the synaptic weight depends on bit

shifts and its precision depends on a few parameters (see below).

The weight exponent is a value between −8 and 7 that scales

the weight mantissa exponentially. Depending on the sign mode

of the weight (excitatory, inhibitory, or mixed), the mantissa is

an integer in the range w̃ ∈ [0, 255], w̃ ∈ [−255, 0], or w̃ ∈

[−256, 254], respectively. The possible values of the mantissa

depend on the number of bits available for storing the weight and

whether the sign mode ismixed or not. In particular, precision is

defined as 2ns , with

ns = 8− (nwb − σmixed). (17)

This can intuitively be understood with a few examples. If the

weight bits for the weight mantissa are set to the default value

of nwb = 8 bits, it can store 256 values between 0 and 255,

i.e., the precision is then 28−(8−0) = 20 = 1. If nwb = 6 bits

is chosen, we instead have a precision of 28−(6−0) = 22 = 4

meaning there are 64 possible values for the weight mantissa,

w̃ ∈ {0, 4, 8, 16, ..., 252}. If the sign mode is mixed, i.e., σmixed =

1, one bit is used to store the sign, which reduces the precision.

Mixed mode enables both positive and negative weights, with

weight mantissa between −256 and 254. Assuming nwb = 8

in mixed mode, precision is 28−(8−1) = 21 = 2 and w̃ ∈

{−256,−254, ...,−4,−2, 0, 2, 4, ..., 254}.

3.1.1. Weight initialization

While the user can define an arbitrary weight mantissa

within the allowed range, during initialization the value is

rounded, given the precision, to the next possible value toward

zero. This is achieved via bit shifting, that is the weight mantissa

is shifted by

w̃shifted = (w̃≫ ns)≪ ns, (18)
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where≫ and≪ are a right and left shift respectively. Afterwards

the weight exponent is used to scale the weight according to

Jscaled = w̃shifted · 26+2. (19)

This value cannot be greater than 21 bits and is clipped if it

exceeds this limit. Note that this only happens in one case for

w̃ = −256 and 2 = 7. Finally the scaled value Jscaled is shifted

again according to

J = (Jscaled≫ 6)≪ 6, (20)

where J is the final weight.

We provide a table with all 4096 possible weights depending

on the mantissa and the exponent in a Jupyter notebook5.

These values are provided for all three sign modes.

3.1.2. Plastic synapses

In the case of a static synapse, the initialized weight remains

the same as long as the chip/emulator is running. Thus static

synapses are fully described by the details above. For plastic

synapses, the weight can change over time. This requires a

method to ensure that changes to the weight adhere to its

precision.
For plastic synapses, stochastic rounding is applied to the

mantissa during each weight update. Whether the weight
mantissa is rounded up or down depends on its proximity to the
nearest possible values above and below, i.e.,

RS2ns (x) =
{

sign(x) · ⌊|x|⌋2ns with probability (2ns − (|x| − ⌊|x|⌋2ns ))/2
ns

sign(x) · (⌊|x|⌋2ns + 2ns ) with probability (|x| − ⌊|x|⌋2ns ))/2
ns

(21)

where ⌊·⌋2ns denotes rounding down to the nearest multiple

of 2ns . After the mantissa is rounded, it is scaled by the weight

exponent and the right/left bit shifting is applied to the result to

compute the actual weight J. How this is realized in the emulator

is shown in Code Listing 3.

To test that our implementation of the weight update for

plastic synapses matches Loihi for each possible number of

weight bits, we compared the progression of the weights over

time for a simple learning rule. The analysis is described in detail

in Appendix 9.4.

3.2. Pre- and post-synaptic traces

Pre- and post-synaptic traces are used for defining learning

rules. Loihi provides two pre-synaptic traces x1, x2 and three

post-synaptic traces y1, y2, y3. Pre-synaptic traces are increased

5 https://github.com/sagacitysite/brian2_loihi_utils/blob/main/

algorithm/02_weight-calculation.ipynb

by a constant value x̂i, for i ∈ {1, 2}, if the pre-synaptic neuron

spikes. The post-synaptic traces are increased by ŷj for j ∈

{1, 2, 3}, accordingly. So-called dependency factors are available,

indicating events like x0 = 1 if the pre-synaptic neuron spikes

or y0 = 1 if the post-synaptic neuron spikes. These factors can

be combined with the trace variables by addition, subtraction, or

multiplication.

A simple spike-time dependent plasticity (STDP) rule with

an asymmetric learning window would, for example, look like

dw = x1 · y0 − y1 · x0. This rule leads to a positive change

in the weight (dw > 0) if the pre-synaptic neuron fires shortly

before the post-synaptic neuron (i.e., positive trace x1 > 0 when

y0 = 1) and to a negative change (dw < 0) if the post-synaptic

neuron fires shortly before the pre-synaptic neuron (i.e., positive

trace y1 > 0 when x0 = 1). Thus, the time window in which

changes may occur depends on the shape of the traces (i.e.,

impulse strength x̂i, ŷi; and decay τxi , τyj , see below).

For a sequence of spikes s[t] ∈ {0, 1}, a trace is defined as

xi[t] = α · xi[t − 1]+ x̂i · s[t], (22)

where α is a decay factor (see Davies et al., 2018). This equation

holds for presynaptic (xi) and postsynaptic (yi) traces. However,

in practice, on Loihi one does not set α directly but instead

decay time constants τxi and τyj .

In the implementation of the emulator we again assume a

first order approximation for synaptic traces, akin to synaptic

input and voltage. Under this assumption for the exponential

decay, in Equation (22) we replace α by

α(τxi ) = 1−
1

τxi
. (23)

Using this approximation gives reasonable results across a

number of different τxi and τyi values (see Figure A2). While

this essentially suffices, it could be improved by introducing an

additional parameter, e.g., β , and optimizing α(τxi ,β).

Note that we have integer precision again. But different

from the round away from zero applied in the neuron model,

here stochastic rounding is used. Since traces are positive values

between 0 and 127 with precision 1, the definition above in

Equation (21) simplifies to the following

RS1,≥0(x) =







⌊x⌋ with probability 1− (x− ⌊x⌋)

⌊x⌋ + 1 with probability x− ⌊x⌋
(24)

Since this rounding procedure is probabilistic and the details

of the random number generator are unknown, rounding

introduces discrepancies when emulating Loihi on the

computer. Further improvements are possible if more details of

the chip’s rounding mechanism were to be considered.
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3.3. Summary

At this point we are able to connect neurons with synapses

and build networks of neurons (see Figure 1B). It was shown

how the weights are handled, depending on the user defined

number of weight bits or the sign mode. In addition, using the

dynamics of the pre- and post synaptic traces, we can now define

learning rules. Note that different from the neuron model, the

synaptic traces cannot be reproduced exactly since the details

of the random number generator, used for stochastic rounding,

are unknown. However, Figure 2 shows that the synaptic traces

emulated in Brian are very close to the original ones in Loihi

and that the behavior of a standard asymmetric STDP rule can

be reproduced with the emulator.

4. Loihi emulator based on Brian

Here we provide an overview over the emulator package and

show some examples and results. This enables straightforward

emulation of the basic features from Loihi as a sandbox for

experimenters. Note that we have explicitly not included routing

and mapping restrictions, like limitations for the number

of neurons or the amount of synapses, as these depend on

constraints such as the number of used Loihi chips.

4.1. The package

The emulator package is available on PyPI6 and can be

installed using the pip package manager. The emulator does

not provide all functionality of the Loihi chip and software,

but the main important aspects. An overview over all provided

features is given in Table A1 (Appendix). It contains six classes

that extend the corresponding Brian classes. The classes are

briefly introduced in the following. Further details can be taken

from the code.7

4.1.1. Network

The LoihiNetwork class extends the Brian Network

class. It provides the same attributes as the original Brian class.

The main difference is that it initializes the default clock, the

integrationmethods and updates the schedule when a Network

instance is created. Note that it is necessary tomake explicitly use

of the LoihiNetwork. It is not possible to use Brian’smagic

network.

Voltage and synaptic input are evolved with the forward

Euler integration method, which was introduced in Section 2.2.

6 https://pypi.org/project/brian2-loihi/

7 https://github.com/sagacitysite/brian2_loihi/

1 lif_equations = ’’’
2 rnd_v = sign(v)*ceil(abs(v*1_tau_v)) : 1
3 rnd_I = sign(I)*ceil(abs(I*1_tau_I)) : 1
4 dv/dt = -rnd_v/ms + I/ms: 1 (unless refractory)
5 dI/dt = -rnd_I/ms : 1
6 ’’’

Neuron model equations of the voltage and the synaptic input for

Brian. It contains a round away from zero rounding.

Additionally a state updater was defined for the pre- and post-

synaptic traces.

The default network update schedule for the computational

order of the variables from Brian do not match the order of

the computation on Loihi. The Brian update schedule is

therefore altered when initializing the LoihiNetwork, more

details are given in Appendix 9.2.1.

4.1.2. Neuron group

The LoihiNeuronGroup extends Brian’s

NeuronGroup class. Parameters of the

LoihiNeuronGroup class are mostly different from the

Brian class and are related to Loihi. When an instance

is created, the given parameters are first checked to match

requirements from Loihi. Finally, the differential equations to

describe the neural system are shown in Code Listing 1. Since

Brian does not provide a round away from zero functionality,

we need to define it manually as an equation.

4.1.3. Synapses

The LoihiSynapses class extends the Synapses class

from Brian. Again, most of the Brian parameters are

not supported and instead Loihi parameters are available.

When instantiating a LoihiSynapses object, the needed

pre- and post-synaptic traces are included as equations (shown

in Code Listing 2) as theoretically introduced in Section 3.2.

Moreover, it is verified that the defined learning rule matches

the available variables and operations supported by Loihi. The

equations for the weight update is shown in Code Listing 3.

Since we have no access to the underlying mechanism

and we cannot reproduce the pseudo-stochastic mechanisms

exactly, we have to find a stochastic rounding that matches

Loihi in distribution. Note that on Loihi the same network

configuration leads to reproducible results (i.e., same rounding).

Thus to compare the behavior of Loihi and the emulator, we

simulate over a number of network settings and compare the

distribution of the traces. Figure 2B shows the match between

the distributions. Note that with this, our implementation is

always slightly different from the Loihi simulation, due to

slight differences in rounding. In Figure 2C, we show that

these variations are constant and not diverging. In addition,
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1 x1decay_equations = ’’’
2 x1_new = x1 * (1 - (1.0/tau_x1)) : 1
3 x1_int = int(x1_new) : 1
4 x1_frac = x1_new - x1_int : 1
5 x1_add_or_not = int(x1_frac > rand()) : 1 (

constant over dt)
6 x1_rnd = x1_int + x1_add_or_not : 1
7 dx1/dt = x1_rnd / ms : 1 (clock-driven)
8 ’’’

Synaptic decay equation for Brian. Only the decay for x1 is shown,

the decay for x2, y1, y2, y3 is applied analogously. It contains an

approximation of the exponential decay and stochastic rounding.

1 weight_equations = ’’’
2 u0 = 1 : 1
3 u1 = int(t/ms % 2**1 == 0) : 1
4 ...
5 u9 = int(t/ms % 2**9 == 0) : 1
6

7 dw_rounded = int(sign(dw)*ceil(abs(dw))) : 1
8 quotient = int(dw_rounded / precision) : 1
9 remainder = abs(dw_rounded) % precision : 1
10 prob = remainder / precision : 1
11 add_or_not = sign(dw_rounded) * int(prob > rand())

: 1 (constant over dt)
12 dw_rounded_to_precision = (quotient + add_or_not)

* precision : 1
13 w_updated = w + dw_rounded_to_precision : 1
14 w_clipped = clip(w_updated, w_low, w_high) : 1
15 dw/dt = w_clipped / ms : 1 (clock-driven)
16

17 w_act_scaled = w_clipped * 2**(6 + w_exp) : 1
18 w_act_scaled_shifted = int(floor(w_act_scaled /

2**6)) * 2**6 : 1
19 w_act_clipped = clip(w_act_scaled_shifted, -limit,

limit) : 1
20 dw_act/dt = w_act_clipped / ms : 1 (clock-driven)
21

22 dx0/dt = 0 / ms : 1 (clock-driven)
23 dy0/dt = 0 / ms : 1 (clock-driven)
24 ’’’

Weight equations for Brian. The first part creates variables that allow

terms of the plasticity rule to be evaluated only at the 2k time step. dw

contains the user defined learning rule. The updated weight mantissa

is adapted depending on the number of weight bits, which determines

the precision. The weight mantissa is rounded with stochastic

rounding. After clipping, the weight mantissa is updated and the

actual weight is calculated.

Figure 2D shows that the principle behavior of a learning rule

is preserved.

4.1.4. State monitor and Spike monitor

The LoihiStateMonitor class extends the

StateMonitor class from Brian, while the

LoihiSpikeMonitor class extends the SpikeMonitor

class. Both classes support the most important parameters from

their subclasses and update the schedule for the timing of the

probes. This schedule update avoids shifts in the monitored

variables compared to Loihi.

4.1.5. Spike generator group

The LoihiSpikeGeneratorGroup extends the

SpikeGeneratorGroup class from Brian. This class

only reduces the available parameters to avoid that users

unintentionally change variables which would cause an

unwanted emulation behavior.

4.2. Examples

To demonstrate that the Loihi emulator works as

expected, we provide three examples covering a single neuron,

a recurrently connected spiking neural network, and the

application of a learning rule. All three examples are available

as Jupyter notebooks.8

4.2.1. Neuron model

In a first test, we simulated a single neuron. The neuron

receives randomly timed excitatory and inhibitory input spikes.

Figure 1A1 shows the synaptic responses induced by the input

spikes for the simulation using the Loihi chip and the

Loihi emulator. The corresponding voltage traces are shown in

Figure 1A2. As expected, the synaptic input as well as the voltage

match perfectly between the hardware and the emulator.

4.2.2. Network

In a second approach we applied a recurrently connected

network of 400 excitatory and 100 inhibitory neurons with log-

normal weights. The network gets noisy background input from

40 Poisson generators that are connected to the network with

a probability of 0.05. As already shown by others, this setup

leads to a highly chaotic behavior (Sompolinsky et al., 1988;

Van Vreeswijk and Sompolinsky, 1996; Brunel, 2000; London

et al., 2010). Despite the chaotic dynamics, spikes, voltages and

synaptic inputs match perfectly for all neurons and over the

whole time. The spiking pattern of the network is shown in

Figure 2B. All yellow (Brian) and blue (Loihi) dots match

perfectly.

4.2.3. Learning

In the last experiment, we applied a simple STDP learning

rule, as introduced in Equation (25), at a single plastic synapse.

The experiment is sketched in Figure 2A. One spike generator,

denoted input, has a plastic connection to a neuron with a very

low weight (w̃ = 128, 2 = −6), such that it has a negligible

effect on the post-synaptic neuron. Another spike generator,

denoted noise, has a large but static weight (w̃ = 254, 2 = 0)

8 https://github.com/sagacitysite/brian2_loihi_utils/tree/main/

examples
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FIGURE 2

Comparing a STDP learning rule performed with the emulator and with Loihi. (A) Sketch showing the setup. (B) Synaptic trace for many trials

showing the arithmetic mean and standard deviation. The inset shows the same data in a logarithmic scale. Note that every data point smaller

than 100 shows the probability of rounding values between 0 and 1 up or down. (C) Relative di�erence |w̃L − w̃B|/w̃max for the plastic weight

between the emulator, w̃B, and the Loihi implementation, w̃L, for 50 simulations, w̃max = 255. (D) STDP weight change in respect to pre- and

post-synaptic spike times, data shown for time steps 0− 2, 000 for visualization purposes.

to reliably induce post-synaptic spikes. Figure 2B compares the

distribution of traces between the emulator and Loihi. For this

400 trials were simulated.

We chose an asymmetric learning window for the STDP

rule. The learning rule uses one pre-synaptic trace x1 (x̂1 = 120,

τx1 = 8) and one post-synaptic trace y1 (ŷ1 = 120, τy1 = 8). In

addition the dependency factors x0 ∈ 0, 1 and y0 ∈ 0, 1 are used,

which indicate a pre- and post-synaptic spike respectively. Using

these components, the learning rule is defined as

dw = 2−2 · x1 · y0 − 2−2 · x0 · y1. (25)

Due to the stochastic rounding of the traces, differences

in the weight changes occur, which are shown in Figure 2C.

Fortunately, the relative weight error remains low at a constant

level of 0.027 ± 0.027 and does not diverge, even over long

simulation times, e.g., 100 000 steps. Despite these variations, the

STDP learning window of the emulator reproduces the behavior

of the Loihi learning window, as shown in Figure 2D.

4.3. Performance tests

An important argument for the development of the

Brian2Loihi emulator was—besides improving the

understanding of Loihi’s functionality—its usefulness for

prototyping. When developing new models, algorithms,

and applications, often large parameter scans are performed

in which many networks with different parameter sets are

initialized and executed. During this process, it is crucial to be

able to read out spiking information to measure performance.

For this reason we measured initialization and execution times

both with and without spike monitoring on the Loihi chip

and in the Loihi emulator.
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FIGURE 3

Comparing performance of the Loihi emulator with the Loihi chip. The initialization time (A,B) and execution time (C,D) for Loihi-based
(blue) and emulator-based (orange) simulations was compared for di�erent network sizes. In one case spikes were read out for all neurons and

time steps (A,C) and in a second case no spikes were read out (B,D). The Brian-based simulation using Brian2Loihi had faster initialization

times across all network sizes, both with and without spike monitoring. For the execution time, a Brian-based simulation was only faster when

a read out was defined. If no spikes were read out, Loihi-based execution is faster. Execution time both on the Loihi chip and using the

emulator increase with network size. Points show the mean and shaded areas show the standard deviation over 5 trials.

Figure 3A compares initialization times for a randomly

connected network with different sizes. Networks were

stimulated with background noise tomaintain a consistent firing

rate. Note that more details about the network implementation

are provided in Appendix 9.2.2. From the figure, it is clear that

Loihi takes much more time to setup the network compared

to the emulator based on Brian. If no spiking information is

read out from the network during simulation, the result is quite

similar, as shown in Figure 3B. Brian2Loihi reduces the

initialization time drastically, in particular for larger networks.

This boost in initialization time is highly valuable for parameter

scans across many network configurations.

We were also interested in the comparison for the execution

times of the simulation. Figure 3C compares Loihi- and

Brian-based execution times if all spikes were read out. Clearly,

Brian2Loihi is much faster and the difference becomes

larger as the network size grows. However, if no read out is

performed, Figure 3D shows that in this case Loihi is faster

in executing the simulation across all network sizes. Therefore,

Brian2Loihi is more efficient for prototyping networks,

when we depend on analyzing comprehensive data from the

networks’ behavior. For applications where a read out is not

important or only few spikes must be read out, execution on

Loihi is faster.

This underlines the significance of the Brian2Loihi

emulator for prototyping on one hand and shows the potential

of Loihi for large and long-term network simulations on the

other hand. Note, however, that due to longer initialization times

on Loihi, faster execution times are likely beneficial only if

network initialization must not be performed often, readout

is minimal, and the simulation time is long. In many cases,

choosing a Brian-based simulation for development and a

Loihi-based simulation for productive use cases could be an

efficient combination in our view.

4.4. Applications

As a starting point for working with the

emulator beyond the examples above, here we

briefly describe two more complex applications

Frontiers inNeuroinformatics 10 frontiersin.org

https://doi.org/10.3389/fninf.2022.1015624
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Michaelis et al. 10.3389/fninf.2022.1015624

implemented using the emulator. The code is openly

available.

4.4.1. Anisotropic network

In a recent study, we showed that a recurrently connected

neural network with spatially inhomogeneous locally correlated

connectivity (i.e., “the anisotropic network”, for original

model see Spreizer et al., 2019) could be implemented

on Loihi to generate noise-robust trajectories for robotic

movements (Michaelis et al., 2020). This biologically plausible

network model can generate stable sequences of neural

activity on the timescale of behavior, making it interesting

for both neuroscience and for neuromorphic applications. We

implemented this network in the Loihi emulator and made it

publicly available on GitHub.9

4.4.2. SSSP

The goal of the Single Source Shortest Path (SSSP) problem

is to find the shortest path from a start node to a target node in

a given graph. Spiking neuronal networks can solve the problem

through a wave front algorithm (Ponulak and Hopfield, 2013).

Within this algorithm a wave of spikes propagates through

a network of neurons that acts to represent the graph. The

algorithm stops when the target neuron spikes. To enable path

back tracing a local learning rule alters the weights during the

wave propagation phase accordingly. An implementation using

the Loihi emulator is available on GitHub.10

Furthermore, a new type of the SSSP algorithm for

neuromorphic hardware was developed using the Loihi

emulator, the so-called add-and-minimize (AM) algorithm

(Michaelis, 2022, Appendix 9.5). It is capable of solving the SSSP

problem for larger graphs, especially when the costs of the edges

have a higher resolution. The code is again publicly available.11

5. Discussion

This study was motivated by two goals. We hope to simplify

the transfer of models to Loihi and therefore developed a

Loihi emulator for Brian, featuring many functionalities of

the Loihi chip. In the process of developing the emulator, we

aimed to provide a deeper understanding of the functionality of

the neuromorphic research chip Loihi by analyzing its neuron

and synapse model, as well as synaptic plasticity.

We hope that the analysis of Loihi’s spiking units has

provided some insight into how Loihi computes. With the

numerical integration method, numerical precision and related

9 https://github.com/andrewlehr/Brian2Loihi_SpreizerNet

10 https://github.com/Winnus/Brian2Loihi_SSSP

11 https://github.com/elena-o�/sssp-loihiemulator

rounding method, as well as the update schedule, we were able

to walk from the LIF neuron model down to the computations

performed. For neurons and networks without plasticity we

are able to emulate Loihi without error. Analyzing and

implementing synaptic plasticity showed that, due to stochastic

rounding, it is not possible to exactly replicate trial by trial

behavior when it comes to learning. However, on average the

weight changes induced by a learning rule are preserved.

The main benefit of the Brian2Loihi emulator lies

in lowering the hurdle for the experimenter. Especially in

neuroscience, many scientists are accustomed to neuron

simulators and in particular Brian is widely used. It makes a

deep dive into new software frameworks and hardware systems

unnecessary. The emulator can be used for simple and fast

prototyping, as it improves the initialization time in all cases

drastically and the execution time, when a read out is used.

In addition, hardware specific complications, like distributing

neurons to cores, or constraints like potential limits on the

number of available neurons or synapses, or on the speed or

size of read-out, do not occur in the emulator. While this will

surely improve with new generations of hardware and software

in the upcoming years, they can already be ignored by using the

emulator.

At this point it is important to note that not all Loihi

features are included in the emulator, yet. In particular, the

homeostasis mechanism, rewards, and tags for the learning rule

are not included. In Table A1, we provide a comparison of all

functionalities from Loihi with those available in the current

state of the emulator. Development of this emulator is an open

source project and we expect improvements and additions with

time. Note that a follow up project, called Brian2Lava has

already started.12

An important vision for the future is to flexibly connect

front-end development environments (e.g., Brian, NEST,

Keras, TensorFlow) with various back-ends, like neuromorphic

platforms (e.g., Loihi, SpiNNaker, BrainScaleS, Dynap-SE) or

emulators for these platforms. PyNN (Davison et al., 2009) is

such an approach to unify different front-ends and back-ends

in a more general way. Nengo (Bekolay et al., 2014), as another

approach, does not provide the use of other simulators, but

allows several back-ends and focuses on higher level applications

(DeWolf et al., 2020). NxTF (Rueckauer et al., 2021) is an API

and compiler aimed at simplifying the efficient deployment of

deep convolutional spiking neural networks on Loihi using an

interface derived from Keras. We think that ideally, one could

continue to work in their preferred front-end environment while

a package maps their code to existing chips or computer-based

emulators of these chips. We expect an interface along these

lines will play an important role in the future of neuromorphic

computing and want to contribute to this development with our

Brian2Loihi emulator.

12 https://gitlab.com/tetzlab/brian2lava
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At least for now, with an emulator at hand, it is

easier to prototype network models and assess whether an

implementation on Loihi is worth considering. When getting

started with neuromorphic hardware, to e.g., scale up models

or speed up simulations, researchers familiar with Brian can

directly deploy models prepared with the emulator. We hope

that with this, others may find a smooth entry into the quickly

emerging field of neuromorphic computing.
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