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Abstract

The immunogenicity of biotherapeutics can bottleneck development pipelines and poses a barrier to widespread clinical
application. As a result, there is a growing need for improved deimmunization technologies. We have recently described
algorithms that simultaneously optimize proteins for both reduced T cell epitope content and high-level function. In silico
analysis of this dual objective design space reveals that there is no single global optimum with respect to protein
deimmunization. Instead, mutagenic epitope deletion yields a spectrum of designs that exhibit tradeoffs between
immunogenic potential and molecular function. The leading edge of this design space is the Pareto frontier, i.e. the
undominated variants for which no other single design exhibits better performance in both criteria. Here, the Pareto frontier
of a therapeutic enzyme has been designed, constructed, and evaluated experimentally. Various measures of protein
performance were found to map a functional sequence space that correlated well with computational predictions. These
results represent the first systematic and rigorous assessment of the functional penalty that must be paid for pursuing
progressively more deimmunized biotherapeutic candidates. Given this capacity to rapidly assess and design for tradeoffs
between protein immunogenicity and functionality, these algorithms may prove useful in augmenting, accelerating, and
de-risking experimental deimmunization efforts.
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Introduction

Therapeutic proteins are revolutionizing disease therapy across

a broad range of indications and illnesses, and biotherapeutic sales

are an increasingly important part of the pharmaceuticals market

[1,2]. However, these powerful drugs suffer from their own

limitations, which, if addressed, could accelerate the pace of

biotherapeutic development and approval. A relatively unique risk

factor for protein therapeutics is their inherent potential to induce

anti-drug immune responses in human patients [3,4,5]. These

undesirable immune reactions can compromise drug efficacy or

cause more serious adverse events [6,7].

In a healthy human immune system, all extracellular proteins

are sampled by antigen presenting cells (APCs). Once internalized

by APCs, a protein is cleaved into small peptide fragments,

putative immunogenic segments are loaded into the groove of class

II major histocompatibility complex proteins (MHC II), and the

complexes are trafficked to the APC surface. True immunogenic

peptides, termed T cell epitopes, facilitate the formation of ternary

MHC II-peptide-T cell receptor complexes with surface receptors

of cognate CD4+ T cells [8]. This critical molecular recognition

event initiates a signaling cascade that drives stimulation of helper

T cells, maturation of B cells, and ultimately production of

circulating antibodies that bind to and clear the foreign

therapeutic protein. Detailed knowledge of this process enables

protein deimmunization via mutation of key residues in immuno-

genic epitopes, a methodology commonly known as T cell epitope

deletion.

There exist in the literature numerous examples of successful T

cell epitope deletion projects. To date, the majority of these efforts

have relied on time, labor, and resource intensive experimental

strategies. Experimentally driven approaches entail dividing the

target protein’s primary sequence into a large panel of overlapping

peptides, synthesizing those peptides, and using them for

exhaustive epitope mapping with human peripheral blood

mononuclear cells and/or purified human MHC II proteins

[9,10,11,12,13,14]. To circumvent the considerable effort and

expense required for experimental epitope mapping, a wide range

of epitope prediction tools may be accessed

[15,16,17,18,19,20,21,22,23]. In some recent cases, such tools
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have been leveraged to good effect in deimmunizing therapeutic

candidates [24,25].

Identification and mapping of T cell epitopes is a relatively

mature field, but selection of mutations that simultaneously delete

epitopes and maintain protein function remains a challenging task.

Experimentally driven deimmunization typically relies on alanine

scanning or similar empirical strategies to select epitope deleting

mutations. While Cantor et al. employed epitope prediction to

rapidly identify immunogenic regions of asparaginase, their

selection of deimmunizing yet function-preserving mutations

required construction of large combinatorial protein libraries

and implementation of a sophisticated ultra-high throughput

screen [24]. As an alternative to the above methods, bioinfor-

matics tools are increasingly used to filter prospective deimmuniz-

ing mutations for those least likely to disrupt protein structure and

function [12,26], however these in silico analyses of a mutation’s

structural and functional consequences have historically been

applied post hoc. Any such sequential application of computational

tools fails to consider the combined effects of all mutations on

immunogenicity and function, thereby precluding a global

approach to protein deimmunization. Thus, while T cell epitope

deletion is a well validated methodology, the success, efficiency,

and general utility of the approach would be enhanced by bringing

to bear more advanced protein engineering and design technol-

ogies.

The next generation of protein deimmunization tools have

seamlessly integrated immunoinformatic epitope prediction with

in silico analysis of the functional consequences associated with

prospective deimmunizing mutations [27,28,29,30]. By packaging

both design objectives in a single optimization algorithm, these

technologies enable global protein design and deimmunization on

a highly compressed time scale. The first two iterations of these

novel algorithms, Dynamic Programming for Deimmunizing

Proteins (DP2) and Integer Programming for Immunogenic

Proteins (IP2), have undergone preliminary experimental valida-

tion with Enterobacter cloacae P99 Beta-lactamase (P99bL)

[25,31], a biotherapeutic that has been deimmunized previously

using conventional experimentally-driven techniques [9]. Here we

deimmunize the P99bL target using a more advanced extension of

IP2, embodied in the protein design algorithm ‘‘Protein Engineer-

ing Pareto Frontier’’ (PEPFR) [32]. Whereas IP2 samples a subset of

the designs that optimally balance the immunogenicity and

functionality objectives, PEPFR generates the entire set of Pareto

optimal variants, i.e. all enzymes whose predicted immunogenicity

and functionality are not simultaneously dominated by any other

single design. Eighteen of these Pareto optimal variants have been

produced and subjected to a rigorous experimental analysis of key

performance parameters. This combined computational and

experimental analysis of increasingly aggressive plans has provided

new insights into the inherent tradeoffs linking the target enzyme’s

sequence, function, and immunogenic potential. As a whole, this

work outlines a design-based approach to functional deimmuniza-

tion of biotherapeutic candidates.

Results

Computational Design
Whereas previous computationally-driven deimmunization of

P99bL had targeted eight common MHC II alleles [25,31], here

we optimized against only four alleles (DRB1*0101, 0401, 0701,

and 1501) for which MHC II-peptide binding experiments had

been fully optimized [33]. Analysis with the ProPred epitope

prediction tool [20] revealed that putative immunogenic peptides

were broadly distributed throughout the sequence, with several

discrete regions exhibiting numerous overlapping and promiscu-

ous epitopes, e.g. proximal to residues 14, 105, 210, 235, and 334

(Fig. 1). While our prior P99bL deimmunization efforts had

focused on validation of our protein optimization algorithms, the

objective of the current study was a systematic analysis of the

sequence-function-immunoreactivity tradeoffs that are inherent to

the deimmunization process.

In pursuit of this goal, we applied the PEPFR protein design

algorithm [32] to optimize the two objective functions derived

from the IP2 deimmunization formulation [28]: a sequence score

(Sseq, materials and methods equation 1), capturing the predicted

effects of mutations on protein function, and an epitope score (Sepi,

materials and methods equation 2), capturing the predicted effects

of mutations on protein immunogenicity. Both scores are defined

such that lower is better (less perturbation to function and reduced

immunogenicity, respectively). PEPFR identifies the ‘‘Pareto fron-

tier’’ of the deimmunized design space, comprised of those designs

whose sequence and epitope scores are not simultaneously

dominated by any other variant (i.e., those designs making the

best tradeoffs between the scores). Separate PEPFR runs were

performed to identify designs at mutational loads ranging from 1

to 8.

The resulting output was a panel of 18 P99bL designs that

exhibited a range of mutational loads and extents of epitope

disruption. A plot of Sseq vs. Sepi for the 18 protein plans enabled

visualization of the objective functions’ competing nature (Fig. 2).

The overarching goal was reduction of P99bL epitope score via

mutagenic deletion of predicted epitopes; however each deimmu-

nizing mutation incurs an Sseq penalty. Any increase above the

wild type Sseq reflects a putative risk of reduced protein stability

and/or function, and therefore mutagenic deimmunization must

carefully balance the opposing objective functions. The Pareto

frontier analysis (Fig. 2) highlights the relative tradeoffs between

predictions of epitope content and biological activity, but the

Author Summary

Protein therapeutics have created a revolution in disease
therapy, providing improved outcomes for prevalent
illnesses and conditions while at the same time yielding
treatments for diseases that were previously intractable.
However, this powerful class of drugs is subject to their
own unique challenges and risk factors. In particular, the
biological origins of therapeutic proteins predispose them
towards eliciting a detrimental immune response from the
patient’s own body. Therefore, fully capitalizing on the
medicinal reservoir of natural and engineered proteins will
require efficient, effective, and broadly applicable deim-
munization technologies. We have developed deimmuni-
zation algorithms that simultaneously optimize therapeu-
tic candidates for both low immunogenicity and high-level
activity and stability. Here, we combine computational
modeling and experimental analysis to show that the
process of protein deimmunization manifests inherent
tradeoffs between immunogenic potential and biomolec-
ular function. Our experimental results demonstrate that
dual objective optimization allows us to assess and design
for these tradeoffs, thereby enabling facile construction of
deimmunized variants that span a broad range of
immunogenicity and functionality performance parame-
ters. Thus, we can rapidly map the design space for
deimmunized drug candidates, and we can use this
information to guide selection of engineered proteins that
are most likely to meet performance benchmarks for a
given clinical application.
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Fig. 1. Epitope map of P99bL. The P99bL sequence was analyzed using ProPred set to a 5% threshold. Every nonamer peptide was classified as a
binder or non-binder of alleles DRB1*0101, 0401, 0701, and 1501. The number of alleles that bind each nonamer peptide (y-axis) is indicated by a bar
at the starting position of the peptide (x-axis). The positions of engineered mutations from the deimmunized enzymes are indicated with blue arrows
and residue numbers.
doi:10.1371/journal.pcbi.1003988.g001

Fig. 2. Pareto frontier of the P99bL deimmunized design space. The computed Sseq design parameter is plotted vs. the computed Sepi design
parameter for 19 unique enzyme plans. Sseq derives from a statistical sequence potential, and is analogous to an energy function such that lower
values are better. Sepi is the total predicted epitope count for each protein. Pareto optimal designs, i.e. those for which no other single design has
both better epitope and sequence scores, are indicated with blue circular markers. In orange are three 4-mutation designs that are Pareto optimal at
their specific mutational load but are outperformed by designs at higher mutational loads. Wild type P99bL is indicated with a red square. Mutational
loads are indicated adjacent to their cognate markers. For three representative proteins, the epitope content has been mapped onto the P99bL
peptide backbone (PDB ID 1XX2A). Dense regions of overlapping epitopes are shown as thick red tubes, and lower densities are indicated with
incrementally thinner tubes colored in a gradient red-orange-yellow-green-blue. Epitope free regions are thin grey tubes. 3-dimensional epitope
maps are shown for wild type P99bL, design 4O, and design 8Z.
doi:10.1371/journal.pcbi.1003988.g002
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practical relationship between these mathematical functions is an

unknown quantity. Thus, experimental analysis is ultimately

required to understand the magnitude of biological activity that

is sacrificed per unit immunogenicity.

Incrementally enhanced deimmunization, moving from right to

left on the Pareto curve (Fig. 2), was realized by three comple-

mentary mechanisms. First, increasing mutational loads allowed

for simultaneous disruption of multiple, distributed epitope

clusters. Compare, for example, design 1I, which targets a single

epitope with one mutation, to design 8Z, which targets seven

distinct immunogenic regions with eight mutations (Table 1).

Second, in some instances accrued mutations were combined in

close proximity to better target one particularly immunogenic

region. For example, designs 4M through 7S as well as plan 8U

encoded the R105S mutation, which was predicted to disrupt

three of seven epitopes in a dense cluster centered on position 105

(Fig. 3). The more ambitious designs 8V through 8Z deleted six of

these same seven epitopes with the combined G103D+R105S

double mutation. The mutational combinations M235Q+V243L

and Q333D+I334L were likewise predicted to yield enhanced

epitope deletion relative to their single mutation counterparts

(Fig. 3). In parallel to escalating mutational loads, a third

mechanism for improved epitope deletion was the use of

increasingly aggressive individual mutations. In particular, muta-

tion N14R was associated with three designs possessing moderate

sequence scores (4N, 5R, and 8V; Sseq range of 17.1 to 41.4;

Table 1), but it deleted only three of six epitopes in the dense

cluster centered on residue 14 (Fig. 3). Mutation A13E, employed

by six designs having a Sseq range of 25.3 to 107.6, disrupted five of

the six epitopes in this cluster. Finally, A13D deleted all six

predicted epitopes, but this aggressive substitution contributed to

particularly poor overall sequence scores (Sseq = 98.8 and 144.8 for

designs 4P and 8Z, respectively). In aggregate, incremental

increases in mutational load and mutational stringency produced

a systematic series of deimmunized designs ranging from the wild

type Sepi = 60 to that of variant 8Z (Sepi = 32), in which almost half

of the predicted epitopes were targeted for disruption.

Cloning, Expression, and Purification
Engineered gene constructs were assembled by recursive PCR

from overlapping synthetic oligonucleotides, and each gene was

modified with a 59-coding sequence for the OmpA leader peptide

and a 39-coding sequence for a C-terminal hexa-histidine tag.

Genes were cloned behind the strong T7 promoter of vector

pET26b, and proteins were expressed in the E. coli host

BL21(DE3) [F– ompT hsdSB (rB
- mB

-) gal dcm (DE3)]. Recombi-

nant enzymes were released from the periplasm by osmotic shock

and subsequently purified to.95% by immobilized metal affinity

chromatography. Yields were 1–30 mg/liter of cell culture,

depending on the enzyme variant.

Thermostability Analysis
The relative structural stabilities of the eighteen engineered

enzymes were assessed as apparent melting temperatures (Tm),

quantified by differential scanning fluorimetry [34]. The Tm’s of

the eighteen variants ranged from 47.09–56.27uC, or 83–99% of

Fig. 3. Detailed view of T cell epitopes targeted for disruption. The four MHC II alleles of interest are shown on the y-axis, and peptide sub-
sequences of P99bL are shown on the x-axis. Deimmunizing mutations are specified above each graphic, and sites of mutation are indicated by
asterisks on the x-axis. The precise positions of predicted T cell epitopes in wild type P99bL are indicated by solid black lines. Predicted epitopes in
the specified engineered sequence are indicated with hatched orange lines. Overlapping black and orange lines are predicted epitopes not deleted
by the specified mutation or mutations.
doi:10.1371/journal.pcbi.1003988.g003
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the wild-type value (56.61uC) (Table 1). While the observed 9.5uC
range in Tm should not be interpreted as insubstantial, it bears

noting that none of the engineered variants exhibited significant

unfolding at 37uC (S1 Fig.), which is the temperature of ultimate

therapeutic relevance.

The incremental manner in which the design series progres-

sively targeted epitopes resulted in extensive mutational overlap

between adjacent designs, and insights regarding the destabilizing

effects of specific substitutions were obtained by deconvoluting the

mutational composition of various constructs. Consider for

example the adjacent series 1J, 2K, and 4L. Design 1J encoded

only M235Q, which resulted in a negligible 0.64uC reduction in

Tm (Table 1). In contrast design 2K, which encoded both M235Q

and R210H, exhibited a 2.83uC drop in Tm, indicating that

R210H has a significant destabilizing effect, either by itself or in

the context of M235Q. The next variant, 4L, revealed that neither

V25I nor T342K were destabilizing substitutions, as 4L differed

from 2K by only these mutations yet exhibited an equivalent Tm.

The permissible natures of V25I and T342K were further

corroborated by comparison of Tm’s for 5Q vs. 4M and 1I vs.

WT, which differed by the respective single mutations and again

possessed essentially the same Tm values.

Separately, the data indicated that substitutions N14R and

A13E were interchangeable with respect to structural integrity. In

particular, the 4-mutation designs 4N and 4O differed only by

N14R and A13E, respectively, and the 8-mutation variants 8V

and 8W exhibited the same distinguishing feature. In both cases,

the two alternative substitutions yielded essentially equivalent Tm

values (49.47<49.74uC and 50.01<50.25uC, respectively). More-

over, there was evidence that these N-terminal mutations did not

further compromise designs already exhibiting moderately de-

creased stability. For example, 5R differed from 4M by the simple

addition of N14R, yet both enzymes showed similar stability

(Tm = 50.15 and 49.95uC, respectively).

The most striking observation, however, was the clear

bifurcation in Tm values between designs that encoded R105S

and those that did not. Without exception, plans bearing R105S

possessed Tm’s below 52uC (average Tm = 49.53uC), while variants

bearing wild type R105 uniformly exhibited Tm’s above 53uC
(average Tm = 55.09uC). This suggested that R105S was the single

most destabilizing mutation from the study, and separate

experiments on the R105S point mutant showed that this single

mutation substantially reduced protein stability (Tm = 52.64uC, S1

Table). It seems likely that this effect stems from the fact that R105

resides in the center of a pocket defined in part by D86, D87,

D108, and E300 (S2 Fig.). Presumably, R105 electrostatically

stabilizes the adjacent acidic residues, and removal of this positive

charge by the R105S mutation renders the protein less stable.

Interestingly, while the isolated R105S mutation caused a

reduction in thermostability, it manifested no substantial effect

on catalytic activity (S1 Table), and it provided for a net reduction

in peptide interaction with human MHC II proteins (see results

below). Thus, the unfavorable consequences of R105S appeared to

be confined to structural stability.

Finally, it should be noted that the sequence potential was

intended, in part, to quantify the likelihood that mutations or

combinations of mutations would maintain P99bL structural

integrity. A plot of Sseq vs. apparent Tm yielded the expected

inverse relationship, and a linear regression showed that the

correlation was highly significant (non-zero slope, P = 0.0019)

(Fig. 4A). While the sequence potential was not an accurate

predictor of individual Tm values (linear R2 = 0.44), from a global

perspective it did effectively capture this aspect of experimental

performance.

Kinetic Analysis
A second goal of the sequence potential was to select mutations

least likely to disrupt P99bL activity. To assess mutational effects

on molecular function, Michaelis-Menten kinetic parameters were

quantified using the beta lactam substrate nitrocefin (Table 1).

Linear regression of Sseq vs. turnover number (kcat) or catalytic

efficiency (kcat/Km) revealed a highly significant inverse correla-

tion (non-zero slope, P = 0.0098 and 0.0005, respectively), whereas

there was not a strong correlation with Km (Fig. 4B, C, D). Similar

to the relationship with Tm, the sequence potential could not be

used to predict catalytic proficiency for individual enzymes, but it

did accurately reflect the overall trends for measured reaction rates

and catalytic efficiency.

The kcat values for individual designs ranged from 65–206%

that of wild type P99bL (average over all variants = 114%).

Notably, 11 of 18 variants exhibited faster than wild type

maximum reaction velocities. However, the majority of variants

(15/18) also experienced an increase in Km, and as a result the

average kcat/Km for all variants was 88% that of wild type

(ranging from 56–121%). In general, wild type or better reaction

rates and catalytic efficiencies were maintained up through the

two least aggressive 8-mutation plans, 8T and 8U. The two

variants with the highest overall kcat/Km values were designs 5Q

and 5R (109% and 121% of wild type, respectively), and in both

cases these enhanced efficiencies were driven exclusively by

substantial increases in the kcat parameter (206% and 164% wild

type, respectively). Together, these observations highlight the fact

that the wild type sequence does not represent a global optimum

with respect to catalytic conversion of nitrocefin. The functional

deimmunization process identified numerous performance en-

hanced variants, and the high activity observed across the full

spectrum of mutational loads underscores the practical utility of

the statistical sequence potential. Indeed, even the five most

aggressive 8-mutation designs (8V through 8Z) proved to be

highly active enzymes, with kcat and kcat/Km values that averaged

77% and 71%, respectively, of wild type. The single most

deimmunized variant, 8Z, maintained well above 50% wild type

rate acceleration and efficiency. Thus, all 18 deimmunized

enzymes exhibited activity comparable to naturally evolved

biocatalysts.

Peptide Binding
The immunoreactivity of various constructs was assessed by

measuring the MHC II binding affinity of their corresponding

peptide fragments. These competition immunoassays are a widely

recognized metric for assessing immunogenic potential and

validating computational predictions [22,25,33,35,36,37,38,39].

Synthetic fragments of wild type P99bL were designed so as to

encompass each of the epitopes targeted by the deimmunization

algorithm, and corresponding variant peptides were synthesized to

represent the deimmunized designs (S2 Table). The affinity of

each peptide for human MHC II molecules DRB1*0101, 0401,

0701, and 1501 was measured by competition with known peptide

immunogens for each allele. A quantitative comparison of wild

type versus variant MHC II binding affinity was used as a proxy

measure for the success of epitope deletion (Fig. 5). Peptide

affinities are reported as IC50 values, and putative epitopes were

classified as strong (IC50,1 mM), moderate (1 mM#IC50,

10 mM), weak (10 mM#IC50,100 mM), or non-binders (IC50$

100 mM).

High affinity interaction between peptide antigens and class II

MHC is a key determinant of subsequent T cell immunogenicity

[40,41,42], and a total of four wild type P99bL peptides were

found to possess sub-micromolar IC50’s for one or more of the
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tested alleles. The wild type A13+N14 peptide was a high affinity

binder of DRB1*0701 (IC50 = 800 nM), and both A13D and

A13E successfully converted this to a weak binding interaction

with N14R yielding a moderate binding interaction (Fig. 6). As

found in prior studies [25], wild type peptide L149 was bound by

all four alleles, and here it was a particularly strong binder of 1501

(IC50 = 300 nM). The L149Q mutation reduced 1501 affinity by

40-fold, converting this strong binding interaction to a weak

interaction. Wild type peptide I262 also bound all four alleles, and

it possessed sub-micromolar affinity for both 0401 and 1501. The

I262V mutation yielded a 6-fold reduction in 1501 affinity,

thereby converting a strong binder to a moderate binder. In

contrast, I262V did not substantially alter affinity for allele 0401,

although this outcome was predicted during the design process

(Fig. 3). The only other high affinity binding of a wild type peptide

was 0101 binding of I48, which, contrary to predictions, was

unaffected by the I48V mutation.

A total of 29 peptides, 11 wild type and 18 engineered, were

analyzed to produce 116 affinity measurements. Of the 72 pairs of

wild type and cognate deimmunized affinities (Fig. 5), there were

16 cases in which the designed mutation reduced MHC II affinity

by more than an order of magnitude. There were an additional 11

instances wherein the designed mutation reduced affinity by 5- to

10-fold, and 10 examples of more modest 2- to 5-fold reductions.

In aggregate the engineered mutations showed a 37.5% success

rate in reducing MHC II binding by 5-fold or more. In contrast,

there were only nine total instances in which the designed

mutation enhanced MHC II affinity by any measurable degree. In

five of those cases, the increase was a modest 2- to 5-fold, and

there were no quantified examples of 10-fold or greater increases

in affinity.

To correlate the experimentally measured MHC II affinities

with the algorithm’s binary prediction of peptide binding/non-

binding, a threshold value for experimental ‘‘binding’’ was

arbitrarily selected. So as to maintain consistency with our prior

work on P99bL, we set the cutoff for experimental binders at an

IC50,100 mM, i.e. counting all strong, moderate, and weak

binders as defined above. Given this experimental threshold and a

ProPred prediction threshold of 5%, the protein design process

yielded a 65% positive prediction rate for binders across all four

alleles (Fig. 6). Predictions were most accurate for DRB1*0401

(76%) and least accurate for allele 0701 (59%). Overall, we

observed a 13% false positive rate and a 22% false negative rate,

similar to those we have reported previously [25,31]. Comparable

analyses using the newer IEDB consensus [22] and NNAlign [34]

prediction methods revealed that, in this instance, no single

predictor exhibited dominant accuracy across all four alleles (S3,

S4 and S5 Tables). In particular, the ProPred predictor was

comparable to the others for the peptides assessed here. As a whole

the results show that the IP2 deimmunization formulation,

implemented through the PEPFR protein design algorithm and

using the ProPred epitope predictor, proved to be proficient at

identifying high affinity MHC-binding peptides and selecting

corresponding disruptive mutations.

To enable comparison of whole protein immunoreactivity,

MHC II binding data for individual peptides was integrated across

the full length of each enzyme design. For each protein, a

categorical immunoreactivity score was obtained by summing the

number of strong, moderate, and weak MHC binders across the

protein’s component peptides (11 peptides N 4 MHC alleles = 44

possible interactions). Consistent with the predicted Sseq epitope

parameter (Table 1), the design series showed a general trend of

Fig. 4. Correlations between computational design parameters and experimentally measured performance metrics. A Sseq vs. Tm. B
Sseq vs. Km. C Sseq vs. kcat. D Sseq vs. kcat/Km. E Global Quantitative Immunoreactivity vs. Sepi. (former as defined in equation 4). Pareto optimal enzymes
are shown as blue circular markers, sub-optimal 4-mutation variants are shown as orange circular markers, and wild type P99bL is shown as a red
square. Linear regressions are shown along with R2 values, and an F test was used to determine statistical significance for non-zero slopes (P values
are provided).
doi:10.1371/journal.pcbi.1003988.g004
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Fig. 5. Peptide binding affinities for human MHC II proteins. IC50 values are plotted as cognate wild type and variant pairs, where lower IC50

values correspond to higher affinity binding with human MHC II. The slope of the connecting lines are a relative measure of deimmunizing efficacy,
where larger positive slopes indicate a greater fold decrease in affinity relative to wild type. Lines with negative slopes indicate a mutation that
enhanced MHC II binding. Shading indicates binding strength by category: strong (IC50,1 mM, dark grey), moderate (1 mM#IC50,10 mM, medium
grey), weak (10 mM#IC50,100 mM, light grey), or non-binding (IC50 $100 mM, white).
doi:10.1371/journal.pcbi.1003988.g005
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decreasing experimental immunoreactivity moving from variant 1I

to 8Z (Fig. 7). Of the 18 engineered designs, 11 had a net deletion

of one or more high affinity interactions, 17 deleted one or more

moderate affinity interactions, and 16 deleted one or more weak

interactions. Importantly, none of the engineered enzymes suffered

a net increase in total experimental epitopes. In only one case was

a design found to have a net addition of epitopes in any single

binding category. Namely, 4P possessed one additional weak

binder, but at the same time it deleted four moderate and two

strong binders, the latter two being most prone to drive a T cell

Fig. 6. Epitope predictions, measured IC50 values, and correlations by individual peptide. For each MHC allele, the number of predicted
epitopes within a given synthetic peptide is shown on the left, and the measured IC50 values are shown on the right. Peptides were categorized as
strong (IC50,1 mM, red), moderate (1 mM#IC50,10 mM, orange), weak (10 mM#IC50,100 mM, yellow), or non-binding (IC50 $100 mM, white).
Positive correlations between epitope prediction and experimental measurements (binding cutoff at 100 mM) are highlighted in blue on the left.
doi:10.1371/journal.pcbi.1003988.g006
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mediated immune response [40]. Indeed, with respect to deleting

moderate and strong binders, design 4P was bested only by 8Z.

The latter was the single most aggressive design, and it was in fact

found to have the lowest categorical immunoreactivity. Specifi-

cally, 8Z yielded a net deletion of three strong binders, four

moderate binders, and one weak binder, thereby eliminating a full

quarter of all experimentally identified MHC II binders.

Considering only the higher affinity peptides (IC50,10 mM), 8Z

benefitted from a 39% reduction in epitope content, similar to the

47% reduction predicted by the deimmunization algorithm. Thus,

prediction of epitope disruption was borne out in the overall

experimental analysis.

As a second measure of whole-protein immunogenic potential, a

global quantitative immunoreactivity value was calculated by

averaging the numerical IC50’s for each enzyme’s component

peptides. Importantly, the dynamic range for our MHC II binding

assay is 10 nM to 250 mM, and many of the binding affinities,

particularly for engineered peptides, were found to be too weak for

precise quantitation (values.250 mM, Fig. 6). Because these non-

binding peptides are key indicators of reduced immunoreactivity,

it was critical that they be factored into the quantitative, whole-

protein score. To do so, we employed equation 4 (see materials

and methods). Each enzyme’s global immunoreactivity, normal-

ized to 100% for wild type P99bL, is reported in Table 1. Similar

to the categorical analysis, there was a general trend towards

decreased global immunoreactivity with increasing mutational

load and aggressiveness. On this normalized scale, designs 8T and

8U are the most immunotolerant variants, both exhibiting a 65%

reduction relative to wild type P99bL immunoreactivity. The most

extensively engineered design, 8Z, is also highly immunoevasive,

with a 63% reduction compared to wild type. Overall, the global,

quantitative immunoreactivity was found to have a highly

significant and surprisingly close correlation with the predicted

Sepi parameter (linear R2 = 0.64; non-zero slope P,0.0001;

Fig.4E). Thus, Sepi offered reasonable predictive power even for

individual P99bL designs. In total, the algorithm successfully

incorporated compatible and increasingly effective deimmunizing

mutations so as to achieve a systematic reduction in immunogenic

potential.

Discussion

Mutagenic deletion of T cell epitopes, which has been

successfully implemented with diverse proteins, is a powerful

means for deimmunizing biotherapeutics. With very few excep-

tions, however, published studies of T cell epitope deletion, in full

length proteins, have focused on disrupting one or two immuno-

genic regions [9,10,11,12,14,25,43]. Indeed, there is debate

regarding the feasibility of broad, protein-wide epitope deletion,

which is complicated by the high degree of MHC II polymorphism

in human populations [44]. Thus, while there are many reports of

limited but successful T cell epitope deletion, one is left to wonder

how many projects might have failed due to the presence of

numerous and dispersed immunogenic regions that could not be

targeted simultaneously using conventional strategies. To more

fully understand this challenge, we have conducted a combined

computational and experimental analysis of the immunogenicity

and functionality tradeoffs that are inherent to the deimmuniza-

tion problem.

The studies described here were enabled by an advanced

deimmunization algorithm that seamlessly integrates immunogen-

ic epitope prediction with in silico analysis of the functional

consequences associated with deimmunizing mutations. We

combined the IP2 deimmunization formulation with the PEPFR

Fig. 7. Global categorical immunoreactivity for full length protein designs. The binding strength of individual peptides for MHC II alleles
DRB1*0101, 0401, 0701, and 1501 were binned as strong (IC50,1 mM, red), moderate (1 mM#IC50,10 mM, orange), weak (10 mM#IC50,100 mM,
yellow), or non-binding (IC50 $100 mM, not shown). The counts for each enzyme’s constituent peptides were summed and plotted by semi-
quantitative category (y-axis). The horizontal hatched lines are visual guides for the wild type binding counts in each category.
doi:10.1371/journal.pcbi.1003988.g007
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optimization algorithm [28,32] to design a suite of 18 Pareto

optimal P99bL variants. Each of these designs optimally balances

two objective functions – one modeling immunogenicity and the

other functionality – such that no other single variant is predicted

to outperform with respect to both design objectives. Inspection of

the Pareto optimal designs reveals that, in the context of the

mathematical model, there is an inverse relationship wherein ever

greater deimmunization is achieved at the expense of progressively

reduced function (Fig. 8A). To assess the practical implications of

these predicted tradeoffs, we have recombinantly produced all 18

designed enzymes and rigorously characterized their stability,

activity, and immunoreactivity with human MHC II proteins. The

results of this analysis represent the first systematic assessment of

the functional penalty that is paid for pursuing progressively more

deimmunized drug candidates.

Our previous work had demonstrated the capacity to design

P99bL variants bearing 1–5 deimmunizing mutations yet retaining

wild type or better activity and near wild type stability [25,31]. By

more thoroughly mapping the Pareto optimal design space, we

show here that up to seven immunogenic regions can be

simultaneously targeted while incurring essentially no loss in

molecular stability and function (see design 8T, Table 1).

Considering only the most aggressive designs (8T to 8Z), the

computational Pareto curve suggested that there would be an

accelerating loss of molecular function throughout the series,

ultimately resulting in a 6-fold deterioration relative to 8T

(Fig. 8A). The experimental analysis verified the predicted trend,

revealing that the 8-mutation series did in fact exhibit a systematic

reduction in stability and catalytic efficiency. Importantly,

however, design 8Z showed a mere 40% reduction in catalytic

proficiency relative to 8T. This dramatic difference in the

magnitude of DSseq versus measured change in molecular function

suggests a non-linear relationship between the statistical sequence

potential and actual experimental performance. Indeed, a non-

linear correlation is suggested by the above graphical analysis

(Fig. 4A, C, D). Thus, it seems likely that more aggressive designs

exhibiting even higher Sseq penalties might be realized experi-

mentally before reaching the point of diminishing returns. In other

Fig. 8. Comparison of computed and experimental Pareto optimal plots. A Pareto plot of computed design parameters Sseq vs. Sepi. B
Experimental analog of the computed Pareto plot. An integrated score for experimentally measured molecular function (equation 3) is plotted vs. a
global score for experimentally determined immunoreactivity (equation 4). C Experimental Pareto plot of normalized, reciprocal Tm vs. Global
Quantitative Immunoreactivity. D Experimental Pareto plot of normalized Km vs. Global Quantitative Immunoreactivity. E Experimental Pareto plot of
normalized, reciprocal kcat vs. Global Quantitative Immunoreactivity. F Experimental Pareto plot of normalized, reciprocal kcat/Km vs. Global
Quantitative Immunoreactivity. G Experimental Pareto plot of averaged, normalized, reciprocal kcat and Tm vs. Global Quantitative Immunoreactivity.
H Experimental Pareto plot of averaged, normalized, reciprocal kcat/Km and Tm vs. Global Quantitative Immunoreactivity. Pareto optimal enzymes are
shown as blue circular markers, sub-optimal 4-mutation variants are shown as orange circular markers, and wild type P99bL is shown as a red square.
Note that the computed Pareto plot best captures overall molecular performance, as represented by integrated performance values (e.g. averaging
kinetic parameters with thermostability parameters).
doi:10.1371/journal.pcbi.1003988.g008
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words, it appears we have yet to reach the practical limit of epitope

depletion for P99bL.

While the quantified losses in activity and stability were not as

sharp as predicted by the Sseq design parameter, there was in fact a

general trend towards escalating loss of function with more

aggressive deimmunization. To better visualize these real world

tradeoffs, we constructed the experimental analog of the Pareto

curve (Fig. 8B). This analysis entailed plotting an integrated

experimental performance score (averaging the normalized,

reciprocal values for Tm, kcat, and kcat/Km; equation 3) vs. the

quantitative global immunoreactivity score (equation 4). The

graphical analysis clearly shows that more aggressively deimmu-

nized enzymes sustained progressively greater losses of molecular

function. Analogous plots were constructed for various individual

performance parameters as well as alternative combinations of

these parameters (Fig. 8C-H). It is interesting that the computa-

tionally generated Pareto plot most effectively captures the general

trends observed with integrated, as opposed to individual,

experimental performance measures (compare Fig. 8 panels B,

G and H to panels C, D, E and F). This is a notable and

advantageous outcome, as biotherapeutic researchers will typically

be interested in overall molecular performance as opposed to any

single metric (e.g. thermostability, binding affinity, rate accelera-

tion, or catalytic efficiency). As a whole, the parallels between the

computational and experimental Pareto plots are striking, and this

observation underscores the PEPFR algorithm’s capacity to

effectively factor in the inherent tradeoffs between immunogenicity

and molecular function.

As a final note, previous engineering of P99bL with the IP2

algorithm had produced higher activity variants than those

designed with the earlier DP2 algorithm [31]. However, the IP2

designs from the former study were generated after locking down

all residues in close proximity the active site. This raised the

question of whether or not the combined 1-body + 2-body

sequence potential of IP2 was in fact more effective than the 1-

body potential implemented in DP2, where mutations to active site

residues had been allowed [25]. The Pareto optimal designs from

the present study did not benefit from locked active site residues,

yet the 4-mutation and 5-mutation designs from this study

substantially outperformed previous 2-mutation DP2 designs and

were largely equivalent to previous 4-mutation and 5-mutation IP2

designs in which the active site had been held invariant (S3 Fig.).

This result shows that the more advanced sequence potential of

IP2 can in fact generate highly mutated and yet highly active

proteins in the absence of detailed structure-function information.

Moreover, when residues need not be locked down during the

design process, there is greater inherent capacity for epitope

deletion.

In conclusion, we have computationally and experimentally

mapped the deimmunized Pareto frontier of P99bL. The

predictions underlying the design process correlated well with

experimental analyses of protein function. In particular, we

observed that incremental deletion of progressively more T cell

epitopes lead to a relative escalation in concomitant loss of

function. Thus, the predicted tradeoffs underlying protein

deimmunization were borne out in real world analyses. Nonethe-

less, all 18 of the computationally designed enzymes proved to

exhibit reasonable thermostability and impressive activity; not a

single design failed to express or function. The most highly

engineered enzyme, which incorporated eight mutations targeting

seven distinct epitope clusters, was found to have a 39% reduction

in high affinity MHC II binding interactions while maintaining

well over 50% of the wild type enzyme’s catalytic activity. It is

therefore evident that we have additional capacity for designing

even more extensively deimmunized yet functional P99bL

variants. If these trends translate to other therapeutic proteins,

as anticipated, the integrated design algorithms evaluated here will

accelerate identification of engineered variants spanning a broad

spectrum of immunogenic potential and biological function. These

panels of deimmunized proteins should prove a rich resource from

which to select therapeutic candidates that meet diverse clinical

needs.

Materials and Methods

Materials
Oligonucleotides for sequencing and standard PCR methods

(25 nmol scale, standard desalting) and oligonucleotides for gene

synthesis (100 nmol scale, PAGE Purified) were purchased from

Integrated DNA Technology (San Diego, CA). Nitrocefin was

purchased from Oxoid (Cambridge, UK). Human lysozyme and

SYPRO Orange 50006Protein Stain were purchased from Sigma

(St. Louis, MO). MicroAmp Fast Optical 0.1 ml 96-Well Plates

and MicroAmp Optical Adhesive Film were from Applied

Biosystems (Bedford, MA). Restriction enzymes and PCR reagents

were purchased from New England BioLabs (Ipswich, MA).

Growth media was purchased from Becton Dickinson (Franklin

Lakes, NJ). Plasmid purification kits and Ni-NTA resin were

purchased from Qiagen (Valencia, CA). PCR cleanup and gel

extraction kits were from Zymo Research (Irvine, CA). Peptides

derived from P99bL were ordered from GenScript (Piscataway,

NJ), and were greater than 85% pure. Biotinylated tracer peptides

were purchased from 21st Century Biochemicals (Marlborough,

MA). MHC II DR molecules were purchased from Benaroya

Research Institute (Seattle, WA), anti-MHC II-DR antibody from

Biolegend (San Diego, CA), and DELFIA Eu-labeled Streptavidin

was from PerkinElmer (Boston, MA). Unless noted, all other

chemicals and reagents were from VWR (Radnor, PA).

Computational Deimmunization
Functionally permissible mutations were identified using an IP2

sequence potential, generated essentially as described [28]. Briefly,

a multiple sequence alignment (MSA) of 94 homologs from Pfam

00144, including the wild type, was constructed by filtering for $

30% sequence identity to wild type, #90% sequence identity to

each other, and #25% gaps. The negative log frequency of each

amino acid a at each position i was used to compute position-

specific one-body terms wi(a). Allowed substitutions were con-

strained to those appearing at or above background amino acid

frequencies [45]. Two-body terms wi,j (a,b) for pairs of amino acids

(a,b) at coupled positions (i,j) were computed as the negative log

amino acid frequency of the pair, minus the corresponding one-

body terms, which avoids double counting. Only pairs of positions

with significant coupling according to a x2-based test were

included in the sequence potential. In addition to mutational

constraints based on the evolutionary sequence record, prolines

and cysteines were neither mutated out of nor substituted into the

engineered enzyme variants.

The impact of functionally acceptable mutations on putative T

cell epitope content was analyzed with the ProPred epitope

predictor set to a 5% threshold. ProPred has been shown to be one

of the most accurate MHC II prediction tools in the public space,

and readers are referred to the following references for a detailed

comparison of different methods [22,46]. The analysis considered

MHC II alleles DRB1*0101, 0401, 0701, and 1501, which are

common alleles [42] and for which binding assays had been fully

optimized [33]. Each nonamer peptide X considered in the

optimization (i.e., incorporating a contiguous combination of wild
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type residues and allowed substitutions) was classified as either a

binder or non-binder of the four target MHC II alleles. The

number of binders was summed to generate the nonamer’s epitope

score e(X). As a comparison, putative epitopes from ProPred

predictions were subsequently analyzed using the IEDB consensus

[22] and NNAlign [34] prediction methods with binding cutoffs

(IEDB 5% or 10%; NNAlign 50 nM or 1000 nM) set to values

commonly used in protein immunogenicity prediction [47].

Ultimately, we found that the alternative epitope predictors, when

applied to the ProPred based designs, yielded the expected trends

of immunogenicity-functionality tradeoffs across the set of 18

P99bL variants (S4 Fig.).

Given a wild-type sequence and a mutational load, PEPFR

identifies each Pareto optimal variant s with the specified number

of mutations making undominated tradeoffs between the compet-

ing objectives of total sequence potential Sseq and total epitope

score Sepi:

Sseq sð Þ~
X

i
wi s i½ �ð Þz

X
i,j

wi,j s i½ �,s j½ �ð Þ ð1Þ

Sepi sð Þ~
X

i
e s i::iz8½ �ð Þ ð2Þ

where bracketed expressions indicate selection of the amino acid at

the position or the substring of amino acids at the contiguous

positions.

Briefly, PEPFR identifies the Pareto frontier of this two-objective

space (Sepi vs. Sseq; see Fig. 2) by employing a divide-and-conquer

algorithm wrapped around an IP2-based variant optimization.

Given a region in the objective space (min/max values for the

objectives), PEPFR uses a constrained version of IP2 to optimize an

undominated design in that region. PEPFR then further divides the

region into four quadrants around the design and recurses only

for the upper-left and lower-right quadrants, as the upper-right is

dominated and the lower-left is empty. It thereby finds all and

only the Pareto optimal designs, and does so efficiently in that the

number of calls to the integer programming optimizer is

proportional to the number of Pareto optimal designs. We used

PEPFR as described for deimmunization (He et al. 2012), with the

underlying integer programming instances optimized by calls to

the IBM CPLEX package.

Cloning, Expression, and Purification
Gene synthesis was performed using a two-step process.

First, an assembly reaction was performed using fifty-two

synthetic oligonucleotides encoding each design with an

appended 59- ompA leader sequence and 39 hexa-His coding

sequence (sequence GGGSAETVEHHHHHH). The assem-

bled genes were then amplified in a second PCR using external

primers. The constructs were then digested using Xba1 and

HindIII, ligated into similarly digested pET26b, and electro-

porated into BL21(DE) E. coli cells [F– ompT hsdSB (rB
- mB

-)

gal dcm (DE3)].

Expression was performed in 200–500 ml of LB medium

containing 30 mg/ml kanamycin (LB-Kan). Expression cultures,

from a 1:100 subculture of saturated overnight cultures, were

grown with aeration at 37uC in 2 L baffled flasks for an hour and

forty five minutes. The temperature was then shifted to 16uC,

equilibrated for 15 minutes, and expression was induced with

1 mM IPTG. Following 12–20 hours of induction at 16uC,

osmotic shocktates were prepared using the protocol described

in the Epicentre PeriPreps Periplasting Kit with slight modifica-

tions. Briefly, cells were pelleted at 6000g for 10 minutes and

resuspended in PeriPreps Periplasting Buffer containing 1.5 mg/ml

human lysozyme. Cells were quenched after a five minute

incubation period with ice-cold water, and then incubated on ice

for 10 minutes. The periplasmic fraction was collected by spinning

the shocktate at 14,000g for 10 minutes and collecting the

supernatant.

Proteins were purified from clarified periplasmic fraction

using Ni-NTA resin (400 ml bed volume). After the clarified

periplasmic fraction was flowed through the resin by gravity,

the column was washed 2 times with 1 mL of PBS (137 mM

NaCl, 2.6 mM KCl, 10 mM Na2HPO4, 1.7 mM KH2PO4,

pH 7.4) containing 20 mM imidazole, and the enzyme was

eluted with 2 ml of PBS containing 200 mM imidazole. The

elution fraction was either dialyzed (10,000 MW cutoff) against

3 changes of 4 L PBS or concentrated and buffer exchanged by

centrifugation (10,000 MW cutoff) against 3 washes of 15 mL

PBS to a final concentration of 0.5–2 mg/ml protein. Purified

protein was stored at 4uC prior to further analysis. All protein

preparations were.95% pure, as determined by reverse-phase

HPLC analysis (Agilent 1200 Series HPLC) on a Vydac 214TP

180mm C4 column, eluted at 65uC with a gradient of

[90% acetonitrile/9.9% water/0.1% trifluoroacetic acid] in

[99.9% water/0.1% trifluoroacetic acid] at a flow rate of

1 ml/min.

Kinetic Studies
Nitrocefin substrate stock was prepared immediately prior to

the experiments by dissolving nitrocefin powder in DMSO to a

concentration of 20 mM. Triplicate assays were run in 96-well

plate format at 30uC measuring absorbance at 490 nm

(Molecular Devices SpectraMax 190 plate reader). Absorbance

measurements were converted to micromolar product concen-

trations using the appropriate molar absorptivity (eM =

20,500 M21 cm21). The assay buffer was PBS, and each well

contained a final enzyme concentration of 50 ng/ml, 0.04%

BSA, and nitrocefin at concentrations ranging from 10 mM to

200 mM. Initial reaction rates were plotted against substrate

concentration, and Michaelis-Menten kinetic parameters were

determined by nonlinear regression using GraphPad Prism v.5

software (La Jolla, CA). Measurements were made in triplicate,

and enzymes were purified and assayed in biological duplicate.

Thermostability
Differential scanning fluorimetry was performed essentially as

described (Niesen, Berglund et al. 2007) using an ABI 7500 Fast

Real-Time PCR System from Applied Biosystems (Bedford, MA).

Proteins and SYPRO Orange were diluted in PBS. Final protein

concentrations were 100 mg/ml and final dye concentrations were

56. Twenty ml reactions were performed in 12 replicates. The

PCR gradient was run from 25–94uC with a 1 minute equilibra-

tion at each degree centigrade. Fluorescence was quantified using

the preset TAMRA parameters. Melting temperatures were

determined by data analysis with the ‘‘DSF Analysis v3.0.xlsx’’

Excel sheet (ftp://ftp.sgc.ox.ac.uk/pub/biophysics/) and Graph-

Pad Prism v.5 software.

Integrated Molecular Performance:
To construct the experimental equivalent of the Pareto optimal

plot (Fig. 8), a global molecular performance score was calculated

for each individual enzyme using equation 3:
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where ‘‘gT{1
mT{1
m ’’ is the normalized reciprocal Tm value, ‘‘

gk-1
catk-1
cat’’ is the

normalized reciprocal kcat value, and ‘‘
gkcat

Km

� �
kcat

Km

� �-1

’’ is the normalized

reciprocal kcat/Km value. This integrated performance score effectively

averages the normalized reciprocal values for thermal stability, rate

acceleration, and catalytic efficiency, yielding the experimental analog

of Sseq.

MHC Binding Assays
MHC II competition binding assays were performed as

described [33]. All data were fit to the one-site log(IC50) model

by non-linear regression in GraphPad Prism v.5 software. Global

immunoreactivity values were computed for each variant by (i)

averaging the IC50 values for all component peptides, (ii)

multiplying this figure by the number of peptides with IC50.

250 mM, (iii) taking the reciprocal of the resulting product, and (iv)

taking the ratio of this computed value for a variant to that of wild

type P99bL. See equation 4:

Global Immunoreactivity~

1
�

IC50|#Nonbinders
� �

mut

1
�

IC50|#Nonbinders
� �

wt

ð4Þ

where ‘‘IC50’’ is the mean IC50 value averaged over all

component peptides having affinities ,250 mM, ‘‘#Nonbinders’’
is the total count of component peptides with affinities $250 mM,

and the subscripts ‘‘mut’’ and ‘‘wt’’ indicate calculations for

mutant and wild type proteins, respectively. This calculation

accounted for both the affinity of any quantified binders and the

equally important metric of total count for non-binders.

Statistical Analysis
Linear regressions of experimental performance vs. computa-

tional predictions employed an F test for statistical significance of

non-zero slopes. Significance was determined at the a= 0.05 level.

Supporting Information

S1 Fig Melting Profiles from differential scanning fluorimetry. Raw

fluorescence vs. temperature data from differential scanning fluorim-

etry is shown. Increased fluorescence correlates with protein unfolding,

and Tm is computed as the mid-point of the low to high transition.

Enzyme designs are indicated above each graph. Note that none of the

engineered variants exhibits any measurable unfolding at 37uC.

(TIF)

S2 Fig Local environment of residue R105. The P99bL peptide

backbone (PDB ID 1XX2A) is rendered as a grey ribbon, and

residues of interest are rendered as van der Waals surfaces. Shown

are D86, D87, D108, E300, and in the center R105. Carbon is

colored cyan, nitrogen blue, oxygen red, and hydrogen white. The

cationic residue R105 sits in a pocket lined by the four acidic

residues. Mutation R105S removes the putative stabilizing charge

of R105 and may drive protein destabilization through electro-

static repulsion of the four highlighted acidic residues.

(TIF)

S3 Fig Comparison of current and previous P99bL experi-

mental results. The activity and stability of current Pareto

optimal P99bL designs has been compared with that of earlier

P99bL designs. Values are normalized to the wild type values

from the corresponding article. (A) Km value. (B) kcat value. (C)

kcat/Km value. (D) Apparent Tm value. Left of the vertical

hashed line are designs from the current study. Pareto optimal

enzymes are in dark blue, and sub-optimal enzymes are in

yellow. Right of the vertical hashed line in green is a 2-mutation

enzyme from an earlier experimentally driven deimmunization

program [9], in cyan are 2-mutation enzymes from a previous

paper employing the DP2 algorithm [25], and in light blue are

4- and 5-mutation enzymes from a previous paper employing

the IP2 algorithm [31]. Note that 4 and 5-mutation designs from

the current study exhibit similar performance to the 4 and 5-

mutation designs from the earlier IP2 study, despite the fact that

the active site residues were locked down in the earlier study but

were allowed to mutate here. Additionally, note that the current

Pareto optimal designs generally outperform earlier DP2

designs, despite the substantially higher mutational loads of

most enzymes from the current study.

(TIF)

S4 Fig Predicted sequence scores versus epitope scores using

alternative epitope predictors. The IEDB consensus and NNAlign

epitope prediction methods were applied to the 18 P99bL designs

generated using the ProPred epitope predictor. The expected

tradeoffs between epitope score and sequence score manifest the

same general trends as in Figure 2. (A) NNAlign based

predictions at a 50 nM threshold, (B) IEDB based predictions

at a 5% threshold, (C) NNAlign based predictions at a 1000 nM

threshold, (D) IEDB based predictions at a 10% threshold.

Designs are indicated by name, and wild type is shown as an open

red circle.

(TIF)

S1 Table Performance parameters for R105S point mutant.

(DOCX)

S2 Table Synthetic peptides used in MHC II binding studies.

(DOCX)

S3 Table Various epitope prediction methods and correlation

with experimental binding.

(PDF)

S4 Table IEDB consensus predictions and correlation with

experimental binding.

(PDF)

S5 Table NNAlign predictions and correlation with experimen-

tal binding.

(PDF)
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